
Compiler Construction

Lecture 2 - Lexical Analysis

© 2003 Robert M. Siegfried

All rights reserved

Lexical Analysis
• Lexical analysis (or scanning) is the process by 

which the stream of characters is grouped into 

strings representing the words of a language 

(called lexemes) which correspond to specific 

grammatical elements of that language (called 

tokens)

• Tokens are the fundamental building blocks of a 

program’s grammatical structure, representing 

such basic elements as identifiers, literals, and 

specific keywords and operators of the language.



Lexical Analysis (continued)

• Lexemes are the character strings assembled 

from the character stream of a program, and 

the token represents what component of the 

program’s grammar they constitute.

The scanner’s role in the 

compiler’s front end

Scanner Parser
Token

Token

requested

returned

Semantic

Analyzer

Semantic

Actions

Symbol table



The scanner’s role in the compiler’s 

front end (continued)

• The parser is the driving force for much of the compiler’s 

front end.

• The parser requests a token from the scanner, which 

returns the token corresponding to the next lexeme.

• The parser requests a particular semantic action, which 

depends on what component of the grammar is being 

parsed.

• All parts of the front end add information into the symbol 

table; the scanner adds lexemes to the symbol table (when 

necessary) and the symbol table returns to the scanner the 

token corresponding to the lexeme.

Lexical analysis - an example

Consider the statement:
for (i = 0; i < amount; i++) sum += x[i];

The character stream (with their ASCII values) is:

f    o     r        (    i     =    0   ;           i         <        a   m   o   u    n    t ...

66  6F  52 20 28 69  3D  30 3B  20 69 20 3C 20 61 6D 6F 75 6E 74 ...

The scanner assembles the following lexemes:

for ( i = 0 ; i <  … 

and finds in the symbol table the corresponding tokens:

for openparen    identifier    Assign   Literal   

semicolon   identifier lessthan … … 



Tokens and Lexemes
• In many instances, there is a one-to-one 

correspondence between the lexemes and tokens 

for reserved words and operators.

• User-defined identifiers are usually assigned the 

token of Identifier.

• Numbers are usually assigned the token of 

NumericLiteral or something more specific like 

IntegerLiteral.

• Characters and strings are assigned the token of 

CharacterLiteral.

A Brief Introduction to Formal Language Theory

String - A sequence of symbols 

e. g., ABabbCaC

typedef int * intptr ;

Symbols

Alphabet - A finite set of symbols.

e. g., A, B, C

1, 2, 3

ARRAY, SET, ;, OF, +



A Brief Introduction to Formal Language Theory 

(continued)

Language - Any set of string over an alphabet.

Graphs - A finite set of vertices and arcs.

A B

C D

A Brief Introduction to Formal Language Theory 

(continued)

Trees - a directed graph without circuits.

A

B C

D E F G



A Brief Introduction to Formal Language Theory 

(continued)

Terminals - any symbol in a given language’s alphabet.  

In formal language theory, they are represented by lower-

case letters (i. e., a b)

e. g., int, while,  class are terminals in C++.

Nonterminals - any set of combinations of terminals.  A 

combination of terminals can be derived from a 

nonterminal, according to the productions (rules) of the 

grammar of the language.  Usually represented by capital 

letters (i. e.,  A B)

A Brief Introduction to Formal Language Theory 

(continued)

Examples of nonterminals and the productions in which 

they appear:

Expression  ::= Term (±Term)*

Term ::= Factor ({*|/} Factor)*

Factor ::= identifier

Factor ::= constant

Variables - Any terminal or nonterminal usually 

represent by a Greek letter.  ß



Chomsky Hierarchy

Type Language Automaton

0 Recursively enumerable Turing Machine

(or unrestricted)

1 Context-sensitive Linear-bounded

Turing Machine

2 Context-free Pushdown Automaton

3 Regular Finite Automaton

Type N automata are computer implementations designed to 

process type N language.

Languages & Grammars

Type 0 - Recursive enumerable αααα ::= ß, 

where α and ß can be any string or variable.

