
1

Web Programming

Lecture 5 – Dynamic Documents

with JavaScript

Dynamic HTML

• Dynamic HTML is a set of technologies that allows

dynamic changes to HTML documents.

• An embedded script can be used to change tag

attributes, contents or element style properties.

• These changes are not uniformly supported across the

full spectrum of browsers.

– Most modern browsers support DOM 0 model.

– DOM 2 is supported by Firefox 2 but not Internet Explorer

8.

2

What can you do with Dynamic HTML?

• Elements can be moved to new positions on the display.

• Elements can be made to appear and disappear.

• Foreground (text) and background colors can be changed.

• The font, font size and font style an be changed.

• Element content can be changed.

• The stacking order of overlapping elements (such as pictures)
can be changed.

• The mouse cursor position can be changed.

• Text can be made to move across the display.

Positioning Elements

• Before HTML 4.0, the only control that existed for

positioning document elements were tables (slow to

load) and frames (deprecated).

• CSS-P (Cascading Style Sheets – Positioning) are

fully supported by IE 7 and Firefox 2, and provide

style properties that allow for positioning and

repositioning of document elements:

– left - the distance from the top of some reference point

– top - the distance from the top of some reference point

– position – can be absolute, relative, or static.

3

Absolute Positioning

• Absolute positioning allows elements to be position
on a display without regard to other elements of the
document.

• It can be used to create a "watermark" within a
document.

• The width property (which is set in the next
example) limits how wide (on the screen) the element
will be (instead of using automatic wordwrap).

• When an element is position absolutely inside another
positioned element, the top and left properties are
relative to the top left corner of the element in which
it is contained.

absPos.html

<!DOCTYPE html>

<!-- absPos.html

Illustrates absolute positioning of elements

-->

<html lang = "en">

<head>

<title> Absolute positioning </title>

<meta charset = "utf-8">

<style type = "text/css">

/* A style for a paragraph of text */

.regtext {font-family: Times;

font-size: 1.2em; width: 500px}

4

/* A style for the text to be absolutely

positioned */

.abstext {position: absolute; top: 25px;

left: 25px;

font-family: Times;

font-size: 1.9em;

font-style: italic;

font-weight: bold;

letter-spacing: 1em;

color: rgb(160, 160, 160);

width: 450px}

</style>

</head>

<body>

<p class = "regtext">

Apple is the common name for any tree of the

genus Malus, of the family Rosaceae. Apple

trees grow in any of the temperate area of the

world. Some apple blossoms are white, but

most have stripes or tints of rose. Some

apple blossoms are bright red. Apples have a

firm and fleshy structure that rows from the

blossom. The colors of apples range from

green to very dark red. The wood of apples

trees is fine-grained and hard. It is,

therefore, good for furniture construction.

Apple trees have been grown for many

centuries. They are propagated by grafting

because they do not reproduce themselves.

</p>

5

<p class = "abstext">

APPLES ARE GOOD FOR YOU

</p>

</body>

</html>

absPos2.html

<!DOCTYPE html>

<!-- absPos2.html

Illustrates absolute positioning of elements

-->

<html lang = "en">

<head>

<title> Absolute positioning </title>

<meta charset = "utf-8">

<style type = "text/css">

/* A style for a paragraph of text */

.regtext {font-family: Times;

font-size: 1.2em; width: 500px;

position: absolute; top: 100px;

left: 100px;}

6

/* A style for the text to be absolutely

positioned */

.abstext {position: absolute; top: 25px;

left: 25px; font-family: Times;

font-size: 1.9em;

font-style: italic;

letter-spacing: 1em;

color: rgb(160, 160, 160);

width: 450px}

</style>

</head>

<body>

<div class = "regtext">

Apple is the common name for any tree of the

genus Malus, of the family Rosaceae. Apple

trees grow in anyof the temperate area of the

world. Some apple blossoms are white, but

most have stripes or tints of rose. Some

apple blossoms are bright red. Apples have a

firm and fleshy structure that rows from the

blossom. The colors of apples range from

green to very dark red. The wood of apples

trees is fine-grained and hard. It is,

therefore, good for furniture construction.

