
CSC 553 Operating Systems

Lecture 9 - Uniprocessor Scheduling

Types of Scheduling

Long-term scheduling The decision to add to the pool of processes to be

executed

Medium-term scheduling The decision to add to the number of processes that

are partially or fully in main memory

Short-term scheduling The decision as to which available process will be

executed by the processor

I/O scheduling The decision as to which process's pending I/O

request shall be handled by an available I/O device

Processor Scheduling

• Aim is to assign processes to be executed

by the processor in a way that meets system

objectives, such as response time,

throughput, and processor efficiency

• Broken down into three separate functions:

– Long term scheduling

– Medium term scheduling

– Short term scheduling

Figure 9.1 Scheduling and Process State Transitions

Ready/

Suspend

New

Running Exit

Blocked

Long-term

scheduling

Long-term

scheduling

Medium-term

scheduling

Medium-term

scheduling

Short-term

scheduling

Ready

Blocked/

Suspend

Long-term vs. Medium-term vs. Short-term

• Long-term scheduling is performed when a new

process is created.

– This is a decision whether to add a new process to the

set of processes that are currently active.

• Medium-term scheduling is a part of the swapping

function.

– This is a decision whether to add a process to those that

are at least partially in main memory and therefore

available for execution.

• Short-term scheduling is the actual decision of

which ready process to execute next.

Running

Ready

Blocked

Short Term

Medium Term

Long Term

Blocked,

Suspend

Ready,

Suspend

New Exit

Figure 9.2 Levels of Scheduling

Figure 9.3 Queuing Diagram for Scheduling

Event Wait

Time-out

Release
Ready Queue Short-term

scheduling

Medium-term

scheduling

Medium-term

scheduling

Interactive

users

Batch

jobs
Processor

Ready, Suspend Queue

Event

Occurs

Blocked, Suspend Queue

Blocked Queue

Long-term

scheduling

Long-Term Scheduler

• Determines which programs are admitted to the

system for processing

• Controls the degree of multiprogramming

– the more processes that are created, the smaller

the percentage of time that each process can be

executed

• may limit to provide satisfactory service to the

current set of processes

Long-Term Scheduler

• Creates processes from the queue when it

can, but must decide:

– when the operating system can take on one or

more additional processes

– which jobs to accept and turn into processes

• first come, first served

• priority, expected execution time, I/O

requirements

Medium-Term Scheduling

• Part of the swapping function

• Swapping-in decisions are based on the

need to manage the degree of

multiprogramming

– considers the memory requirements of the

swapped-out processes

Short-Term Scheduling

• Known as the dispatcher

• Executes most frequently

• Makes the fine-grained decision of which

process to execute next

Short-Term Scheduling

• Invoked when an event occurs that may lead to the

blocking of the current process or that may

provide an opportunity to preempt a currently

running process in favor of another

• Examples:

– Clock interrupts

– I/O interrupts

– Operating system calls

– Signals (e.g., semaphores)

Short Term Scheduling Criteria

• Main objective is to allocate processor time

to optimize certain aspects of system

behavior

• A set of criteria is needed to evaluate the

scheduling policy

Short Term Scheduling Criteria

• User-oriented criteria

– relate to the behavior of the system as perceived

by the individual user or process (such as

response time in an interactive system)

– important on virtually all systems

Short Term Scheduling Criteria

• System-oriented criteria

– focus in on effective and efficient utilization of

the processor (rate at which processes are

completed)

– generally of minor importance on single-user

systems

Short-Term Scheduling Criteria:

Performance

Criteria can
be classified

into:

Performance-related

quantitative
easily

measured

Non-performance
related

qualitative
hard to
measure

examples:

• response time

• throughput

example:

• predictability

Scheduling Criteria - User

Oriented, Performance Related
• Turnaround Time

– The interval of time between the submission of a process and its

completion.

– Includes actual execution time plus time spent waiting for

resources, including the processor.

• Response Time

– For an interactive process, this is the time from the submission of a

request until the response begins to be received.

• Deadline

– When process completion deadlines can be specified, the

scheduling discipline should subordinate other goals to that of

maximizing the percentage of deadlines met.

Scheduling Criteria - User

Oriented, Other

• Predictability

– A given job should run in about the same

amount of time and at abut the same cost

regardless of the load on the system.

– A wide variation in response time or turnaround

time is distracting to users.

• It may signal a wide swing in systems

workloads or the need for system tuning to

cure instabilities.

Scheduling Criteria – System

Oriented, Performance Related
• Throughput

– The scheduling policy should attempt to maximize the number of

processes completed per unit time.

– This is a measure of how much work is being performed.

– This clearly depends on the average length of a process but is also

influences by the scheduling policy.

• Processor utilization

– This is the percentage of time that the processor is busy.

