
1

Compiler Construction

Lecture 11 – Final Code Generation

Issues in Final Code Generation

• Final code generation is similar to

intermediate code generation in some ways,

but there are several issues that arise that do

not occur in intermediate code generation:

– Instruction Set

– Memory Allocation

– Register Allocation

– Operating System Calls

2

Target Architecture

• Our target architecture is the Intel 8x86

family of processors.

• We first must consider:

– Register Set

– Flags

– Floating Point Unit

16-bit Processor Architecture

General Purpose Registers

AX

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL

AX (Accumulator) - favored for

arithmetic opertions

BX (Base) - Holds base address

for procedures and variables

CX (Counter) - Used as a counter

for looping operations

DX (Data) - Used in mulitplication

and division operations.

15 0

7 0 7 0

3

Segment Registers

Segment registers are used to hold base addresses

for program code, data and the stack.

15 0

CS

15 0

SS

15 0

DS

15 0

ES

CS (Code Segment) - holds the base

address for all executable instructions

in the program

SS (Stack Segment) - holds the base

address for the stack

DS (Data Segment) - holds the base

address for variables

ES (Extra Segment) - an additional base

address value for variable.

Index Registers
Index Registers contain the offsets for data and

instructions.

Offset - distance (in bytes) from the base address of the

segment.

BP

SP

SI

DI

BP (Base Pointer) - contains an assumed

offset from the SS register; used to locate

variables passed between procedures.

SP (Stack Pointer) - contains the offset for

the top of the stack.

SI (Source Index) - Points to the source

string in string move instructions.

DI (Destination Index) - Points to the

source destination in string move

instructions.

4

Status and Control Registers

IP
IP (Instruction Pointer) - contains the offset of

the next instruction to be executed within the

current code segment.

x x x x O D I T xxxS Z A P C

Flags register contain individual bits which indicate CPU

status or arithmetic results. They are usually set by

specific instructions.

O = Overflow

D = Direction

I = Interrupt

T = Trap

x = undefined

S = Sign

Z = Zero

A = Auxiliary Carry

P = Parity

C = Carry

Flags

There are two types of flags: control flags (which determine

how instructions are carried out) and status flags (which

report on the results of operations.

• Control flags include:

– Direction Flag (DF) - affects the direction of block data

transfers (like long character string). 1 = up; 0 - down.

– Interrupt Flag (IF) - determines whether interrupts can

occur (whether hardware devices like the keyboard,

disk drives, and system clock can get the CPU’s

attention to get their needs attended to.

– Trap Flag (TF) - determines whether the CPU is halted

after every instruction. Used for debugging purposes.

5

Status Flags

• Status Flags include:

– Carry Flag (CF) - set when the result of unsigned arithmetic is too

large to fit in the destination. 1 = carry; 0 = no carry.

– Overflow Flag (OF) - set when the result of signed arithmetic is

too large to fit in the destination. 1 = overflow; 0 = no overflow.

– Sign Flag (SF) - set when an arithmetic or logical operation

generates a negative result. 1 = negative; 0 = positive.

– Zero Flag (ZF) - set when an arithmetic or logical operation

generates a result of zero. Used primarily in jump and loop

operations. 1 =zero; 0 = not zero.

– Auxiliary Carry Flag - set when an operation causes a carry from

bit 3 to 4 or borrow (frombit 4 to 3). 1 = carry, 0 = no carry.

– Parity - used to verify memory integrity. Even # of 1s = Even

parity; Odd # of 1s = Odd Parity

Floating-Point Unit

ST(0)

ST(1)

ST(2)

ST(3)

ST(5)

ST(6)

ST(7)

ST(4)

Opcode Register

80-bit Data Registers 48-bit Pointer Registers

FPU Instruction Pointer

FPU Data Pointer

Tag Register

Control Register

Status Register

16-bit Control Registers

6

Tag Register

tag 3tag 5tag 7 tag 1 tag 0tag 2tag 4tag 6

empty11

invalid (infinite or NaN)10

zero01

valid (finite nonzero

number)
00

meaningtag

Control Register

• The control register contains six exception masks

and three control fields

• If one of the exception masks is cleared and that

exception occurs, the program is suspended and

the an interrupt is generated, which will either

correct the problem is terminate the program.

• The control fields control rounding and the type of

infinity used.

7

Memory Layout

Data Segment

Code Segment

Stack Segment

DS

CS

SS

Coding The Stack Segment

DOSSEG

_STACK SEGMENT para stack 'stack'

dw 1000 dup(?)

