
2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 93

 34. Show that the following logical equivalences hold
for the Peirce arrow T, where P T Q ; ,(P ~ Q).
a. ,P ; P T P
b. P ~ Q ; (P T Q) T (P T Q)

c. P ` Q ; (P T P) T (Q T Q)
d. Write P S Q using Peirce arrows only.
e. Write P 4 Q using Peirce arrows only.

H

1. the output signal(s) that correspond to all possible
combinations of input signals to the circuit 2. a Boolean
expression that represents the input signals as variables
and indicates the successive actions of the logic gates on

the input signals 3. outputs a 1 for exactly one particular
combination of input signals and outputs 0’s for all other
combinations 4. they have the same input/output table
5. NOT; AND 6. NOT; OR

ANSWERS FOR TEST YOURSELF

Application: Number Systems
and Circuits for Addition
Counting in binary is just like counting in decimal if you are all thumbs. —Glaser and Way

In elementary school, you learned the meaning of decimal notation: that to interpret a
string of decimal digits as a number, you mentally multiply each digit by its place value.
For instance, 5,049 has a 5 in the thousands place, a 0 in the hundreds place, a 4 in the tens
place, and a 9 in the ones place. Thus

5,049 5 5?(1,000)10?(100)14?(10)19?(1).

Using exponential notation, this equation can be rewritten as

5,049 5 5?103 10?102 14?101 19?100.

More generally, decimal notation is based on the fact that any positive integer can be writ-
ten uniquely as a sum of products of the form

d?10n,

where each n is a nonnegative integer and each d is one of the decimal digits 0, 1, 2, 3, 4,
5, 6, 7, 8, or 9. The word decimal comes from the Latin root deci, meaning “ten.” Decimal
(or base 10) notation expresses a number as a string of digits in which each digit’s posi-
tion indicates the power of 10 by which it is multiplied. The right-most position is the ones
place (or 100 place), to the left of that is the tens place (or 101 place), to the left of that is the
hundreds place (or 102 place), and so forth, as illustrated below.

Place
103

thousands
102

hundreds
101
tens

100
ones

Decimal Digit 5 0 4 9

Binary Representation of Numbers
There is nothing sacred about the number 10; we use 10 as a base for our usual number
system because we happen to have ten fingers. In fact, any integer greater than 1 can serve
as a base for a number system. In computer science, base 2 notation, or binary notation,
is of special importance because the signals used in modern electronics are always in one
of only two states. (The Latin root bi means “two.”)

2.5

94193_ch02_ptg01.indd 93 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

94 CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

In Section 5.4, we show that any integer can be represented uniquely as a sum of prod-
ucts of the form

d ? 2n,

where each n is an integer and each d is one of the binary digits (or bits) 0 or 1. For example,

27 5 16181211

5 1?24 11?23 10?22 11?21 11?20.

In binary notation, as in decimal notation, we write just the binary digits, and not the
powers of the base. In binary notation, then,

1 24 1 23 0 22 1 21 1 20

2710 5

??111 1???

1 1 0 1 1 2

where the subscripts indicate the base, whether 10 or 2, in which the number is written.
The places in binary notation correspond to the various powers of 2. The right-most posi-
tion is the ones place (or 20 place), to the left of that is the twos place (or 21 place), to the
left of that is the fours place (or 22 place), and so forth, as illustrated below.

Place
24

sixteens
23

eights
22

fours
21

twos
20

ones

Binary Digit 1 1 0 1 1

As in the decimal notation, leading zeros may be added or dropped as desired. For
example,

00310 5 310 5 1?21 11?20 5 112 5 0112.

binary Notation for Integers from 1 to 9

Derive the binary notation for the integers from 1 to 9.

Solution 110 5

1?20 5 12

 210 5 1?21 10?20 5 102

 310 5 1?21 11?20 5 112

 410 5 1?22 10?21 10?20 5 1002

 510 5 1?22 10?21 11?20 5 1012

 610 5 1?22 11?21 10?20 5 1102

 710 5 1?22 11?21 11?20 5 1112

 810 5 1?23 10?22 10?21 10?20 5 10002

 910 5 1?23 10?22 10?21 11?20 5 10012 ■

Example 2.5.1

94193_ch02_ptg01.indd 94 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 95

A list of powers of 2 is useful for doing binary-to-decimal and decimal-to-binary con-
versions. See Table 2.5.1.

TAbLE 2.5.1 Powers of 2

Power of 2 210 29 28 27 26 25 24 23 22 21 20

Decimal Form 1024 512 256 128 64 32 16 8 4 2 1

Converting a binary to a Decimal Number

Represent 1101012 in decimal notation.

