Compiler Construction

Lecture 10 - Optimization

What Is Optimization?

- The process of automated translation of a program will invariably introduced inefficiencies. Our goal in optimization is to remove as many of these inefficiencies as possible.
- Optimization can be local (optimizing basic blocks within a program) or global (across the entire program).
- Even after optimizing intermediate code, it may be necessary to optimize the final object code because of inefficiencies introduced in final code generation.

A Sample Program in JASON

END.

Basic Blocks

- A basic block is a sequence of instruction that will be performed in sequence, always going from the beginning of the block to the end of the block without jumping out of the block.
- There may be more than one basic block that transfers control to a given block and there may be more than one basic block to which we will transfer control as we leave a given block.

The Basic Blocks Of Our Sample Program

Flow Graphs

Principle Optimizations On Basic Blocks

- There are several different optimizations that we can (and will) perform on basic blocks. They include:
- Common Sub-expression Elimination
- Copy propagation
- Dead-Code Elimination
- Arithmetic Transformation

Common Subexpression Elimination

b : = 4-2	$\mathrm{b}:=4-2$
\$_1 := b / 2	\$_1 := b / 2
\$_2 := a* \$_1	\$_2 := a* \$_1
\$_3 := \$_2 * b	\$_3 := \$_2 * b
\$_4 $:=$ \$_3 + c	\$_4 := \$_3 + c
\$_6 := \$_5 + c	\$_6 := \$_5 + c
d := \$_4 * \$_6	d := \$_4 * \$_6

Common Subexpression Elimination

$\mathrm{b}:=4-2$	We cannot use subexpression
\$_1 := b / 2	elimination here because b's
\$_2 := a* \$_1	value was changed
\$_3 := \$_2 * b	
b := \$_3 +	
\$_5 := \$_2 * b	
\$_6 := \$_5 + c	
d := \$_4 * \$_6	

Copy Propagation

$$
\begin{aligned}
& \text { b := 4-2 } \\
& \text { b := 4-2 } \\
& \text { \$_1 := b / } 2 \\
& \text { \$_1 := b / } 2 \\
& \text { \$_2 := a* \$_1 } \\
& \text { \$_3 := \$_2 * b } \\
& \text { \$_2 := a* \$_1 } \\
& \text { \$_4 := \$_3 + c } \\
& \text { \$_3 := \$_2 * b } \\
& \text { \$_5 := \$_3 } \\
& \text { \$_4 := \$_3 }+c \\
& \${ }^{2}:=\$ _5+c \\
& \square \\
& \text { \$_5 := \$_3 } \\
& \text { d }:=\text { \$_4 * \$_6 } \\
& \begin{array}{l}
\$ _6:=\$ _3+c \\
d:=\$ _4 \text { * } \$ 6
\end{array}
\end{aligned}
$$

Subexpression After Copy Propagation

```
b := 4-2
b := 4-2
$_1 := b / 2
\[
\$ \_1:=\mathrm{b} / 2
\]
$_1 := b / 2
\$_2 := a* \$_1
$_2 := a* $_1
\[
\$ \_2:=a * \$ \_1
\]
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_3 := $_2 * b \$_1 := b / 2
\$_3 := \$_2 * b
\$_3 := \$_2 * b
\[
\$ \_4:=\$ \_3+c
\]
\[
\$ \_4:=\$ \_3+c
\]
$_4 := $_3 + c
$_5 := $_3
$_6 := $_3 + c
```



```
$_5 := $_3
$_6 := $_4
d := $_4 * $_6
b := 4-2
\$_5 := \$_3
\[
\$ \_5:=\$ \_3
\]
\[
\$ \_6:=\$ \_4
\]
\[
\mathrm{d}:=\$ \_4 \text { * \$_6 }
\]
\[
\mathrm{d}:=\$ \_4 * \$ \_6
\]
```


Copy Propagation After Subexpression

b :=4-2
\$_1 := b / 2
\$_2 := a* \$_1
\$_3 := \$_2 * b
\$_4 := \$_3 + c
\$_5 := \$_3
\$_6 := \$_4
d $:=\$ _4$ * \$_4

Dead-Code Elimination

$$
\begin{aligned}
& \text { b := 4-2 } \\
& \text { b := 4-2 } \\
& \text { \$_1 := b / } 2 \\
& \text { \$_1 := b / } 2 \\
& \text { \$_2 := a* \$_1 } \\
& \text { \$_2 := a* \$_1 } \\
& \text { \$_3 := \$_2 * b } \\
& \text { \$_3 := \$_2 * b } \\
& \text { \$_4 := \$_3 + c } \\
& \text { \$_4 := \$_3 + c } \\
& \text { 1\$_5 }:=\$ \text { 3 } \\
& \text { \$_6 := \$_4 \$_6 := \$_4 } \\
& \mathrm{d}:=\$ _4 \text { * \$_4 d := \$_4 * \$_4 } \\
& \text { No references to \$_5 after defining its value }
\end{aligned}
$$