_STACK ENDS

segment name
paragraph

alignment

define word # of words

allocated

uninitialized

8

Coding The Data Segment

_DATA SEGMENT word public 'data'

TestResult dw ?

x dw ?

y dw ?

_t47 dw ?

_t48 dw ?

_t49 dw ?

_t51 dw ?

_t55 dw ?

_t56 dw ?

_DATA ENDS

Generating the Stack Segment Code

void writestack(void)

{

fprintf(ofp, "%s\n\n%s\n%s\n%s\n\n",

"DOSSEG",

"_STACK SEGMENT para stack \'stack\'",

" dw 1000 dup(?)",

"_STACK ENDS");

}

9

Generating the Data Segment Code

void writedata(void)

{

int i, datasize;

float litvalue;

char label[LABELSIZE];

fprintf(ofp, "_DATA SEGMENT word public"

"\'data\'\n");

fprintf(ofp, "TestResult dw ?\n");

for (i = NUMTOKENS+2; i < tablesize(); i++) {

if ((symclass(i) == sttempvar ||

symclass(i) == stvariable)

&& getproc(i) == NUMTOKENS+1) {

getlabel(i, label);

if (data_class(i) == dtinteger)

fprintf(ofp, "%-10s dw"

" ?\n", label);

else

fprintf(ofp, "%-10s dd"

" ?\n", label);

}

10

else if (symclass(i) == stliteral

&& data_class(i) == dtreal) {

getlabel(i, label);

litvalue = getrvalue(i);

fprintf(ofp, "%-10s dd %f\n",

label, litvalue);

}

}

fprintf(ofp, "_DATA ENDS\n\n");

}

Allocating the Stack
SS

SP

Bottom of stack

Top of stack

11

Activation Record

Parameters

BP

SP

Return Address

Local Variables

Activation

Record

Processing Assignments

; x := 33

mov ax, 33

mov x, ax

; x := y

mov ax, y

mov x, ax

12

Processing Integer Addition

; $_5 := $_3 + $_4

mov ax, _t47

add ax, _t48

jno Jump3

jmp iovrflo

Jump3:

mov _t49, ax

Processing Integer Subtraction

; $_5 := $_3 - $_4

mov ax, _t47

sub ax, _t48

jno Jump3

jmp iovrflo

Jump3:

mov _t49, ax

13

Processing Integer Multiplication

; $_4 := x * y

mov ax, x

imul y

jno Jump2

jmp iovrflo

Jump2:

mov _t50, ax

Processing Integer Division

; $_3 := y / b

cmp b, 0

jne Jump0

jmp divby0

Jump0:

mov ax, y

cwd ;convert word to doubleword

idiv b

jno Jump1

jmp iovrflo

Jump1:

mov _t51, ax

14

Processing Jumps

; if $_6 != 0 goto _loop55

cmp _t51, 0

je Jump6

jmp _loop55

Jump6:

… … … …

; goto _loop54

jmp _loop54

Processing Procedure Calls

; arg x

mov ax, offset x

push ax

; call test

call test

15

Beginning the Procedure

• Beginning a new procedure requires:

– Saving the base pointer (where the current
activation record begins)

– Setting the old stack pointer to the new base
pointer (where the new activation record
begins)

– Allocating space on the stack (in the new
activation record) for local variables by
adjusting the stack pointer.

Pushing Parameters on the Stack

Current Act. Rec.

BP

SP
Parameters

Current Act. Rec.

BP

SP

16

Pushing the Return Address on the Stack

Parameters

Current Act. Rec.

BP

SP

Parameters

Current Act. Rec.

BP

SP
Return Address

Dynamic Allocation of Local Variables

Parameters

Current Act. Rec.

BP

SP
Return Address

Parameters

Current Act. Rec.

BP

SP

Return Address

Local Variables

17

Code For the Procedure’s Beginning

_TEXT SEGMENT

test:

push bp

mov bp, sp

; Allocate space for local variables

sub sp, 12

Local Variables In Assembler

; a := c

mov bx, word ptr [bp+2]

mov ax, [bx]

mov word ptr [bp-2], ax

; b := 8

mov ax, 8

mov word ptr [bp-4], ax

; $_0 := a + b

mov ax, word ptr [bp-2]

add ax, word ptr [bp-4]

jno Jump9

jmp iovrflo

Jump9:

mov word ptr [bp-6], ax

18

Ending the Procedure

; Return space used by local variables

mov sp, bp

pop bp

ret 2

_TEXT ENDS