Solution 1101012 5 1?25 11?24 10?23 11?22 10?21 11?20

5 321161411

5 5310

Alternatively, the schema below may be used.

2
5 5

32

2
4 5

16

2
3 5

8

2
2 5

4

2
1 5

2

2
0 5

1

1 1 0 1 0 12

1 1 5 1
0 2 5 0
1 4 5 4
0 8 5 0

1 16 5 16
1 32 5 32

5310

?
?
?
?

?
?

■

Converting a Decimal to a binary Number

Represent 209 in binary notation.

Solution Use Table 2.5.1 to write 209 as a sum of powers of 2, starting with the highest
power of 2 that is less than 209 and continuing to lower powers.

Since 209 is between 128 and 256, the highest power of 2 that is less than 209 is 128. Hence

20910 5 1281a smaller number.

Now 2092128 5 81, and 81 is between 64 and 128, so the highest power of 2 that is less
than 81 is 64. Hence

20910 5 1281641a smaller number.

Continuing in this way, you obtain

20910 5 12816411611

5 1?27 11?26 10?25 11?24 10?23 10?22 10?21 11?20.

For each power of 2 that occurs in the sum, there is a 1 in the corresponding position
of the binary number. For each power of 2 that is missing from the sum, there is a 0 in the
corresponding position of the binary number. Thus

 20910 5 110100012 ■

Another procedure for converting from decimal to binary notation is discussed in
Section 5.1.

Example 2.5.2

Example 2.5.3

94193_ch02_ptg01.indd 95 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

96 CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Binary Addition and Subtraction
The computational methods of binary arithmetic are analogous to those of decimal arith-
metic. In binary arithmetic the number 2 (which equals 102 in binary notation) plays a role
similar to that of the number 10 in decimal arithmetic.

Addition in Binary Notation

Add 11012 and 1112 using binary notation.

Solution Because 210 5 102 and 110 5 12, the translation of 110 1110 5 210 to binary
notation is

12

1 12

102

It follows that adding two 1’s together results in a carry of 1 when binary notation is used.
Adding three 1’s together also results in a carry of 1 since 310 5 112 (“one one base two”).

12

1 12

1 12

112

Thus the addition can be performed as follows:

 1
1
1

1
1

0
1

12

1 1 12

1 0 1 0 02

■

Subtraction in Binary Notation

Subtract 10112 from 110002 using binary notation.

Solution In decimal subtraction the fact that 1010 2110 5 910 is used to borrow across
several columns. For example, consider the following:

1 0 0 010

2 5 810

9 4 210

In binary subtraction it may also be necessary to borrow across more than one column.
But when you borrow a 12 from 102, what remains is 12.

102

2 12

12

Thus the subtraction can be performed as follows:

1 1 0 0 02

2 1 0 1 12

1 1 0 12

■

Example 2.5.4

d carry row

Example 2.5.5

0 1 1
 1 1 1 d borrow row

!
Caution! Do not read
102 as “ten”; it is the num-
ber two. Read 102 as “one
oh base two.”

9 9
 1 1 d borrow row

94193_ch02_ptg01.indd 96 13/11/18 7:09 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 97

Circuits for Computer Addition
Consider the question of designing a circuit to produce the sum of two binary digits P
and Q. Both P and Q can be either 0 or 1. And the following facts are known:

12 112 5 102,

12 102 5 12 5 012,

02 112 5 12 5 012,

02 102 5 02 5 002.

It follows that the circuit must have two outputs—one for the left binary digit (this
is called the carry) and one for the right binary digit (this is called the sum). The carry
output is 1 if both P and Q are 1; it is 0 otherwise. Thus the carry can be produced using
the AND-gate circuit that corresponds to the Boolean expression P ` Q. The sum output
is 1 if either P or Q, but not both, is 1. The sum can, therefore, be produced using a circuit
that corresponds to the Boolean expression for exclusive or: (P ~ Q) ` ,(P ` Q). (See
Example 2.4.3(a).) Hence, a circuit to add two binary digits P and Q can be constructed as
in Figure 2.5.1. This circuit is called a half-adder.

HALF-ADDER

Circuit

P

Q
NOT

AND

AND

OR
Sum

Carry

FIGURE 2.5.1 Circuit to Add P1Q, Where P and Q Are Binary Digits

Input/OutputTable
P Q Carry Sum

1 1 1 0
1 0 0 1
0 1 0 1
0 0 0 0

Now consider the question of how to construct a circuit to add two binary integers, each
with more than one digit. Because the addition of two binary digits may result in a carry to
the next column to the left, it may be necessary to add three binary digits at certain points.
In the following example, the sum in the right column is the sum of two binary digits, and,
because of the carry, the sum in the left column is the sum of three binary digits.

