
Compiler Construction

Lecture 5 - Top-Down Parsing

© 2003 Robert M. Siegfried

All rights reserved

What is top-down parsing?

• Top-down parsing is a parsing-method where a

sentence is parsed starting from the root of the

parse tree (with the “Start” symbol), working

recursively down to the leaves of the tree (with the

terminals).

• In practice, top-down parsing algorithms are easier

to understand than bottom-up algorithms.

• Not all grammars can be parsed top-down, but

most context-free grammars can be parsed bottom-

up.

An example of top-down parsing
Let’s consider the expression

grammar:

E ::= E + T | T

T ::= T * F | F

F ::= id | const | (E)

How will it begin parsing

the expression:

3*x + y* z

E

E T

T

T F*

+

F

const

LL(k) grammars

• Top-down grammars are referred to as LL(k)

grammars:

– The first L indicates Left-to-Right scanning.

– The second L indicates Left-most derivation

– The k indicates k lookahead characters.

• We will be examining LL(1) grammars, which

spot errors at the earliest opportunity but provide

strict requirements on our grammars.

LL(1) grammars

• LL(1) grammars determine from a single

lookahead token which alternative derivation to

use in parsing a sentence.

• This requires that if a nonterminal A has two

different productions:

A ::=  and A ::= 

– that  and ß cannot begin with the same token.

–  or ß can derive an empty string but not both.

– if ß =>* ,  cannot derive any string that begins with a

token that could immediately follow A.

LL(1) grammars (continued)

If you look at the first token of expression

3*x + y*z

(which is const) and the productions for the

start symbol E

E ::= E + T | T

How can you tell whether it derives E + T or

simply T? This requires information about

the subsequent tokens.

LL(1) grammars (continued)

It becomes necessary to convert many

grammars into LL(1). The most common

conversions involve:

• Removing left-recursion (whether it is

direct or indirect)

• Factoring out any terminals found out the

beginning of more than one production for a

given nonterminal

Removing left-recursion

• Aho, Sethi and Ullman show that left

recursion of the form:

A ::= A | ß

can be converted to right-recursion (which is

LL(1)) by replacing it with the following

productions:

A ::= ßA’

A’ ::= A’ | 

Removing indirect left recursion
Indirect recursion has nonterminals appear on the right-hand

side of productions which appear in its own right sentential

form: e.g., A ::= B  | c

B ::= B  | A  | d

This can be removed by arranging the nonterminals in order

and by then substituting for A in B’s right sentential form:

A ::= B  | c

B ::= B  | B    c  | d

Now we simply eliminate the direct left-recursion:

A ::= B  | c

B ::= c  B’ | d B’

B’ ::= B’ |  B’ | 

Left-Factoring

Many grammars have the same prefix

symbols at the beginning of alternative right

sentential forms for a nonterminal:

e.g., A ::=   |  

We replace these production with the

following:

A ::=  A’

A’ ::=  | 

Converting an expression grammar into LL(1) form

• Our expression grammar is:

E ::= E + T | T

T ::= T * F | F

F ::= id | const | (E)

• Following our rule for removing direct left-recursion, our

grammar becomes:

E ::= T E’

E’ ::= + T E’ | 

 = F T ‘

T’ ::= * F T’ | 

F ::= id | const | (E)

Parse Table
Once the grammar is in LL(1) form, we create a

table showing which production we use in parsing

each nonterminal for every possible lookahead

token:

E E’ T T’ F
1 E ::= TE’

2 E’ ::= +TE’

3 E’ ::= 

 T ::= FT’

5 T’ ::= *FT’

6 T’ ::= 

7 F ::= id

8 F ::= const

9 F ::= (E)

id

+

*

(

)

const

$

2 6

5

1 4 9

3 6

1 4 7

1 4 8

3 6

Parsing an expression using the LL(1) parse table

Let’s take a look at the expression

3*x + y

Our parse tree is initially just the start symbol E and our

lookahead token is const (the lexeme is 3)

E

T E’

The production for T and a

lookahead token of const is is

#4, making our parse tree:

The production for E and a

lookahead token of const is

is #1, making our parse tree

F T’

T

E

E’

Parsing an expression using the LL(1) parse table

(continued)
The production for F and a

lookahead token of const

is #8, making our parse

tree:

Since we have now

matched the token, we get a

new lookahead

E

T E’