Arithmetic Transformations

- We can use the laws of algebra to replace expressions that either do not need to be calculated or can be calculated more quickly by other means.
- These algebraic transformations include:
- Constant Folding
- Algebraic Simplification
- Reduction In Strength

Constant Folding

\$_1 := b / 2	\$_1 := b / 2
\$_2 := a* \$_1	\$_2 := a* \$_1
\$_3 := \$_2 * b	\$_3 := \$_2 * b
\$_4 := \$_3 + c	\$_4 : $=$ \$_3 + c
\$_6 := \$_4	d : $=$ \$_4 * \$_4
d := \$_4 * \$_4	

Copy Propagation \& Dead-Code

Elimination After Constant Folding

$$
\begin{aligned}
& \text { b := } 2 \\
& \text { \$_1 := b / } 2 \\
& \text { \$_2 := a* \$_1 } \\
& \text { \$_1 := } 2 / 2 \\
& \text { \$_3 := \$_2 * b } \\
& \text { \$_2 := a* \$_1 } \\
& \text { \$_4 := \$_3 + c } \\
& \text { \$_3 := \$_2 * } 2 \\
& \text { \$_4 := \$_3 + c } \\
& \text { d }:=\$ _4 \text { * \$_4 } \\
& \text { d }:=\$ _4 \text { * \$_4 }
\end{aligned}
$$

More Constant Folding

More Copy Propagation \& Dead-Code Elimination

$$
\begin{aligned}
& \$ _1:=1 \\
& \$ _2:=a * \$-1 \\
& \$ _3:=\$ _2 * 2 \\
& \$-4:=\$-3+c \\
& \$ _6:=\$+4 \\
& d:=\$ _4 * \$ _4
\end{aligned}\left\{\begin{array}{l}
\$-2:=a * 1 \\
\$ _3:=\$ 2 * 2
\end{array}\right.
$$

Algebraic Simplification

- We can simplify our expressions by using algebraic identities:

$$
\begin{aligned}
& \mathrm{x}+0=0+\mathrm{x}=\mathrm{x} \\
& \mathrm{x}-0=\mathrm{x} \\
& \mathrm{x} \bullet 1=1 \bullet \mathrm{x}=\mathrm{x} \\
& \mathrm{x} / \mathrm{l}=\mathrm{x}
\end{aligned}
$$

Applying Algebraic Simplification

$$
\begin{array}{ll}
\$ _2:=a * 1 \square \\
\$ _3:=\$-2 * 2 & \$-2:=a \\
\$ _4:=\$ _3+c & \$-4:=\$-2 * 2 \\
d:=\$ _4 * \$ _4 & d=3+c
\end{array}
$$

After Copy Propagation \& DeadCode Elimination

$$
\begin{aligned}
& \text { \$_2 := a } \\
& \text { \$_3 }:=\$ _2 * 2 \square \$ \text { \$_3 }:=a * 2 \\
& \text { \$_4 := \$_3 + c } \\
& \text { \$_4 := \$_3 + c } \\
& \text { d := \$_4 * \$_4 } \\
& \mathrm{d}:=\$ _4 \text { * \$_4 }
\end{aligned}
$$

After Copy Propagation \& DeadCode Elimination

$$
\begin{array}{ll}
\$ _2:=a & \\
\$ _3:=\$ _2 * 2 & \$-3:=a * 2 \\
\$ _4:=\$ _3+c & \text { \$_4 }:=\$-3+c \\
d:=\$ _4 * \$ _4 & d:=\$ _4 * \$+4
\end{array}
$$

Reduction In Strength

- We can replace multiplication and division (or exponentiation) with addition and subtraction (or multiplication) which can usually be done much more quickly.
- We can use the identities:

$$
\begin{aligned}
& x^{2}=x \bullet x \\
& 2 \bullet x=x+x
\end{aligned}
$$

- We can also use shifts to replace multiplication and division by powers of 2

Applying Reduction In Strength

$$
\begin{aligned}
& \text { \$_3 := a * } 2 \longrightarrow \text { \$_3 := a + } a \\
& \text { \$_4 := \$_3 + c } \\
& \text { \$_4 := \$_3 + c } \\
& \text { d := \$_4 * \$_4 } \\
& \text { d := \$_4 * \$_4 }
\end{aligned}
$$

Our End Result

$$
\begin{aligned}
& \text { b : = 4-2 } \\
& \text { \$_1 := b / } 2 \\
& \text { \$_2 := a* \$_1 } \\
& \text { \$_3 := \$_2 * b } \\
& \text { \$_4 := \$_3 + c } \\
& \$ _5:=\$ _2 * b \\
& \text { \$_6 := \$_5 + c } \\
& \square\left\{\begin{array}{l}
\$-3:=a+a \\
\$-4:=\$ _3+c \\
d:=\$ _4 * \$-4
\end{array}\right. \\
& \text { d := \$_4 * \$_6 }
\end{aligned}
$$