1 12

1 1 12

1 1 02

Thus, in order to construct a circuit that will add multidigit binary numbers, it is neces-
sary to incorporate a circuit that will compute the sum of three binary digits. Such a circuit
is called a full-adder. Consider a general addition of three binary digits P, Q, and R that
results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P
1 Q

1 R

CS

The operation of the full-adder is based on the fact that addition is a binary operation:
Only two numbers can be added at one time. Thus P is first added to Q and then the result

1 d carry row

94193_ch02_ptg01.indd 97 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

98 CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

is added to R. For instance, consider the following addition:

12

1 02
612 102 5 012612 112 5 102

1 12

102

The process illustrated here can be broken down into steps that use half-adder circuits.

Step 1: Add P and Q using a half-adder to obtain a binary number with two digits.

P

1 Q

C1S1

Step 2: Add R to the sum C1 S1 of P and Q.

C1S1

1 R

 To do this, proceed as follows:

Step 2a: Add R to S1 using a half-adder to obtain the two-digit number C2S.

S1

1 R

C2S

 Then S is the right-most digit of the entire sum of P, Q, and R.

Step 2b: Determine the left-most digit, C, of the entire sum as follows: First note that it
is impossible for both C1 and C2 to be 1’s. For if C1 5 1, then P and Q are both
1, and so S1 5 0. Consequently, the addition of S1 and R gives a binary number
C2S1 where C2 5 0. Next observe that C will be a 1 in the case that the addition
of P and Q gives a carry of 1 or in the case that the addition of S1 (the right-most
digit of P1Q) and R gives a carry of 1. In other words, C 5 1 if, and only if,
C1 5 1 or C2 5 1. It follows that the circuit shown in Figure 2.5.2 will compute
the sum of three binary digits.

FULL-ADDER

Circuit Input/Output Table

half-adder #1

half-adder #2

OR
P

Q

R

C

S

C1

C2

S1

FIGURE 2.5.2 Circuit to Add P1Q1R, Where P, Q, and R Are Binary Digits

P Q R C S

1 1 1 1 1

1 1 0 1 0

1 0 1 1 0

1 0 0 0 1

0 1 1 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 0 0

94193_ch02_ptg01.indd 98 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 99

Two full-adders and one half-adder can be used together to build a circuit that will add
two three-digit binary numbers P Q R and S T U to obtain the sum WX Y Z . This is illustrated
in Figure 2.5.3. Such a circuit is called a parallel adder. Parallel adders can be constructed
to add binary numbers of any finite length.

half-adder

R

U

Q

T

P

S

C2

C1

S1 = Z

S2 = Y

S3 = X

C3 = W

full-adder

full-adder

FIGURE 2.5.3 A Parallel Adder to Add PQR and STU to Obtain WXYZ

Two’s Complements and the Computer Representation
of Signed Integers
Typically a fixed number of bits is used to represent integers on a computer. One way to
do this is to select a particular bit, normally the left-most, to indicate the sign of the inte-
ger, and to use the remaining bits for its absolute value in binary notation. The problem
with this approach is that the procedures for adding the resulting numbers are somewhat
complicated and the representation of 0 is not unique. A more common approach is to use
“two’s complements,” which makes it possible to add integers quite easily and results in a
unique representation for 0. Bit lengths of 64 and (sometimes) 32 are most often used in
practice, but, for simplicity and because the principles are the same for all bit lengths, this
discussion will focus on a bit length of 8.

We will show how to use eight bits to represent the 256 integers from 2128 through 127
and how to perform additions and subtractions within this system of numbers. When the
more realistic 32-bit two’s complements system is used, more than 4 billion integers can
be represented.

Definition

The 8-bit two’s complement for an integer a between 2128 and 127 is the 8-bit

binary representation for 5a if a $ 0

28 2 ua u if a , 0.

Thus the 8-bit representation for a nonnegative integer is the same as its 8-bit binary
representation. As a concrete example for the negative integer 246, observe that

(282u246 u)10 5 (256246)10 5 21010 5 (12816411612)10 5 110100102,.

and so the 8-bit two’s complement for 246 is 11010010.

94193_ch02_ptg01.indd 99 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

100 CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

For negative integers, however, there is a more convenient way to compute two’s com-
plements, which involves less arithmetic than applying the definition directly.