Apple trees have been grown for many

centuries. They are propagated by grafting

because they do not reproduce themselves.

7

APPLES ARE GOOD FOR YOU

</div>

</body>

</html>

Relative Positioning

• If an element's position is relative but top and

left are not specified, it does not affect its

position, but allows for it to be moved later.

• If top and left are specified, they indicated how

far it is moved from where it would have been

positioned.

• Negative values reposition the element up and

to the left.

8

Uses for Relative Positioning

• Relative positioning can be used to create

subscripts and superscripts (together with the

 tag)

relPos.html

<!DOCTYPE html>

<!-- relPos.html

Illustrates relative positioning of elements

-->

<html lang = "en">

<head>

<title> Relative positioning </title>

<meta charset = "utf-8" />

<style type = "text/css">

.regtext {font: 2em Times}

.spectext{font: 2em Times; color: red;

position: relative; top: 15px;}

</style>

</head>

9

<body>

<p class = "regtext">

Apples are

GOOD

 for you.

</p>

</body>

</html>;">

Static Positioning

• Static positioning is the default.

• A statically positioned tag is placed as if it had

the position value of relative; however, it

cannot have top and left properties initially

set or changed.

10

Moving Elements

• An element with absolute or relative

positioning can be moved by changing its

values of top and/or left.

• With absolute positioning, it moves to the

position indicate by the new values.

• With relative positioning, it moved by the

amount indicated by the new values.

mover.html

<!DOCTYPE html>

<!-- mover.html

Uses mover.js to move an images within a
document

-->

<html lang = "en">

<head>

<title> Moving elements </title>

<meta charset = "utf-8" />

<script type = "text/javascript"

src = "mover.js">

</script>

</head>

11

<body>

<form action = "">

<p>

<label>

x coordinates:

<input type = "text" id = "leftCoord“

size = "3" />

</label>

<label>

y coordinates:

<input type = "text" id = "topCoord"

size = "3" />

</label>

<input type = "button" value = "Move it“

onclick = "moveIt('nebula',

document.getElementById('topCoord').value,

document.getElementById('leftCoord').value)"

/>

</p>

</form>

<div id = "nebula" style = "position: absolute;

top: 115px; left: 0;">

<img src = "ngc604.jpg"

alt = "(Picture of a nebula)" />

</div>

</body>

</html>

12

mover.js

// mover.js

// Illustrates moving an element within a document

// The event handler function to move an element

function moveIt(movee, newTop, newLeft) {

dom = document.getElementById(movee).style;

// change the top and left properties to perform
the move

// Note the addition of units to the input values

dom.top = newTop + "px";

dom.left= newLeft + "px";

}

Element Visibility

• Elements can be made invisible or visible by

changing its style property visibility from

visible to hidden or from hidden to

visible.

13

showHide.html

<!DOCTYPE html>

<!-- showHide.html

Uses showHide.js

Illustrates visibility control of elements

-->

<html lang = "en">

<head>

<title> Visibility control </title>

<meta charset = "utf-8" />

<script type = "text/javascript“

src = "showHide.js">

</script>

</head>

<body>

<form action = "">

<div id = "saturn" style = "position:relative;

visibility: visible;">

<img src = "saturn.jpg"

alt = "(Pictures of Saturn)" />

</div>

<p>

<input type = "button"

value = "Toggle Saturn"

onclick = "flipImag()" />

</p>

</form>

</body>

</html>

14

showHide.js

// showHide.js

// Illustrates visibility coontrol of elements

// The even handler function to toggle the
visibility

// of the images of Saturn

function flipImag() {

dom = document.getElementById("saturn").style;

// Flip the visibility adjective to

// whatever it is not now

if (dom.visibility == "visible")

dom.visibility = "hidden";

else

dom.visibility = "visible";

}

Changing Colors and Fonts

• Foreground (text) and background colors can

both be changed.