F T’

const

The production for T’ and a

lookahead token of * is is #5,

making our parse tree:

We get another lookahead

E

T E’

F T’

const * T’F

Parsing an expression using the LL(1) parse table

(continued)

The production for F and a

lookahead token of id is #7,

making our parse tree:

We get a new lookahead

E

T E’

F T’

const * T’F

The production for T’ and a

lookahead token of + is #6,

making our parse tree:

id 

Parsing an expression using the LL(1) parse table

(continued)

The production for E’

and a lookahead token

of + is #2, making our

parse tree:

We get a new

lookahead

The production for T

and a lookahead token

of id is #4, making our

parse tree:

E

T E’

F T’

const * T’F

id


+ T E’

F T’

Parsing an expression using the LL(1) parse table

(continued)

The production for F and a

lookahead token of id is #7,

making our parse tree:

We get a new lookahead

E

T E’

F T’

const * T’F

id


+ T E’

F T’

id 



Having reached the EOF

(represented by $), the

productions for T’ and E’ are 6

and 3 respectively. Our parse

tree is complete.

FIRST and FOLLOW sets

• Since LL(1) grammars are predictive (the first

lookahead determines how we parse the

nonterminal), the set of tokens that can appear at

the beginning of any derivation for that

nonterminal becomes extremely important. This is

the FIRST set.

• Since LL(1) grammars include epsilon

productions, the set of token that can appear

immediately following the nonterminal becomes

important in determining the FIRST set and is

called the FOLLOW set.

FIRST sets

• Definition: FIRST(A) (where A is a nonterminal)

is the set of symbols beginning strings generated

by A.

• Examples

– FIRST(E) = { id, const, (}

– FIRST (E’) = { +,), $ }

– FIRST(T) = {id, const, (}

– FIRST(T’) = {+, *,), $ }

– FIRST(F) = {id, const, (}

FOLLOW sets
• Definition: FOLLOW(A) (where A is a

nonterminal) is a set of symbol appearing to the

right of A in a sentential form.

• Examples:

– FOLLOW(E) = {), $ }

– FOLLOW(E’) = {), $ }

– FOLLOW(T) = (+,), $ }

– FOLLOW(T’) = { +,), $ }

– FOLLOW(F) = { *, +,), $}

Computing FIRST sets
To compute FIRST sets:

WHILE there are still terminals that may be added:

FOR each production and for each nonterminal (in

the form A ::= i:

IF 1 is a terminal, add it to the FIRST set for

A (& Production i)

ELSE IF 1 is , add the FOLLOW set for A

to the FIRST set for A (& Production i)

ELSE (1 is a nonterminal), add the FIRST set

for 1 to the FIRST set for A (& Production i).

Computing FOLLOW sets

Initialize FOLLOW(S) to { $ }

Initialize the other FOLLOW sets to { }

WHILE there are terminals that can be added:

FOR each nonterminal B:

Look for productions Pi in the form A ::=  B 

IF  is a terminal, add it to the set FOLLOW(B)

ELSE IF  = , add FOLLOW(A) to FOLLOW(B)

ELSE ( is a nonterminal), add FIRST() to

FOLLOW(B)

Determining FIRST sets for LL(1) grammars

Let’s take another look at our expression grammar in LL(1)

form:
1 E ::= TE’ FIRST(1) = FIRST(T)

2 E’ ::= +TE’ FIRST(2) = { + }

3 E’ ::=  FIRST(3) = FOLLOW(E’)

 T ::= FT’ FIRST(4) = FIRST(F)

5 T’ ::= *FT’ FIRST(5) = { * }

6 T’ ::=  FIRST(6) = FOLLOW(T’)

7 F ::= id FIRST(7) = { id }

8 F ::= const FIRST(8) = { const }

9 F ::= (E) FIRST(9) = { (}

It becomes useful to work with the FIRST(i), which is the

first set for the derivations of the nonterminal coming from

production i.