The 8-bit Two’s Complement for a Negative Integer

The 8-bit two’s complement for a negative integer a that is at least 2128 can be
obtained as follows:

 ● Write the 8-bit binary representation for ua u .
 ● Switch all the 1’s to 0’s and all the 0’s to 1’s. (This is called flipping, or comple-

menting, the bits.)

 ● Add 1 in binary notation.

Finding a Two’s Complement

Use the method described above to find the 8-bit two’s complement for 246.

Solution Write the 8-bit binary representation for u246 u (546), switch all the 1’s to 0’s
and all the 0’s to 1’s, and then add 1.

Example 2.5.6

u246 u10 5 4610 5 (32181412)10 5 001011102 11010001 1101 0010.
flip the bits add 1

Note that this is the same result as was obtained directly from the definition. ■

The fact that the method for finding 8-bit two’s complements works in general depends
on the following facts:

1. The binary representation of 28 21 is 111111112.
2. Subtracting an 8-bit binary number a from 111111112 switches all the 1’s to 0’s

and all the 0’s to 1’s.
3. 28 2 ua u 5 [(28 21)2 ua u]11 for any number a.

Here is how the facts are used when a 5 246:

1 1 1 1 1 1 1 1 4 28 21

4 u246 u0 0 1 0 1 1 1 0

1 1 0 1 0 0 0 1 4 (28 21)2 u246 u

4 11

4 28 2 u246 u

1 is added 1 0 0 0 0 0 0 0 1

1 1 0 1 0 0 1 0

Because 127 is the largest integer represented in the 8-bit two’s complement system and
because 12710 5 011111112, all the 8-bit two’s complements for nonnegative integers have
a leading bit of 0. Moreover, because the bits are switched, the leading bit for all the nega-
tive integers is 1. Table 2.5.2 illustrates the 8-bit two’s complement representations for the
integers from 2128 through 127.

0’s and 1’s are
switched

Q
R

94193_ch02_ptg01.indd 100 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 101

TAbLE 2.5.2

Integer
8-Bit Two’s

Complement

Decimal Form of
Two’s Complement for

Negative Integers

127 01111111

126 01111110
. . .

. . .

2 00000010

1 00000001

0 00000000

21 11111111 28 21

22 11111110 28 22

23 11111101 28 23
. . .

. . .
. . .

2127 10000001 28 2127

2128 10000000 28 2128

Observe that if the two’s complement procedure is used on 11010010, which is the two’s
complement for 246, the result is

1101 0010 0010 1101 0010 1110,

which is the two’s complement for 46. In general, if the two’s complement procedure is
applied to a positive or negative integer in two’s complement form, the result is the negative
(or opposite) of that integer. The only exception is the number 2128. (See exercise 37a.)

flip the bits add 1

To find the decimal representation of the negative integer with a given 8-bit two’s
complement:

 ● Apply the two’s complement procedure to the given two’s complement.

 ● Write the decimal equivalent of the result.

Finding a Number with a Given Two’s Complement

What is the decimal representation for the integer with two’s complement 10101001?

Solution Since the left-most digit is 1, the integer is negative. Applying the two’s com-
plement procedure gives the following result:

1010 1001 0101 0110 0101 01112

5 (64116141211)10 5 8710 5 u287 u10.

So the answer is 287. You can check its correctness by deriving the two’s complement of
287 directly from the definition:

 (28 2 u287 u)10 5 (256287)10 5 16910 5 (1281321811)10 5 101010012. ■

Example 2.5.7

flip the bits add 1

94193_ch02_ptg01.indd 101 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

102 CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Addition and Subtraction with Integers
in Two’s Complement Form

The main advantage of a two’s complement representation for integers is that the same
computer circuits used to add nonnegative integers in binary notation can be used for both
additions and subtractions of integers in a two’s complement system of numeration. First
note that because of the algebraic identity

a2b 5 a1 (2b) for all real numbers,

any subtraction problem can be changed into an addition one. For example, suppose you
want to compute 78246. This equals 781 (246), which should give an answer of 32. To
see what happens when you add the numbers in their two’s complement forms, observe
that the 8-bit two’s complement for 78 is the same as the ordinary binary representation
for 78, which is 01001110 because 78 5 64181412, and, as previously shown, the 8-bit
two’s complement for 246 is 11010010. Adding the numbers using binary addition gives
the following:

0 1 0 0 1 1 1 0 4 78

1 1 1 0 1 0 0 1 0 4 246

1 0 0 1 0 0 0 0 0 4 32?