• The various properties of a font can be

changed including:

– font (or font family

– font size

– font style (i. e., italic or normal)

– font weight (i.e., bold or normal)

15

Changing Colors

• Background and foreground colors can be
changed by assigning a new value to the
properties backgroundColor or color
respectively.

• These changes can be made using JavaScript

• The following example has the element call
the function when a change is made to the
entry in a text – this.value refers to the
string in the current element

dynColors.html

<!DOCTYPE html>

<!-- dynColors.html

Uses dynColors.js

Illustrates dynamic foreground and background
colors

-->

<html lang = "en">

<head>

<title> Dynamic Colors </title>

<meta charset = "utf-8">

<script type = "text/javascript"

src = "dynColors.js">

</script>

</head>

16

<body>

<p style = "font-family: Times;

font-style: italic;

font-size: 2em;">

This small page illustrates dynamic setting of

the foreground and background colors for a

document

</p>

<form action = "">

<p>

<label>

Background color:

<input type = "text" name = "background"

size = "10"

onchange

= "setColor('background',

this.value)" />

</label>

<label>

Foreground color:

<input type = "text" name = "foreground“

size = "10"

onchange

= "setColor('foreground',

this.value)" />

</label>

</p>

</form>

</body>

</html>

17

dynColors.js

// dynColor.js

// Illustrates dynamic foreground and background
colors

// The event handler function to dynamically set the

// color of background or foreground

function setColor(where, newColor) {

if (where == "background")

document.body.style.backgroundColor = newColor;

else

document.body.style.color = newColor;

}

Changing Fonts

• Any property of a link can be changed when

the mouse is pointing to it by using the

mouseover event to make a change.

• The properties can be changed back when the

mouse is moved off the element by using the

mouseout event.

18

dynFont.html

<!DOCTYPE html>

<!-- dynFont.html

Illustrates dynamic font styles and colors

-->

<html lang = "en">

<head>

<title> Dynamic fonts </title>

<meta charset = "utf-8" />

<style type = "text/css">

.regText {font: 1.1em 'Times New Roman';}

</style>

</head>

<body>

<p class = "regText">

The state of

<a style = "color: blue;"

onmouseover = "this.style.color = 'red';

this.style.fontStyle = 'italic'

this.style.fontSize = '2em';"

onmouseout = "this.style.color = 'blue';

this.style.fontStyle = 'normal'

this.style.fontSize = '1.1em';">

Washington

produces many of our nation's apple.

</p>

</body>

</html>

19

Dynamic Content

• The content of an XHTML document element
is accessed through the element's content
property.

• Example

– Assistance can be given to a user filling out a form
by using a help box, whose contents will change
depending on where the mouse is hovering.

– This can be implemented using JavaScript
functions called by the events mouseover and
mouseout.

dynValue.html

<html lang = "en">

<head>

<title> Dynamic values </title>

<meta charset = "utf-8" />

<script type = "text/javascript" src =
"dynValue.js">

</script>

<style type = "text/css">

textarea {position: absolute; left: 250px;

top: 0px;}

span {font-style: italic;}

p {font-weight: bold;}

</style>

</head>

20

<body>

<form action = "">

<p>

Customer information

<label>

Name:

<input type = "text"

onmouseover = "messages(0)"

onmouseout = "messages(4)" />

</label>

<label>

E-mail:

<input type = "text"

onmouseover = "messages(1)"

onmouseout = "messages(4)" />

</label>

To create an account, provide the

following:

21

<label>

User ID:

<input type = "text"

onmouseover = "messages(2)"

onmouseout = "messages(4)" />

</label>

<label>

Password:

<input type = "password"

onmouseover = "messages(3)"

onmouseout = "messages(4)" />

</label>

<textarea id = "adviceBox" row = "3"

cols = "50">

This box provides advice on filling out

the form on this page. Put the mouse

cursor over any input field to get advice.