Determining FIRST sets for LL(1) grammars (continued)

FIRST(F) = FIRST(7) U FIRST(8) U FIRST (9)

= { id, const, (}

Therefore, FIRST(4) = FIRST (F) = { id, const, (}

Also, FIRST(T) = FIRST (4) = { id, const, (}

1 E ::= TE’ FIRST(1) = { id, const, (}

2 E’ ::= +TE’ FIRST(2) = { + }

3 E’ ::=  FIRST(3) = FOLLOW(E’)

 T ::= FT’ FIRST(4) = { id, const, (}

5 T’ ::= *FT’ FIRST(5) = { * }

6 T’ ::=  FIRST(6) = FOLLOW(T’)

7 F ::= id FIRST(7) = { id }

8 F ::= const FIRST(8) = { const }

9 F ::= (E) FIRST(9) = { (}

Determining FIRST sets for LL(1) grammars (continued)

FOLLOW(E) is initially { $ }.

Since E is on the right side of Production #9, we add) to the

set.

Since E’ is in both Productions 1 and 2 without anything

following it (and Production is recursive, adding nothing),

we add FOLLOW(E) to FOLLOW(E’)

FOLLOW(E’) = FOLLOW(E) = {) , $ }

Similarly,

FOLLOW(T’) = FOLLOW(T) = FIRST(E’) U FOLLOW(E’)

= { + } U {) , $ }

Determining FIRST sets for LL(1) grammars (continued)

After determining the FOLLOW sets for E’ and T’, we have:

1 E ::= TE’ FIRST(1) = { id, const, (}

2 E’ ::= +TE’ FIRST(2) = { + }

3 E’ ::=  FIRST(3) = {) , $ }

 T ::= FT’ FIRST(4) = { id, const, (}

5 T’ ::= *FT’ FIRST(5) = { * }

6 T’ ::=  FIRST(6) = { + ,) , $ }

7 F ::= id FIRST(7) = { id }

8 F ::= const FIRST(8) = { const }

9 F ::= (E) FIRST(9) = { (}

How do we use this information in Parsing?

To determine which production to use in expanding a

nonterminal.

Parse Table - the final result
By looking up the token and nonterminal, we determine

how to expand a given nonterminal.

We can build the parse recursively, or nonrecursively by

using a stack.

E E’ T T’ F
1 E ::= TE’

2 E’ ::= +TE’

3 E’ ::= 

 T ::= FT’

5 T’ ::= *FT’

6 T’ ::= 

7 F ::= id

8 F ::= const

9 F ::= (E)

id

+

*

(

)

const

$

2 6

5

1 4 9

3 6

1 4 7

1 4 8

3 6

The LL(1) JASON Grammar

1 Program ::= Header DeclSec Block .

2 Header ::= program identifier ;

3 DeclSec ::= VarDecls ProcDecls

4 VarDecls ::= VarDecl VarDecls

5 VarDecls ::= 

 VarDecl ::= DataType IdList;

7 DataType ::= integer

8 DataType ::= real

9 IdList ::= identifier MoreIdList

The LL(1) JASON Grammar (continued)

10 MoreIdList ::= , identifier MoreIdList

11 MoreIdList := 

12 ProcDecls ::= ProcDecl ProcDecls

13 ProcDecls ::= 

14 ProcDecl ::= ProcHeader DeclSec Block ;

15 ProcHeader ::= procedure identifier ParamList ;

16 ParamList ::= (ParamDecls)

17 ParamList ::= 

18 ParamDecls ::= ParamDecl MoreParamDecls

The LL(1) JASON Grammar (continued)

19 MoreParamDecls ::= ; ParamDecl MoreParamDecls

20 MoreParamDecls ::= 

21 ParamDecl ::= DataType identifier

22 Block ::= begin Statements end

23 Statements ::= Statement MoreStatements

24 MoreStatements ::= ; Statement MoreStatements

25 MoreStatements ::= 

26 Statement ::= read identifier

27 Statement ::= set identifier = Expression

The LL(1) JASON Grammar (continued)

28 Statement ::= write identifier

29 Statement ::= if Condition then Statements ElseClause

endif

30 Statement ::= while Condition do Statements endwhile

31 Statement ::= until Condition do Statements enduntil

32 Statement ::= call identifier ArgList

33 Statement ::= 

34 ElseClause ::= else Statements

35 ElseClause ::= 

36 ArgList ::= (Args)

The LL(1) JASON Grammar (continued)

37 ArgList ::= 

38 Args ::= identifier MoreArgs

39 MoreArgs ::= , identifier MoreArgs

40 MoreArgs ::= 

41 Condition ::= Expression RelOp Expression

42 RelOp ::= =

43 RelOp ::= !

44 RelOp ::= >

45 RelOp ::= <

The LL(1) JASON Grammar (continued)