The result has a carry bit of 1 in the ninth, or 28th, position, but if you discard it, you ob-
tain 00100000, which is the correct answer in 8-bit two’s complement form because, since
32 5 28,

3210 5 001000002.

In general, if you add numbers in 8-bit two’s complement form and get a carry bit of
1 in the ninth, or 28th position, you should discard it. Using this procedure is equivalent
to reducing the sum of the numbers “modulo 28,” and it gives results that are correct in
ordinary decimal arithmetic as long as the sum of the two numbers is within the fixed-bit-
length system of integer representations you are using, in this case those between 2128 and
127. The fact that this method produces correct results follows from general properties of
modular arithmetic, which is discussed at length in Section 8.4.

General Procedure for Using 8-bit Two’s Complements to Add Two Integers

To add two integers in the range 2128 through 127 whose sum is also in the range
2128 through 127:

 ● Convert both integers to their 8-bit two’s complement representations.

 ● Add the resulting integers using ordinary binary addition, discarding any carry bit
of 1 that may occur in the 28th position.

 ● Convert the result back to decimal form.

When integers are restricted to the range 2128 through 127, you can easily
imagine adding two integers and obtaining a sum outside the range. For instance,

94193_ch02_ptg01.indd 102 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 103

(287)1 (246) 5 2133, which is less than 2128 and, therefore, requires more than eight
bits for its representation. Because this result is outside the 8-bit fixed-length register
system imposed by the architecture of the computer, it is often labeled “overflow error.”
In the more realistic environment where integers are represented using 64 bits, they can
range from less than 21019 to more than 1019. So a vast number of integer calculations
can be made without producing overflow error. And even if a 32-bit fixed integer length
is used, nearly 4 billion integers are represented within the system.

Detecting overflow error turns out to be quite simple. The 8-bit two’s complement sum
of two integers will be outside the range from 2128 through 127 if, and only if, the integers
are both positive and the sum computed using 8-bit two’s complements is negative, or if the
integers are both negative and the sum computed using 8-bit two’s complement is positive.
To see a concrete example for how this works, consider trying to add (287) and (246).
Here is what you obtain:

1 0 1 0 1 0 0 1 4 287

1 1 1 0 1 0 0 1 0 4 246

1 0 1 1 1 1 0 1 1

When you discard the 1 in the 28th position, you find that the leading digit of the result
is 0, which would mean that the number with the two’s complement representation for
the sum of two negative numbers would be positive. So the computer signals an over-
flow error.*

Hexadecimal Notation
It should now be obvious that numbers written in binary notation take up much more space
than numbers written in decimal notation. Yet many aspects of computer operation can
best be analyzed using binary numbers. Hexadecimal notation is even more compact than
decimal notation, and it is much easier to convert back and forth between hexadecimal and
binary notation than it is between binary and decimal notation. The word hexadecimal
comes from the Greek root hex-, meaning “six,” and the Latin root deci-, meaning “ten.”
Hence hexadecimal refers to “sixteen,” and hexadecimal notation is also called base 16
notation. Hexadecimal notation is based on the fact that any integer can be uniquely ex-
pressed as a sum of numbers of the form

d?16n,

where each n is a nonnegative integer and each d is one of the integers from 0 to 15. In
order to avoid ambiguity, each hexadecimal digit must be represented by a single symbol.
The integers 10 through 15 are represented by the symbols A, B, C, D, E, and F. The 16
hexadecimal digits are shown in Table 2.5.3, together with their decimal equivalents and,
for future reference, their 4-bit binary equivalents.

*If the carry bit had not been discarded and if the resulting 9 bits could be processed using a “9-bit two’s
complement conversion procedure,” the result of 101111011 would convert to 2133, which is the correct
answer. However, the computer signals an error because 2133 is not representable within its 8-bit two’s
complement system.

94193_ch02_ptg01.indd 103 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

104 CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

TAbLE 2.5.3

Decimal Hexadecimal 4-Bit Binary Equivalent

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110
7 7 0111
8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Converting from Hexadecimal to Decimal Notation

Convert 3CF16 to decimal notation.

Solution A schema similar to the one introduced in Example 2.5.2 can be used here.

16
2 5

25
6

16
1 5

16

16
0 5

1

316 C16 F16

310 1210 1510

15 1 15
12 16 192

3 256 768
97510

·
·
·

5
5
5

555

So 3CF16 5 97510. ■

Now consider how to convert from hexadecimal to binary notation. In the example
below the numbers are rewritten using powers of 2, and the laws of exponents are applied.
The result suggests a general procedure.