</textarea>

<input type = "submit" value = "Submit" />

<input type = "reset" value = "Reset" />

</p>

</form>

</body>

</html>

22

dynValue.js

// dynValue.js

// Illustrates dynamic values

var helpers = ["Your name must be in the form: \n \

first name, middle initial., last name",

"Your email address must have the form: \

user@domain",

"Your user ID must have at least six \

characters and it must include one digit",

"Your password must have at least six \

characters and it must include one digit",

"This box provides advice on filling out\

the form on this page. Put the mouse cursor over \

any input field to get advice"]

//**//

// The event handler function to change the value of

// the textarea

function messages(adviceNumber) {

document.getElementById("adviceBox").value =

helpers[adviceNumber];

}

23

Stacking Elements

• While document elements are placed on the

display in two dimensions, there is a third

dimension that can be used in stacking one

element over another.

• The order in which they are stacked is

determined by a style property called z-index.

• The larger the z-index, the nearer the top of the

stack the element will appear.

stacking.html

<!DOCTYPE html>

<!-- stacking.html

Uses stacking.js

Illustrates dynamic stackng of images

-->

<html lang = "en">

<head>

<title> Dynamic stacking of images </title>

<meta charset = "utf-8" />

<script type = "text/javascript“

src = "stacking.js">

</script>

24

<style type = "text/css">

.plane1 {position: absolute; top: 0;

left: 0; z-index: 0;}

.plane2 {position: absolute; top: 50px;

left: 110px; z-index: 0;}

.plane3 {position: absolute; top: 100px;

left: 220px; z-index: 0;}

</style>

</head>

<body>

<p>

<img class = "plane1" id = "C172"

src = "c172.jpg"

alt = "(Picture of a C172)"

onclick = "toTop('C172')" />

<img class = "plane2" id = "Cix"

src = "cix.jpg"

alt = "(Picture of a Citation airplane)"

onclick = "toTop('Cix')" />

<img class = "plane3" id = "C182"

src = "c182.jpg"

alt = "(Picture of a C182)"

onclick = "toTop('C182')" />

</p>

</body>

</html>

25

stacking.js

// stacking.js

// Illustrates dynamic stacking of images

var top = "C172";

// The event handler function to move the given
element

// to the top of the display stack

function toTop(newTop) {

// Set the two dom addresses, one for the old top

// element and one for the new top element.

domTop = document.getElementById(top).style;

domNew = document.getElementById(newTop).style;

// Set the zIndex properties of the two elements,

// and reset top to the new top

domTop.zIndex = "0";

domNew.zIndex = "10";

top = newTop;

}

26

Locating the Mouse Cursor

• Every event in an XHTML document creates an event
object.

• A mouse-click event is an implementation of the
MouseEvent interface, which defines two pairs of
properties that provide coordinates for the element
relative to the upper-left corner of the browser
window.
– ClientX and ClientY – coordinates within the browser

window

– ScreenX and ScreenY – coordinates within the display
screen as a whole.

• The event object references in the example is created
implicitly when the event occurs.

where.html

<!DOCTYPE html>

<!-- where.html

Uses where.js

Illustrates x and y coordinates of the mouse

cursor

-->

<html lang = "en">

<head>

<title> Where is the cursor? </title>

<meta charset = "utf-8" />

<script type = "text/javascript“

src = "where.js">

</script>

</head>

27

<body onclick = "findIt(event)">

<form>

<p>

Within the client area:

x:

<input type = "text" id = "xcoor1"

size = "4" />

y:

<input type = "text" id = "ycoor1"

size = "4" />

Relative to the origin of the screen

coordinate system:

x:

<input type = "text" id = "xcoor2"

size = "4" />

y:

<input type = "text" id = "ycoor2"

size = "4" />

</p>

</form>

<p>

</p>

<img src = "c172.jpg" alt = "(Picture of a
C172)" />

</body>

</html>

28

where.js

// where.js

// Show the coordinates of the mouse cursor

// position in an image and anywhere on the

// screen when the mouse is clicked

// The event handler function to get and display

// the coordinates of the cursor, bth in an element

// and on the screen.

function findIt(evt) {

document.getElementById("xcoor1").value

= evt.clientX;

document.getElementById("ycoor1").value

= evt.clientY;

document.getElementById("xcoor2").value

= evt.screenX;

document.getElementById("ycoor2").value

= evt.screenY;

}

29

Reacting to the Mouse Click

• mousedown is the event that occurs when the

left button on the mouse is pressed.