Type 1 - Context-sensitive αααα ::= ß, 

where |α | < |ß| and at least one character in α is a nonterminal

Type 2 - Context-free A ::= ß,

where there is one and only nonterminal and  NO terminals on the left.

Type 3 - Regular A ::= a or A ::= aB

Most real programming languages are almost context-free 

(with a few context-sensitive traits)



Automata

Turing Machine - Given an input stream, it performs as many 

computations as necessary, finally deciding whether to accept (if the 

string is within the language).

Head

Linearly-bounded Automaton - works like a Turing Machine, but 

limits space to the length of the input string.

a b a c d e f c a b b a d c a

Automata (continued)

Pushdown automaton - Uses a stack, and it can read from 

only the stack.

Finite Automaton - The machine cannot write anything.  

After reading the string, it either accepts or rejects the 

string. 

In theory, computers can be as powerful as a Turing 

Machine.



Deterministic Finite Automata

Definition – A deterministic finite automaton is a 5-tuple 

(Q, Σ, δ, q0, F) where:

Q is a finite set of states

Σ is a finite alphabet

q0 ∈Q is the initial state

F ⊆ Q is a set of final states

δ is a transition function

Deterministic Finite Automata (continued)

q0
q1

q2 q3

1

0

1 0

0

1

01

Σ = { 1, 0}

Q = { q0, q1, q2, q3 }

F = { q0 }

δ(q0, 0) = q2; δ(q0, 1) = q1; δ(q1, 0) = q0;    δ(q1, 1) = q3

δ(q2, 0) = q3; δ(q2, 1) = q0;    δ(q3, 0) = q1; δ(q3, 1) = q2

δ maps Q x Σ into Q



Deterministic Finite Automata (continued)

q0

a

a
q1 q2

c

b

q3

b

c

a, b, c

a

b

c

δ(q0, a) = q1;  δ(q0, b) = q3;  δ(q0, c) = q3

δ(q1, a) = q0;  δ(q1, b) = q1; δ(q1, c) = q2

δ(q2, a) = q3;  δ(q2, b) = q3;  δ(q2, c) = q3

δ(q3, a) = q3;  δ(q3, b) = q3; δ(q3, c) = q3

What language will this DFA accept?

q0

q1

q2

q3

q4

blank A-Z

blank

blank

0-9

0-9

A-Z

Σ =  {A-Z, 0-9, blank}

q5

0-9

A-Z,0-9

A-Z,0-9, “ “

A-Z

A-Z,0-9



Regular Expressions
Regular expressions have an indefinite repetition of 

symbols in its accepted language.

(01)* = {01, 0101, 010101, 01010101, 0101010101, ...}

1*001* = {00, 100, 10011, 1001, 11001, 111001,

10011, ...}

(0+10)* = {0, 10, 100, 1010, 010, 0100...}

(1+ε)(0+10)* = {1, 010, 100, 1100, 010, 1010, ...}

(0+1)*101 = {101, 00101, 0101, 10101, 00101, 1011101, 

000101, ...}

0†1†2† = 00*11*22* = {001112, 012, 0112, 00111222, ...}

b*(aa)*c* = {?}

Deterministic vs. Nondeterministic Automata

A deterministic finite automaton makes one and only move 

in a given state-symbol combination.

A Nondeterministic finite automaton can make 0 or more 

moves for such a combination.
0

1

00

1

1
0

1

q0

q1

q2

q3 q4 M = (Q, Σ, δ, q0, F) as before

but δ(Q, Σ) may be a solution

set or undefined

Is this more powerful than a DFA?



Deterministic vs. Nondeterministic Automata

A deterministic finite automaton makes one and only move 

in a given state-symbol combination.

A Nondeterministic finite automaton can make 0 or more 

moves for such a combination.

q0

q1

q2

q3 q4
0

1

10

1

0
0

1

Is this more powerful than a DFA?