Example 2.5.8

16
3 5

40
96

16
2 5

25
6

16
1 5

16

16
0 5

1

C16 516 016 A16

1210 510 010 1010

10 160 (23 2) 1 23 2 since 10 23 2
0 161 0 24 0 since 161 24

5 162 (22 1) 28 210 28 since 5 22 1, 162 (24)2 28 and 22 28 210

12 163 (23 22) 212 215 214 since 12 23 22, 162 (24)3 212,
23 ·

·

·
··

·
·
·

·

·

·

212 215, and 22 212 2145
1
1

1
1

1 15
5
5
5

5
5
5
5

5
55

55 1

1

5

5 1

5 5

5

5555

94193_ch02_ptg01.indd 104 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 105

But

(215 1214)1 (210 128)101 (23 12)

5 1100 0000 0000 00002 10101 0000 00002 by the rules for writing

10000 00002 110102 binary numbers.

So

C50A16 5 1100 0101 0000 10102

C16 516 016 A16

The procedure illustrated in this example can be generalized. In fact, the following
sequence of steps will always give the correct answer.

55 5 5

 by the rules for adding
binary numbers.

To convert an integer from hexadecimal to binary notation:

 ● Write each hexadecimal digit of the integer in 4-bit binary notation.

 ● Juxtapose the results.

To convert an integer from binary to hexadecimal notation:

 ● Group the digits of the binary number into sets of four, starting from the right and
adding leading zeros as needed.

 ● Convert the binary numbers in each set of four into hexadecimal digits. Juxtapose
those hexadecimal digits.

Converting from Hexadecimal to binary Notation

Convert B09F16 to binary notation.

Solution B16 5 1110 5 10112, 016 5 010 5 00002, 916 5 910 5 10012, and F16 5 1510 5
11112. Consequently,

B 0 9 F

D D D D
1011 0000 1001 1111

and the answer is 10110000100111112. ■

To convert integers written in binary notation into hexadecimal notation, reverse the
steps of the previous procedure. Note that the commonly used computer representation for
integers uses 32 bits. When these numbers are written in hexadecimal notation only eight
characters are needed.

Example 2.5.9

Converting from binary to Hexadecimal Notation

Convert 1001101101010012 to hexadecimal notation.

Solution First group the binary digits in sets of four, working from right to left and add-
ing leading 0’s if necessary.

0100 1101 1010 1001.

Example 2.5.10

94193_ch02_ptg01.indd 105 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

106 CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS

Convert each group of four binary digits into a hexadecimal digit.

0100 1101 1010 1001

D D D D
4 D A 9

Then juxtapose the hexadecimal digits.

 4DA916 ■

Reading a Memory Dump

The smallest addressable memory unit on most computers is one byte, or eight bits. In some
debugging operations a dump is made of memory contents; that is, the contents of each
memory location are displayed or printed out in order. To save space and make the output
easier on the eye, the hexadecimal versions of the memory contents are given, rather than
the binary versions. Suppose, for example, that a segment of the memory dump looks like

A3 BB 59 2E.

What is the actual content of the four memory locations?

Solution

A316 5 101000112

BB16 5 101110112

5916 5 010110012

 2E16 5 001011102 ■

Example 2.5.11

1. To represent a nonnegative integer in binary nota-
tion means to write it as a sum of products of the
form , where .

2. To add integers in binary notation, you use the
facts that 12 112 5 and 12 112 112 5

.

3. To subtract integers in binary notation, you use the
facts that 102 212 5 and 112 212 5 .

4. A half-adder is a digital logic circuit that ,
and a full-adder is a digital logic circuit that .

5. If a is an integer with 2128 # a # 127, the 8-bit
two’s complement of a is if a $ 0 and is

 if a < 0.

6. To find the 8-bit two’s complement of a negative
integer a that is at least 2128, you , ,
and .

7. To add two integers in the range 2128 through
127 whose sum is also in the range 2128 through
127, you , , , and .

8. To represent a nonnegative integer in hexadecimal
notation means to write it as a sum of products of
the form , where .

9. To convert a nonnegative integer from hexadeci-
mal to binary notation, you and .

TEST YOURSELF

Represent the decimal integers in 1–6 in binary notation.

1. 19 2. 55 3. 287

4. 458 5. 1609 6. 1424

Represent the integers in 7–12 in decimal notation.

7. 11102 8. 101112 9. 1101102

10. 11001012 11. 10001112 12. 10110112

ExERCISE SET 2.5

94193_ch02_ptg01.indd 106 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

2.5 APPLICATION: NUMbEr SySTEMS AND CIrCUITS FOr ADDITION 107

Perform the arithmetic in 13–20 using binary notation.

