
Compiler Construction

Lecture 10 - Optimization

What Is Optimization?

• The process of automated translation of a program 

will invariably introduced inefficiencies.  Our goal 

in optimization is to remove as many of these 

inefficiencies as possible.

• Optimization can be local (optimizing basic 

blocks within a program) or global (across the 

entire program).

• Even after optimizing intermediate code, it may be 

necessary to optimize the final object code 

because of inefficiencies introduced in final code 

generation.



A Sample Program in JASON

PROGRAM MySample;

INTEGER x, y;

BEGIN

SET x = 12;

SET y = 3;

WHILE y ! 0 DO

SET x = x + y;

SET y = y - 1

ENDWHILE;

END.

X := 12

Y := 3 

!_1:

if y = 0 goto !_2

X := X + Y

Y := Y - 1

goto !_1

!_2:

Basic Blocks

• A basic block is a sequence of instruction that will 

be performed in sequence, always going from the 

beginning of the block to the end of the block 

without jumping out of the block.

• There may be more than one basic block that 

transfers control to a given block and there may be 

more than one basic block to which we will 

transfer control as we leave a given block.



The Basic Blocks Of Our Sample Program

X := 12

Y := 3

!_1:

if Y != 0 goto !_2

X := X + Y

Y := Y - 1

goto !_1

!_2:

Basic blocks

Flow Graphs

X := 12

Y := 3

!_1:

if Y != 0 goto !_2

X := X + Y

Y := Y - 1

goto !_1

!_2:



Principle Optimizations On Basic 

Blocks

• There are several different optimizations 

that we can (and will) perform on basic 

blocks. They include:

– Common Sub-expression Elimination

– Copy propagation

– Dead-Code Elimination

– Arithmetic Transformation

Common Subexpression Elimination

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_2 * b

$_6 := $_5 + c

d := $_4 * $_6

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_5 + c

d := $_4 * $_6



Common Subexpression Elimination

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

b := $_3 + c

$_5 := $_2 * b

$_6 := $_5 + c

d := $_4 * $_6

We cannot use subexpression 

elimination here because b’s 

value was changed

Copy Propagation

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_5 + c

d := $_4 * $_6

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_3 + c

d := $_4 * $_6



Subexpression After Copy Propagation

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_3 + c

d := $_4 * $_6

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_4

d := $_4 * $_6

Copy Propagation After Subexpression 

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_4

d := $_4 * $_6

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_4

d := $_4 * $_4



Dead-Code Elimination

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_3

$_6 := $_4

d := $_4 * $_4

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_6 := $_4

d := $_4 * $_4

No references to $_5 after defining its value

Arithmetic Transformations

• We can use the laws of algebra to replace 

expressions that either do not need to be 

calculated or can be calculated more 

quickly by other means.

• These algebraic transformations include:

– Constant Folding

– Algebraic Simplification

– Reduction In Strength



Constant Folding

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_6 := $_4

d := $_4 * $_4

b := 2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

d := $_4 * $_4

Copy Propagation & Dead-Code 

Elimination After Constant Folding

b := 2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

d := $_4 * $_4

$_1 := 2 / 2

$_2 := a* $_1

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4



More Constant Folding

$_1 := 2 / 2

$_2 := a* $_1

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4

$_1 := 1

$_2 := a* $_1

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4

More Copy Propagation & Dead-Code 

Elimination

$_1 := 1

$_2 := a* $_1

$_3 := $_2 * 2

$_4 := $_3 + c

$_6 := $_4

d := $_4 * $_4

$_2 := a * 1

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4



Algebraic Simplification

• We can simplify our expressions by using 

algebraic identities:

x + 0 = 0 + x = x

x - 0 = x

x •1 = 1• x = x

x / 1 = x

Applying Algebraic Simplification

$_2 := a * 1

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4

$_2 := a

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4



After Copy Propagation & Dead-

Code Elimination

$_2 := a

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4

$_3 := a * 2

$_4 := $_3 + c

d := $_4 * $_4

After Copy Propagation & Dead-

Code Elimination

$_2 := a

$_3 := $_2 * 2

$_4 := $_3 + c

d := $_4 * $_4

$_3 := a * 2

$_4 := $_3 + c

d := $_4 * $_4



Reduction In Strength

• We can replace multiplication and division (or 

exponentiation) with addition and subtraction (or 

multiplication) which can usually be done much 

more quickly.

• We can use the identities:

x2 = x • x

2 • x = x + x

• We can also use shifts to replace multiplication 

and division by powers of 2

Applying Reduction In Strength

$_3 := a * 2

$_4 := $_3 + c

d := $_4 * $_4

$_3 := a + a

$_4 := $_3 + c

d := $_4 * $_4



Our End Result

$_3 := a + a

$_4 := $_3 + c

d := $_4 * $_4

b := 4-2

$_1 := b / 2

$_2 := a* $_1

$_3 := $_2 * b

$_4 := $_3 + c

$_5 := $_2 * b

$_6 := $_5 + c

d := $_4 * $_6