M = (Q, Σ, δ, q0, F) as before

but δ(Q, Σ) may be a set or 

undefined

Nondeterministic Finite Automata

A nondeterministic finite automaton will have an equivalent deterministic 

automaton.

q0 q1

0

1

1

1
0 δ|      q0             q1

0| {q0, q1} ϕ
1|  {q1}    {q0, q1}

Remember that the NFA M is defined as M = (Q, Σ, δ, q0, F)

Let’s find M’ = (Q’, Σ‘, δ‘, q0’, F’)

q0’ = [q0] Σ‘ = Σ F’ = { [q1], [q0, q1] }

Q’ = {φ, [q0], [q1], [q0, q1] }



Nondeterministic Finite Automata (continued)

From q0’, Σ‘, F’, Q’, together with δ, we can construct δ‘.

δ‘([q0], 0) = [q0, q1] since δ(q0, 0) = {q0, q1}

δ‘ = ([q0], 1]) = [q1] since δ(q0, 1) = {q1}

δ‘([q1, 0]) = φ since δ(q1, 0) is undefined

δ‘([q1], 1) = [q0, q1] since δ(q1, 1) = {q0, q1}

δ‘([q0, q1], 0) = [q0, q1] since δ({q0, q1}, 0) = {q0, q1} ∪ φ = {q0, q1}

δ‘([q0, q1], 1) = [q0, q1] since δ({q0, q1}, 1) = {q1} ∪  {q0, q1} = {q0, q1}

δ‘(φ, 0) = δ‘(φ, 1) = φ

Nondeterministic Finite Automata (continued)

[q0,q1]

[q0]

Φ

[q1]

0

0

1

1

0,1

0,1

The equivalent Deterministic Finite Automaton



The equivalence of DFAs and NFAs

A DFA and  an NFA are equivalent if their 5-tuple are equivalent.

They are also equivalent if they accept the same language.

E. g.,

q4q3q0

q1

q2

0,1

0 0

1

1

0,1

0,1

What language will this NFA accept?

The equivalence of DFAs and NFAs (continued)

q4

q3

q1q0

q2

1

0

0

1

0

1

0,1

0,1
What language will this DFA accept?



NFA with epsilon-moves
NFA can contain ε-moves.

ε is the empty string.  It takes us to another state

without having to read another character.

q0 q1 q2

210

ε ε

NFAs with epsilon moves (continued)

To convert this to the equivalent NFA without ε-moves, we need to find ε-

closure(q), the set of all states p which can be reached from q by ε-moves.

q0 q1 q2

0,1,2

1,20,1

0 1 2



Why are DFAs, NFAs and NFAs with epsilon moves 

important?

• We can automate the construction of NFAs 

with epsilon moves for regular expressions.

• From there, we can build NFAs without 

epsilon moves, and in turn, a DFA.

• A DFA is easy to implement in a computer 

program procedure.

A few basic NFAs

q0 q1
0

q0 q1
1

r = 0 r = 1

r = 01

0 ε 1 q3q2q1q0



A few basic NFAs (continued)

ε

ε

0

1

ε

ε

q5

q4

q2q1

q3

q0 r = 0+1

q3q2q0 q1
1ε

ε

ε

ε

r = 1*

Combining the basic NFAs

ε

1

ε

ε

0 ε ε 1

ε

ε

ε

ε

q0

q1 q2

q3 q4 q5 q6 q7 q8

q9

r = 01*+1



Transition Diagrams

• Transition diagrams are a special form of 

finite automaton, incorporating features that 

belong in a compiler’s scanner:

– Actions associated with final states.

– Backup from a state, allowing for a lookahead 

character being returned to the input stream.

– Transitions can be labeled as belonging to 

“other”, indicating any class of character not 

explicitly accounted for.