13. 10112

1 1012

 14.

10012

110112

 15. 1011012

1 111012

16. 1101110112

110010110102

 17. 101002

2 11012

 18. 110102

2 11012

 19.
1011012

2 100112

 20. 10101002

2 101112

 21. Give the output signals S and T for the circuit
shown below if the input signals P, Q, and R are
as specified. Note that this is not the circuit for a
full-adder.
a. P 5 1, Q 5 1, R 5 1
b. P 5 0, Q 5 1, R 5 0
c. P 5 1, Q 5 0, R 5 1

half-adder #1

half-adder #2

P

Q

R

S

T

C1

C2

S1 AND

 22. Add 111111112 112 and convert the result to deci-
mal notation, to verify that 111111112 5 (28 21)10.

Find the 8-bit two’s complements for the integers in 23–26.

 23. 223 24. 267 25. 24 26. 2115

Find the decimal representations for the integers with the
8-bit two’s complements given in 27–30.

 27. 11010011 28. 10011001

 29. 11110010 30. 10111010

Use 8-bit two’s complements to compute the sums in 31–36.

 31. 571 (2118) 32. 621 (218)

 33. (26)1 (273) 34. 891 (255)

 35. (215)1 (246) 36. 1231 (294)

 37. a. Show that when you apply the 8-bit two’s com-
plement procedure to the 8-bit two’s complement
for 2128, you get the 8-bit two’s complement
for 2128.

*b. Show that if a, b, and a1b are integers in the
range 1 through 128, then

(28 2a)1 (28 2 b) 5 (28 2 (a1b))128 $ 28 127.

 Explain why it follows that if integers a, b, and
a1b are all in the range 1 through 128, then
the 8-bit two’s complement of (2a)1 (2b) is a
negative number.

Convert the integers in 38–40 from hexadecimal to deci-
mal notation.

 38. A2BC16 39. E0D16 40. 39EB16

Convert the integers in 41–43 from hexadecimal to binary
notation.

 41. 1C0ABE16 42. B53DF816 43. 4ADF8316

Convert the integers in 44–46 from binary to hexadeci-
mal notation.

 44. 001011102 45. 10110111110001012

 46. 110010010111002

 47. Octal Notation: In addition to binary and
hexadecimal, computer scientists also use
octal notation (base 8) to represent numbers.
Octal notation is based on the fact that any
integer can be uniquely represented as a sum
of numbers of the form d?8n, where each n
is a nonnegative integer and each d is one of
the integers from 0 to 7. Thus, for example,
50738 5 5?83 10?82 17?81 13?80 5 261910.
a. Convert 615028 to decimal notation.
b. Convert 207638 to decimal notation.
c. Describe methods for converting integers from

octal to binary notation and the reverse that are
similar to the methods used in Examples 2.5.9
and 2.5.10 for converting back and forth from
hexadecimal to binary notation. Give examples
showing that these methods result in correct
answers.

1. d?2n; d 5 0 or d 5 1, and n is a nonnegative integer
2. 102; 112 3. 12; 102 4. outputs the sum of any two
binary digits; outputs the sum of any three binary
digits 5. the 8-bit binary representation of a; the 8-bit
binary representation of 28 2a 6. write the 8-bit binary
representation of a; flip the bits; add 1 in binary notation

7. convert both integers to their 8-bit two’s complements;
add the results using binary notation; truncate any leading
1; convert back to decimal form 8. d?16n; d 5 0, 1, 2, Á
9, A, B, C, D, E, F, and n is a nonnegative integer 9. write
each hexadecimal digit in 4-bit binary notation; juxtapose
the results

ANSWERS FOR TEST YOURSELF

94193_ch02_ptg01.indd 107 12/11/18 3:45 pm

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

11/15/23, 8:17 PM The Two's Complement

https://mathcenter.oxford.emory.edu/site/cs170/twosComplement/ 1/3

The Two's Complement

Sign-and-Magnitude Method

Consider the problem of representing both positive AND negative integers over a given range in terms of only ones
and zeroes. A straight-forward approach would be to deal with the sign and the magnitude (or, the absolute value)
separately. For example, suppose we have 8 bits with which to work. The first bit could represent the sign of our
number ("0" for a positive number, "1" for a negative number), while the other 7 bits could be a binary
representation of the magnitude of the number. With only 7 bits to express it, the magnitude must range from zero to
127 (i.e., 0000000 to 1111111). Consider the following examples:

Value Representation in 8 Bits Value Representation in 8 Bits

3 00000011 -3 10000011

14 00001110 -14 10001110

82 01010010 -82 11010010

127 01111111 -127 11111111

There are problems with this approach, however. Consider the case of zero. Should it be encoded as 00000000 or
10000000?