46 Expression ::= Term MoreExpression

47 MoreExpression ::= AddOp Term MoreExpression

48 MoreExpression ::= 

49 Term ::= Factor MoreTerm

50 MoreTerm ::= MultOp Factor MoreTerm

51 MoreTerm ::= 

52 Factor ::= identifier

53 Factor::= constant

54 AddOp ::= +

The LL(1) JASON Grammar (continued)

55 AddOp ::= -

56 MultOp ::= *

57 MultOp ::= /

FIRST set for JASON

FIRST(1) = FIRST(Header) = { program }

FIRST(2) = { program }

FIRST(3) = FIRST(VarDecls) = FIRST(VarDecl)

FIRST(4) = = FIRST(VarDecl) = FIRST(DataType)

FIRST(5) = FOLLOW(VarDecls) = FIRST(ProcDecls)

= FIRST(ProcDecl) U FOLLOW(ProcDecls)

FIRST(6) = FIRST(DataType) = { real, integer }

FIRST(7) = { real }

FIRST(8) = { integer }

FIRST(9) = { identifier }

FIRST set for JASON (continued)

FIRST(10) = { , }

FIRST(11) = FOLLOW(MoreIdList) = FOLLOW(IdList)

= FOLLOW(VarDecl)

FIRST(12) = FIRST(ProcDecl) = FIRST(ProcHeader) = {

procedure }

FIRST(13) =FOLLOW(ProcDecls)=FIRST(Block) = {begin}

FIRST(14) = FIRST(ProcHeader) = { procedure }

FIRST(15) = { procedure }

FIRST(16) = { (}

FIRST(17) = FOLLOW(ParamList) = { ; }

FIRST set for JASON (continued)

FIRST(18) = FIRST(ParamDecl) = FIRST(ParamDecl)

= FIRST(DataType) = { integer, real }

FIRST(19) = { ; }

FIRST(20) = FOLLOW(MoreParamDecls) =

FOLLOW(ParamDecls) = {) }

FIRST(21) = FIRST(DataType) = { integer, real }

FIRST(22) = { begin }

FIRST(23) = FIRST(Statement)

FIRST(24) = { ; }

FIRST(25) = FOLLOW(MoreStatements) =

FOLLOW(Statement)

FIRST set for JASON (continued)

FIRST(26) = { read }

FIRST(27) = { set }

FIRST(28) = { write }

FIRST(29) = { if }

FIRST(30) = { while }

FIRST(31) = { until}

FIRST(32) = { call }

FIRST(33) = FOLLOW(Statement)

FIRST(34) = { else }

FIRST(35) = FOLLOW(ElseClause) = { endif }

FIRST(36) = { (}

FIRST set for JASON (continued)

FIRST(37) = FOLLOW(ArgList) = FOLLOW(Statement)

FIRST(38) = { identifier }

FIRST(39) = { , }

FIRST(40) = FOLLOW(MoreArgs) = {) }

FIRST(41) = FIRST(Expression)

FIRST(42) = { = }

FIRST(43) = { ! }

FIRST(44) = { > }

FIRST(45) = { < }

FIRST(46) = FIRST(Term) = FIRST (Factor)

FIRST(47) = FIRST(AddOp) = { +, - }

FIRST set for JASON (continued)

FIRST(48) = FOLLOW(MoreExpression)

FIRST(49) = FIRST(Factor)

FIRST(50) = FIRST(MultOp) = (*, / }

FIRST(51) = FOLLOW(MoreTerm)

FIRST(52) = {identifier)

FIRST(53) = { constant }

FIRST(54) = { + }

FIRST(55) = { - }

FIRST(56) = { * }

FIRST(57) = { / }

Determining the FIRST set for JASON

Let’s determine the FIRST sets for the nonterminals:

FIRST(3) = FIRST(4) = FIRST(VarDecl) = FIRST(DataType)

= { integer, real }

FIRST(23) = FIRST(Statement)= FIRST(26) FIRST(27) 

FIRST(28)  FIRST(29)  FIRST(30)  FIRST(31) 

FIRST(32)  FIRST(33) = { read, set, write, if, while,

until, call}  FOLLOW(Statement)

FIRST(41) = FIRST(46) = FIRST(49) = FIRST(Expression)