Transition Diagrams(continued)

In drawing transition diagrams, it is helpful to use 

an alternate approach to describing regular 

expressions:

a|b denotes a or b.

ab denotes a followed by b

(ab)* denotes a followed by b zero or more times

(a|b)c denotes a or b followed by c



Transition Diagrams(continued)

The different lexical categories or classes can be 

described in this fashion:

letter : (a | b | c | d | e .... A | B | C | D | E ..| X | Y | Z)

digit: ( 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 )

other: ( ! | @ | # | $ | % | ^ | & | * | ( | ) | _ | + | = | - | 

` | ~ | { | } |  \ | ” | ’ | : | ; )

identifier : letter (letter | digit)*

integer : digit digit*

real: (digit digit* . digit digit*) |

(digit digit* . digit digit* (E | e) (+|- | ) digit digit*)

Transition Diagrams(continued)

The transition diagram for our language shown before 

becomes:

0 1 2

3 4
*

*

{Identifier}

{Number}

digit

letter

letter

digit

other

digit

letter

other



Practical Issues in Lexical Analysis

There are several important practical issues 

that arise in the design of a scanner:

• Lookahead

• Case sensitivity

• Skipping of lead blanks and comments

• Use of first characters 

Lookahead characters

Since you cannot determine if you have read beyond 

the end of a lexeme until you have done so, you must 

be prepared to handle the “lookahead” character.  There 

are two approaches available:

•Start with a lookahead character and fetch a new one 

every time the lookahead character is “consumed” by 

the lexeme.

•Use two functions to manipulate the input stream, one 

to “get” the next character and one to “unget” the next 

character, returning it temporarily to the input stream.



Lookahead characters (continued)

// gettc() - Fetches a character from a

// file.  It uses get and adjusts

// the line number count when

// necessary.

char scanner::gettc(void)

{

char c;

// If we' re at the end of file, return a null

// byte, which serves to mark the end of file.

if (infile.eof())

c = '\0';

Lookahead characters (continued)

// If the next character is a newline, 

// increment the line count

else if ((c = infile.get()) == '\n')

linenum++;

// Return the character converted to lower case

return(tolower(c));

}



Lookahead characters (continued)

// ungettc() - Returns a character to the

// file.  Uses ungetc and will

// adjust line number count.

void scanner::ungettc(char c)

{

// If it's a newline, decrement the line

// count; we haven't gone to the next line

// yet.

if (c == '\n')

--linenum;

// Put it back into the input stream.

infile.putback(c);

}

Case sensitivity

• Although “a” and “A” are regarded as the 

same character in the English language, 

they are represented by different ASCII 

codes. For a compiler to be case insensitive, 

we need to consider these both as the same 

letter.

• The easiest way to do this is to convert all 

letters to the same case.

• Not all languages do this, e.g., C.



Skipping lead blanks and comments

• Before reading the first significant character 

in a lexeme, it necessary to skip past both 

lead blanks as well as comments.

• One must assume that the scanner can 

encounter either or both repeatedly and 

interchangeably before reading the first 

significant character.

Skipping lead blanks and comments (continued)

// firstchar() - Skips past both white space

// and comments until it finds

// the first non-white space

// character outside a comment.

char scanner::firstchar(void)

{

char c;

bool goodchar = false;

// If we're at the end of the file,

// return the EOF marker so that we'll

// return the EOF token

if (infile.eof())

return(EndOfFile);



Skipping lead blanks and comments (continued)

// We're looking for a non-white space

// character that is outside a comment.

// Keep scanning until we find one or

// reach the end of the file.

while (!goodchar) {

// Skip the white space in the

// program

while (!infile.eof() 

&& isspace(c = gettc()))

;

// Is it a comment or a real

// first character? 

if  (c != '{')

goodchar = true;

Skipping lead blanks and comments (continued)

else

// Skip the comment 

while (!infile.eof() 

&& (c = gettc()) != '}')

;

}

// If we're at the end of file, return

// the EOF marker. Otherwise, return

// the character.

if (infile.eof())

return(EndOfFile);

else

return(c);

}



Use of first character 

• In most programming languages, the first 

character of a lexeme indicates the nature of 

the lexeme and token associated with it.

• In most instances, identifiers and reserved 

words begin with a letter (followed by zero 

or more letters and digits), numbers begin 

with a digit and operators begin with other 

characters.

Use of first character (continued)

// gettoken() - Scan out the token strings of

// the language and return the

// corresponding token class to the

// parser. 

tokentype scanner::gettoken(int &tabindex)

{

char c;

// If this is the end of the file, send the

// token that indicates this

if ((c = lookahead) == EndOfFile)

return(tokeof);



Use of first character (continued)

// If it begins with a letter, it is a word.