– For an expensive, shared system, this is a significant criterion.

• In single-user systems and in some other systems, such as real-

time systems, this criterion is less important than some of the

others.

Scheduling Criteria – System Oriented,

Other

• Fairness

– In the absence of guidance from the user or other

system-supplied guidance, processes should be treated

the same, and no process should suffer starvation.

• Enforcing priorities

– When processes are assigned priorities, the scdheduling

policy should favor higher-priority processes.

• Balancing resources

– The scheduling policy should keep the system resources

busy, favoring processes that underutilize stressed

resources.

Figure 9.4 Priority Queuing

Event Wait

Event

occurs

Preemption

Dispatch
ReleaseRQ0

RQ1

RQn

Admit

Processor

Blocked Queue

Selection Function

• Determines which process, among ready

processes, is selected next for execution

• May be based on priority, resource

requirements, or the execution

characteristics of the process

Selection Function

• If based on execution characteristics, then

important quantities are:

� w = time spent in system so far, waiting

� e = time spent in execution so far

� s = total service time required by the process,

including e; generally, this quantity must be

estimated or supplied by the user

 FCFS
Round

robin
SPN SRT HRRN Feedback

Selection

function
max[w] constant min[s] min[s – e]

max

w + s

s









 (see text)

Decision

mode

Non-

preemptive

Preemptive

(at time

quantum)

Non-

preemptive

Preemptive

(at arrival)

Non-

preemptive

Preemptive

(at time

quantum)

Through-

Put

Not

emphasized

May be

low if

quantum

is too

small

High High High
Not

emphasized

Response

time

May be

high,
especially if

there is a

large

variance in
process

execution

times

Provides

good
response

time for

short

processes

Provides

good
response

time for

short

processes

Provides

good
response

time

Provides good

response time

Not

emphasized

Overhead Minimum Minimum Can be high Can be high Can be high Can be high

Effect on

processes

Penalizes

short

processes;
penalizes

I/O bound

processes

Fair

treatment

Penalizes

long

processes

Penalizes

long

processes

Good balance
May favor

I/O bound

processes

Starvation No No Possible Possible No Possible

Decision Mode

� Specifies the instants in time at which the

selection function is exercised

� Two categories:

� Nonpreemptive

� Preemptive

Nonpreemptive vs Preemptive

• Nonpreemptive

– once a process is in the running state, it will

continue until it terminates or blocks itself for

I/O

• Preemptive

– currently running process may be interrupted

and moved to ready state by the OS

– preemption may occur when new process

arrives, on an interrupt, or periodically

Process Scheduling – An Example

First-Come-First

Served (FCFS)

0 5 10 15 20

0 5 10 15 20

A

B
C

D

E

A

B

C
D

E

A

B

C

D
E

A

B

C

D
E

A
B

C

D

E

A
B

C

D

E

A

B
C

D

E

A

B

C
D

E

Round-Robin

(RR), q = 1

Round-Robin

(RR), q = 4

Shortest Process

Next (SPN)

Shortest Remaining

Time (SRT)

Highest Response

Ratio Next (HRRN)

Feedback

q = 1

Feedback

q = 2
i

Figure 9.5 A Comparison of Scheduling Policies

First-Come-First-Served (FCFS)