As another, more significant issue, consider how one is forced to add values. Our process depends on our context. If
both numbers are positive, one can simply use normal binary addition:

 5 0 0000101
 +3 0 0000011
---- -----------
 8 0 0001000 (which represents 8)

But if there is a mixture of signs, we need to recognize this requires subtraction, as otherwise we get an incorrect
result:

 5 00000101
 +(-3) 10000011
------- ----------
 2 10001000 (which represents -8)

In the interests of efficiency, it would be nice if the process we use internally to add two numbers didn't depend on
their values! Enter the two's complement...

AboutAbout StatisticsStatistics Number TheoryNumber Theory Data StructuresData Structures CornerstonesCornerstones CalculusCalculusJavaJava

https://mathcenter.oxford.emory.edu/site/home/
https://mathcenter.oxford.emory.edu/site/math117/
https://mathcenter.oxford.emory.edu/site/math125/
https://mathcenter.oxford.emory.edu/site/cs171/
https://mathcenter.oxford.emory.edu/site/math108/
https://mathcenter.oxford.emory.edu/site/math111/
https://mathcenter.oxford.emory.edu/site/cs170/

11/15/23, 8:17 PM The Two's Complement

https://mathcenter.oxford.emory.edu/site/cs170/twosComplement/ 2/3

The Two's Complement Method

In the (8-bit) two's complement representation of a integer value between -127 and 127, positive integers are
represented in the normal binary manner (with a natural leading zero as the largest number is 127). Representations
for negative numbers are obtained from the representations for positive numbers in the following way:

Example 1: (value = -41) Example 2: (value = -44)

1. Starting from the right, find the first '1' 00101001 00101100

2. Invert all of the bits to the left of that one 11010111 11010100

Here are some more examples:

Value Two's Complement Representation Value Two's Complement Representation

3 00000011 -3 11111101

14 00001110 -14 11110010

82 01010010 -82 10101110

127 01111111 -127 10000001

Amazingly, representing negative numbers in this way allows us to compute the sum of two numbers, regardless of
their signs, in the SAME way -- via normal binary addition!

 5 00000101
 +3 00000011
---- ----------
 8 00001000 (which represents 8)

 5 00000101
 +(-3) 11111101
------- ----------
 2 00000010 (which represents 2)

If that wasn't enough, note that we get the added bonuses of now having only one representation for zero
(00000000), and we can actually include one more number in our range (-128 = 10000000), without causing any
problems. Pretty cool, eh? Makes one wonder how they came up with this process for negation, doesn't it?

Think about it though... The negative of a number is defined as the value that can be added to the original number to
produce a zero. For example, consider . This is defined to be the number that can be added to to produce a
sum of zero. We know that written in binary is given by after adding the leading zero so that we have
bits total. Let be the binary expansion of . Then we require that

By duplicating the right-most (i.e., letting), and all of the zeros to the right of the right-most (i.e.,
), we assure sums of zeros there. Most of these will be of the form , while the sum involving

the right-most will produce and a carried (recall in binary,).

−84 84

84 01010010 8

d7d6d5d4d3d2d1d0 −84

+

…

0

d7

0

1

d6

0

0

d5

0

1

d4

0

0

d3

0

1

d2

0

0

d1

0

0

d0

0

1 = 1d2 1

= = 0d1 d0 0 + 0 = 0

1 0 1 1 + 1 = 10

11/15/23, 8:17 PM The Two's Complement

https://mathcenter.oxford.emory.edu/site/cs170/twosComplement/ 3/3

Then, by inverting all of the bits to the left of the right-most (i.e., through), we assure each of these columns
sum to before considering any "carries". Now, throw in the carried produced from the right-most and its
duplicate, and one produces a and another carried in each column working to the left. In essence, the carried
simply propagates down the line -- until it disappears when we run out of bits (remember, we restricted ourselves to
8 bits).

The result is a bit string consisting of 8 zeros, which is the bit string for zero -- which was exactly what was desired!
Cool, isn't it?

+

0

d7

1

d6

0

d5

1

d4

1

0

d3

1

1

0

0

0

0

0

0

0

1 d2 d7

1 1 1

0 1 1

+

1

0

1

0

1

1

0

0

1

0

1

0

1

1

0

0

1

0

1

0

1

1

0

0

0

0

0

0

0