• mouseup is the event that occurs when the left

button on the mouse is released.

• In the example, they are used to display and

then the message, whose left and top positions

are -130 and -25 to center the message around

the spot where the mouse is pointing.

anywhere.html

<!DOCTYPE html>

<!-- anywhere.html

Uses anywhere.js

Display a message when the mouse button is
pressed,

no matter where it is onthe screen

-->

<html lang = "en">

<head>

<title> Sense events anywhere </title>

<meta charset = "utf-8" />

<script type = "text/javascript" src =
"anywhere.js">

</script>

</head>

30

<body onmousedown = "displayIt(event)"

onmouseup = "hideIt();">

<p>

<span id = "message"

style = "color: red; visibility: hidden;

position: relative;

font-size: 1.7em;

font-style: italic;

font-weight: bold;">

Please don't click here!

</p>

</body>

</html>

31

anywhere.js

// anywhere.js

// Display a message when the mouse button is

// pressed, no matter where it is on the screen

// The event handler function to display the

// message

function displayIt(evt) {

var dom = document.getElementById("message");

dom.style.left = (evt.clientX - 130) + "px";

dom.style.top = (evt.clientY - 25) + "px";

dom.style.visibility = "visible";

}

/**/

// The event handler function to hide the message

function hideIt() {

document.getElementById

("message").style.visibility = "hidden";

}

32

Slow Movement of Elements

• If we want to move an item slowly across the screen,
it has to be done is small increments.

• setTimeout is a method that takes two parameters: a
string of JavaScript to be executed after a delay and
the delay expressed in milliseconds.
– setTimeout("mover()", 20);

• setInterval takes the same parameters as
setTimeout (although the parameters of the JavaScript
function being called can be passed as additional
parameters. It performs the JavaScript code
repreatedly.

moveText.html

<!DOCTYPE html>

<!-- moveText.html

Uses moveTextfuns.js

Illustrates a moving text element

-->

<html lang = "en">

<head>

<title> Moving text </title>

<meta charset = "utf-8" />

<script type = "text/javascript"

src = "moveText.js">

</script>

</head>

33

<!–- Call the initializing function on load,

giving the destination coordinates for the

text to be moved

-->

<body onload = "initText()">

<!-- The text to be moved, including its initial

position

-->

<p>

<span id = 'theText'

style = "position: absolute;

left: 100px; top: 100px;

font: bold 1.7em 'Times Roman';

color: blue; "> Jump in the lake!

</p>

</body>

</html>

moveTextfuns.js
// This is moveTextfuns.js - used with moveText.html

var dom, x, y, finalx = 300, finaly = 300;

//** //

// A function to initialize the x and y coordinates

// of the current position of the text to be moved,

// and then call the mover function

function initText() {

dom = document.getElementById('theText').style;

/* Get the current position of the text */

var x = dom.left;

var y = dom.top;

34

/* Convert the string values of left and top to

numbers by stripping off the units */

x = x.match(/\d+/);

y = y.match(/\d+/);

/* Call the function that moves it */

moveText(x, y);

}

//*** //

// A function to move the text from its original

// position to (finalx, finaly)

function moveText(x, y) {

/* If the x coordinates are not equal, move

x toward final x */

if (x != finalx) x--;

else if (x < finalx) x++;

/* If the y coordinates are not equal, move

x toward final x */

if (y != finaly) y--;

else if (y < finaly) y++;

/* As long as the text is not at the destination,

call the mover with the current position */

if ((x != finalx) || (y != finaly)) {

/* Put the units back on the coordinates before

assigning them to the properties to cause

the move */

dom.left = x + "px";

dom.top = y + "px";

/* Recursive call, after a 1-millimeter

delay */

setTimeout("moveText(" + x + ", " + y + ")",

1);

}

}

35

Dragging and Dropping Elements

• Drag and drop is one of the most impressive effects
of GUIs. It can be implemented using the mouseup,
mousedown and mousemove events.