// If begins with a digit, it is a number.

//  Otherwise, it is an error.

lookahead = gettc();

if (isalpha(c))

return(scanword(c, tabindex));

else if (isdigit(c))

return(scannum(c, tabindex));

else

return(scanop(c, tabindex));

}

Scanning for reserved words and identifiers

• Once the scanner determines that the first 

character is a letter, it continues to read 

characters and concatenate them to the 

lexeme until it encounters a character other 

than a letter or digit.

• If the resultant lexeme is not in the symbol 

table, it must be a new identifier.



Scanning for reserved words and identifiers (continued)

// scanword() - Scan until you encounter

// something other than a letter.

tokentype scanner::scanword(char c,

int &tabindex)

{

char lexeme[LexemeLen];

int i = 0;

// Build the string one character at a time.

// It keeps scanning until either the end of

// file or until it encounters a non-letter

lexeme[i++] = c;

while ((c = lookahead) != EndOfFile

&& (isalpha(c) || isdigit(c))) {

lexeme[i++] = c;

lookahead = gettc();

}

// Add a null byte to terminate the

// string and get the lookahead that

// begins the next lexeme.

lexeme[i] = '\0';

ungettc(lookahead);

lookahead = firstchar();

// If the lexeme is already in the symbol

// table, return its tokenclass.  If it

// isn't, it must be an identifier whose

// type we do not know yet.

if (st.installname(lexeme, tabindex))

return(st.gettok_class(tabindex));

else {

st.setattrib(tabindex, stunknown,

tokidentifier);

return(tokidentifier);

}

}



Scanning for numeric literals

• After determining that the lexeme begins with a 

digit, the scanner reads characters, concatenating 

them to the lexeme until it encounters a non-digit.

• If it is a period, it will concatenate this to the 

lexeme and resume reading characters until it 

encounters another non-digit.

• If it is an “E”, it must then read the exponent.

• The token associated with the lexeme is either 

number or the number’s type.

Scanning for numeric literals (continued)

// scannum() - Scan for a number.

tokentype scanner::scannum(char c,int &tabindex)

{

int ival, i = 0;

bool isitreal = false;

float rval;

char lexeme[LexemeLen];

// Scan until you encounter something that

// cannot be part of a number or the end of

// file 

lexeme[i++] = c;

while ((c = lookahead) != EndOfFile 

&& isdigit(c)) {

lexeme[i++] = c;

lookahead = gettc();

}



Scanning for numeric literals (continued)

// Is there a fractional part?

if (c == '.') {

isitreal = true;

lexeme[i++] = c;

while ((c = lookahead) != EndOfFile 

&& isdigit(c)) {

lexeme[i++] = c;

lookahead = gettc();

}

}

// Add a null byte to terminate the

// string and get the lookahead that

// begins the next lexeme.

ungettc(lookahead);

lexeme[i] = '\0';

lookahead = firstchar();

Scanning for numeric literals (continued)

// If there is no fractional part, it is an

// integer literal constant.  Otherwise, it

// is a real literal constant. Firstly, is

// it already in the symbol table?

if (st.installname(lexeme, tabindex))

return(st.gettok_class(tabindex));

// If not, is it real?

else if (isitreal) {

st.setattrib(tabindex, stunknown,

tokconstant);

st.installdatatype(tabindex,

stliteral, dtreal);

rval = atof(lexeme);

st.setvalue(tabindex, rval);

return(st.gettok_class(tabindex));

}



Scanning for numeric literals (continued)

// Must be an integer literal

else {

st.setattrib(tabindex, stunknown,

tokconstant);

st.installdatatype(tabindex,

stliteral, dtinteger);

ival = atoi(lexeme);

st.setvalue(tabindex, ival);

//ungettc(lookahead);

return(st.gettok_class(tabindex));

}

ungettc(lookahead);

return(st.gettok_class(tabindex));

}

Scanning for operators and characters literals

• If the first character is neither a letter nor a digit, the 

lexeme must be one of the following:

– an operator

– a character literal

– a string literal

• In scanning an operator:

– we should be cognizant of how many characters it may 

contain.