• Simplest scheduling policy

• Also known as first-in-first-out (FIFO) or a strict

queuing scheme

• When the current process ceases to execute, the

longest process in the Ready queue is selected

• Performs much better for long processes than

short ones

• Tends to favor processor-bound processes over

I/O-bound processes

Round Robin

• Uses preemption based on a clock

• Also known as time slicing because each process

is given a slice of time before being preempted

• Principal design issue is the length of the time

quantum, or slice, to be used

• Particularly effective in a general-purpose time-

sharing system or transaction processing system

• One drawback is its relative treatment of

processor-bound and I/O-bound processes

Process allocated

time quantum

Time

Response time

s

Quantum

q

q - s

Figure 9.6 Effect of Size of Preemption Time Quantum

Interaction

complete

(a) Time quantum greater than typical interaction

Process allocated

time quantum

s

q

Process allocated

time quantum

Process

preempted

Other processes run

(b) Time quantum less than typical interaction

Interaction

complete

Process A B C D E

Arrival Time 0 2 4 6 8

Service Time (Ts) 3 6 4 5 2 Mean

FCFS

Finish Time 3 9 13 18 20

Turnaround Time (Tr) 3 7 9 12 12 8.60

Tr/Ts 1.00 1.17 2.25 2.40 6.00 2.56

RR q = 1

Finish Time 4 18 17 20 15

Turnaround Time (Tr) 4 16 13 14 7 10.80

Tr/Ts 1.33 2.67 3.25 2.80 3.50 2.71

RR q = 4

Finish Time 3 17 11 20 19

Turnaround Time (Tr) 3 15 7 14 11 10.00

Tr/Ts 1.00 2.5 1.75 2.80 5.50 2.71

SPN

Finish Time 3 9 15 20 11

Turnaround Time (Tr) 3 7 11 14 3 7.60

Tr/Ts 1.00 1.17 2.75 2.80 1.50 1.84

SRT

Finish Time 3 15 8 20 10

Turnaround Time (Tr) 3 13 4 14 2 7.20

Tr/Ts 1.00 2.17 1.00 2.80 1.00 1.59

HRRN

Finish Time 3 9 13 20 15

Turnaround Time (Tr) 3 7 9 14 7 8.00

Tr/Ts 1.00 1.17 2.25 2.80 3.5 2.14

FB q = 1

Finish Time 4 20 16 19 11

Turnaround Time (Tr) 4 18 12 13 3 10.00

Tr/Ts 1.33 3.00 3.00 2.60 1.5 2.29

FB q = 2i

Finish Time 4 17 18 20 14

Turnaround Time (Tr) 4 15 14 14 6 10.60

Tr/Ts 1.33 2.50 3.50 2.80 3.00 2.63

A

Comparison

of

Scheduling

Policies

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

I/O 1 Wait

I/O 2 Wait

I/O n Wait

Dispatch

Time-out

Release
Ready Queue

Admit
Processor

I/O 1 Queue

Auxiliary Queue

I/O 1

Occurs

I/O 2

Occurs

I/O n

Occurs

I/O 2 Queue

I/O n Queue

Refining the Round Robin

• New processes arrive and join the ready queue

(FCFS scheduling).

• When a running process times out, it is returned to

the ready queue.

– When a process is blocked for I/O, it joins an I/O

queue. Processes being released from an I/O are moved

to an FCFS auxiliary queue; these processes preference

in getting dispatched. They get the basic time quantum

minus the total time spent running.

Shortest Process Next (SPN)

• Nonpreemptive policy in which the process with

the shortest expected processing time is selected

next

• A short process will jump to the head of the queue

• Possibility of starvation for longer processes

• One difficulty is the need to know, or at least

estimate, the required processing time of each

process

• If the programmer’s estimate is substantially under

the actual running time, the system may abort the

job

Shortest Remaining Time (SRT)

• Preemptive version of SPN

• Scheduler always chooses the process that has the

shortest expected remaining processing time

• Risk of starvation of longer processes

• Should give superior turnaround time performance

to SPN because a short job is given immediate

preference to a running longer job

Highest Response Ratio Next (HRRN)

• Chooses next process with the greatest ratio

• Attractive because it accounts for the age of the

process

• While shorter jobs are favored, aging without

service increases the ratio so that a longer process

will eventually get past competing shorter jobs

Figure 9.10 Feedback Scheduling

ReleaseRQ0
Admit

Processor

ReleaseRQ1

Processor

ReleaseRQn

Processor

Performance Comparison

• Any scheduling discipline that chooses the

next item to be served independent of

service time obeys the relationship:

Formulas

for

Single-

Server

Queues

with

Two

Priority

Figure 9.14 Simulation Results for Normalized Turnaround Time

Percentile of time required

N
o

rm
a
li

ze
d

 t
u

r
n

a
ro

u
n

d
 t

im
e

FCFS

FCFS

HRRN

HRRN

SPN

RR (q = 1)
RR (q = 1)

FB

FB

SRT

SRT

SPN

0

1

10

100

10 20 30 40 50 60 70 80 90 100

Figure 9.15 Simulation Results for Waiting Time

Percentile of time required

W
a

it
 t

im
e

FCFS
FCFS

HRRN

HRRN

RR

(q = 1)

RR (q = 1)

FB

FB
SRT

SPN

SPN

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

6

7

8

9

10

Fair-Share Scheduling

• Scheduling decisions based on the process

sets

• Each user is assigned a share of the

processor

• Objective is to monitor usage to give fewer

resources to users who have had more than

their fair share and more to those who have

had less than their fair share

Traditional UNIX Scheduling

• Used in both SVR3 and 4.3 BSD UNIX

– these systems are primarily targeted at the time-sharing

interactive environment

• Designed to provide good response time for interactive

users while ensuring that low-priority background jobs do

not starve

• Employs multilevel feedback using round robin within each

of the priority queues

• Makes use of one-second preemption

• Priority is based on process type and execution history

Scheduling Formula

Bands

• Used to optimize

access to block

devices and to allow

the operating system

to respond quickly to

system calls

• In decreasing order

of priority, the bands

are:

Swapper

Block I/O
device control

File
manipulation

Character I/O
device control

User processes