• The following example uses DOM 0 to call the
handler for mousedown. grabber, the event handler,
takes the Event object as a parameter and makes it a
global variable for all the handlers to be able to use.

• It then determines the coordinates of the current
position of the element to be moved and compares it
to the position of the mouse cursor. The differences
between these coordinate sets is used to move the
element.

dragNDrop.html

<!DOCTYPE html>

<!-- dragNDrop.html

An example to illustrate the DOM 2 Event mode.

Allows the user to drag and drop words to

complete a short poem

Does not work with IE7

-->

<html lang = "en">

<head>

<title> Drag and drop </title>

<meta charset = "utf-8" />

<script type = "text/javascript"

src = "dragNDrop.js">

</script>

</head>

36

<body style = "font-size: 1.25em;">

<p>

Roses are red

Violets are blue

<span style = "position: absolute; top: 200px;

left: 0px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

candy

<span style = "position: absolute; top: 200px;

left: 75px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

cats

<span style = "position: absolute; top: 200px;

left: 150px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

cows

<span style = "position: absolute; top: 200px;

left:225px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

glue

<span style = "position: absolute; top: 200px;

left: 300px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

is

37

<span style = "position: absolute; top: 200px;

left: 375px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

is

<span style = "position: absolute; top: 200px;

left: 450px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

meow

<span style = "position: absolute; top: 250px;

left: 0px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

mine

<span style = "position: absolute; top: 250px;

left: 75px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

moo

<span style = "position: absolute; top: 250px;

left: 150px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

new

<span style = "position: absolute; top: 250px;

left: 225px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

old

38

<span style = "position: absolute; top: 250px;

left: 300px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

say

<span style = "position: absolute; top: 250px;

left: 375px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

say

<span style = "position: absolute; top: 250px;

left: 450px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

so

<span style = "position: absolute; top: 300px;

left: 0px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

sticky

<span style = "position: absolute; top: 300px;

left: 75px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

sweet

<span style = "position: absolute; top: 300px;

left: 150px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

syrup

39

<span style = "position: absolute; top: 300px;

left: 225px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

too

<span style = "position: absolute; top: 300px;

left: 300px;

background-color: lightgrey;"

onmousedown = "grabber(event);">

yours

</p>

</body>

</html>

dragNDrop.js

// dragNDrop.js

// An example to illustrate the DOM 2 Event mode

// Allows the user the drag and drop words to
complete

// a short poem

// Does not work with IE7

// Define variables for the values computed by

// the grabber vent handler but needed by mover

// event handler

var diffX, diffY, theElement;

// ***

40

// The event handler function for grabbing the word

function grabber(event) {

// Set the global variable for the element to be

// moved

theElement = event.currentTarget;

// Determine the position of the word to be

// grabbed, first removing the units from left

// and top

var posX = parseInt(theElement.style.left);

var posY = parseInt(theElement.style.top);

// Compute the difference between where it is and

// where the mouse click occurred

diffX = event.clientX - posX;

diffY = event.clientY - posY;

// Now register the event handlers for moving and

// dropping the word

document.addEventListener("mousemove",

mover, true);

document.addEventListener("mouseup",

dropper, true);

// Stop propagation of the event and stop any
default

// browser action

event.stopPropagation();

event.preventDefault();

}

//***

41

// The event handler function for moving the word

function mover(event) {

// Compute the new position, add the units and

// move the word

theElement.style.left

= (event.clientX - diffX) + "px";

theElement.style.top

= (event.clientY - diffY) + "px";

// Prevent propagation of the event

event.stopPropagation();

}

//***

// The event handler function for dropping the word

function dropper(event) {

// Unregister the event handlers for mouseup and

// mousemove

document.removeEventListener("mouseup", dropper,
true);

document.removeEventListener("mousemove", mover,
true);

// Prevent propagation of the event

event.stopPropagation();

}