– we may wish to hand-code the token that will be 

returned by the symbol table.

• In scanning a literal,  we read characters until encountering 

the appropriate closing quotation mark.



Special problems in lexical 

analysis 

There are a few other problems faced in 

lexical analysis:

• Token overloading

• Backtracking

• Buffering

• When keywords are not reserved words

Token overloading

• On occasion, there are difficulties presented by a 

lexeme serving more than one role in a 

programming language.e.g, = is the test of equality 

AND the assignment operator.

• This can be handled by using different lexemes

– E. g., C uses = = and =, Pascal uses = and :=, 

FORTRAN uses .EQ. and =.

• If several lexemes are grouped into one token, it 

may become necessary to separate one or more of 

the lexemes out to become a distinctly different 

token.



Backtracking

• In rare instances, it may become necessary 

to backtrack and re-scan the text of the 

program.

E.g., the DO statement in FORTRAN 

DO 101  I = 1, 50

is initially read as

DO101I = 1

until the , is encountered.

Text buffering

• Reading file input is a time-consuming 

process.  This makes the buffering of input 

text crucial to the efficiency of a compiler.

• In most instances, file input is buffered on 

modern operating systems, rendering the 

issue less important than a decade ago. 



#define NUMBYTES 512

#define NUMBUFFERS 2

#define MAXSTACK 2

#define gettch()(top > 0 ? buffer[--top]: fetchchar())

int bytesread, fd, c, top, linenum = 1;

char buf[NUMBUFFERS][NUMBYTES], 

buffer[MAXSTACK], inputstring[MAXLINE];

Text buffering (continued)

/*

*  ungettch() - This function, together with the

* macro gettch(), allows the

* program to push and pop

* characters to and from the

* lookahead buffer.

*/

ungettch(char c)

{

if (top > MAXSTACK) {

printf("\nToo many characters \"ungotten\””

“\n");

exit(1);

}

buffer[top++] = c;

}



/*

*  openfile() - This opens an inputfile as "read

* only” using the unbuffered I/O

* library for greater efficiency.

*/

openfile(char infilename[])

{

if ((fd = open(infilename, O_RDONLY)) < 0) {

printf("Cannot open %s\n",infilename);

exit(1);

}

}

Text buffering (continued)

/*

* closefile() - This closes the file.  It is a

* separate function to allow for

* easier modification.

*/

closefile(void)

{

close(fd);

}

Text buffering (continued)



Text buffering (continued)

/*

* fetchchar() - This function uses two buffers

* of 512 bytes (one block in 

* MS-DOS), and unbuffered I/O

* to fetch a single character at

* a time.  When it reaches the

* end of the buffer, it gets

* another 512 bytes until end of

* file.

*/

Text buffering (continued)

int fetchchar(void)

{

static int nextchar = NUMBYTES,

thisbuf = NUMBUFFERS-1;

if (nextchar >= bytesread)

/*  Buffer is full  

Fill the next buffer */

if ((bytesread = read(fd, 

buf[thisbuf 

= (thisbuf == NUMBUFFERS-1)?0:thisbuf+1],

NUMBYTES-1)) <= 0)

/* Reached end of file. */

return(EOF); 



Text buffering (continued)

else

/* Reset buffer pointer */

nextchar = 0; 

return(buf[thisbuf][nextchar++]);

}

When keywords are not reserved words

• The keywords of a programming language are 

usually reserved, i. e., they cannot be used by a 

programmer as an identifier, a user-defined 

variable, data type, etc.

• There are programming languages where this is not 

the case, making programs difficult to understand 

and making it difficult to return the proper token. 

E. g.,

IF THEN THEN THEN = ELSE; 

ELSE ELSE = THEN;



Scanner generators

• Scanner generators  automatically generate 

a scanner given the lexical specifications 

and software routines given by the user.

• Scanner generators take advantage of the 

fact that a scanner is essentially an 

implementation of a finite automaton and 

can thus be created in an automated fashion.

• LEX is an example of such a software tool.