= FIRST(Term) = FIRST(Factor) = { identifier, constant

}

Determining the FIRST set for JASON (continued)

Now we must find the necessary FOLLOW sets:

FIRST(5) = FIRST(ProcDecl) U FOLLOW(ProcDecls) = { procedure

} U FOLLOW (DeclSec) = { procedure, begin }

FIRST(11) = FOLLOW(IdList) = FOLLOW(VarDecl) = { integer, real,

procedure, begin }

FIRST(25) = FOLLOW(33) = FOLLOW(37) = FOLLOW(Statement) =

FOLLOW(MoreStatements) = { ; , end, endif, endwhile, enduntil,

else }

FIRST(48) = FOLLOW(MoreExpression) = FOLLOW(Condition)

= { ;, end, endif, endwhile, enduntil, else, then, do

}

FIRST(51) = FIRST(MoreExpression) U FOLLOW(Expression) =

{+, ;, end, endif, endwhile, enduntil, else, then, do }

Implementing the Parse Table

// The production table for predictive parsing.

// The nonzero entries are the production numbers for a

// particular nonterminal matched with a lookahead token

// Zero entries means that there is no such production

// and it is a parsing error.

const int prodtable[][numtokens+3] = {

/*Program*/ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

/*Header*/ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

/*DeclSect*/ { 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 3,

0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

Implementing the parse table (continued)

/*VarDecls*/ { 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 5,

0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

/*VarDecl*/ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0,

0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

/*DataType*/ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0,

0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

/*IdList*/ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0},

/*MoreIdList*/{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,11,10, 0, 0, 0, 0, 0, 0, 0, 0, 0},

The Parsing Algorithm

Processing context-free expressions requires the use of a

stack. The Parsing algorithm uses a stack:

Place the start symbol in a node and push it onto the stack.

Fetch a token

REPEAT

Pop a node from the stack

IF it contains a terminal, match it to the current token (no match

indicates a parsing error) and fetch another token

ELSE IF it contains a nonterminal, look it up in the production table

using the nontermina and the current token. Place the variables in

REVERSE order on the stack

UNTIL the stack is empty

Recursive-Descent Parsing
• Recursive-descent parsing is a top-down parsing

technique which shows a series of recursive

procedures to parse the program

• There is a separate procedure for each individual

nonterminal.

• Each procedure is essentially a large if-then-else

structure which looks for the appropriate tokens

when the grammar requires a particular terminal

and calls another procedure recursively when the

grammar requires a nonterminal.

Recursive descent parsing of JASON

class parser : scanner {

public:

parser(int argcount, char *args[]);

parser(void);

void ProcProgram(void);

private:

void ProcHeader(void);

void ProcDeclSec(void);

… …

void error(char message[], int linenum);

tokentype thistoken;

int tabindex, level;

};

symboltable st;

// main() - Just a simple-minded driver

int main(int argc, char *argv[])

{

parser p(argc, argv);

p.ProcProgram();

st.dump();

return(0);

}

parser::parser(int argcount, char *args[])

: scanner (argcount,args)

{

level = 0;

thistoken = gettoken(tabindex);

}

void parser::ProcProgram(void)

{

level++;

cout << level << '\t' << "Program" << endl;

// Program ::= Header DeclSec Block .

ProcHeader();

ProcDeclSec();

ProcBlock();

if (thistoken != tokperiod)

error("Expected \".\"", linenum);

getchar();

--level;

}

void parser::ProcHeader(void)

{

level++;

cout << level << '\t' << "Header" << endl;

// Header ::= program identifier ;

if (thistoken != tokprogram)

error("Expected \"PROGRAM\"", linenum);

cout << level+1 << '\t' << "program" << endl;

thistoken = gettoken(tabindex);

if (thistoken != tokidentifier)

error("Expected identifier", linenum);

cout << level+1 << '\t' << "identifier"

<< endl;

thistoken = gettoken(tabindex);

if (thistoken != toksemicolon)

error("Expected \";\"", linenum);

cout << level+1 << '\t' << ";" << endl;

thistoken = gettoken(tabindex);

--level;

}

void parser::ProcDeclSec(void)

{

level++;

cout << level << '\t' << "DeclSec" << endl;

// DeclSec ::= VarDecls ProcDecls

ProcVarDecls();

ProcProcDecls();

--level;

}

