
CSC 553 Operating Systems

Lecture 8 - Virtual Memory

Virtual memory A storage allocation scheme in which secondary memory can be 

addressed as though it were part of main memory. The addresses a 

program may use to reference memory are distinguished from the 

addresses the memory system uses to identify physical storage sites, and 
program-generated addresses are translated automatically to the 

corresponding machine addresses.The size of virtual storage is limited by 

the addressing scheme of the computer system and by the amount of 

secondary memory available and not by the actual number of main storage 

locations.  

Virtual address The address assigned to a location in virtual memory to allow that location 

to be accessed as though it were part of main memory. 

Virtual address 

space 

The virtual storage assigned to a process. 

Address space The range of memory addresses available to a process. 

Real address The address of a storage location in main memory. 

 

What is Virtual Memory?



Hardware and Control Structures

• Two characteristics fundamental to memory 

management:

1) All memory references are logical addresses that are 

dynamically translated into physical addresses at run 

time

2) A process may be broken up into a number of pieces 

that don’t need to be contiguously located in main 

memory during execution

• If these two characteristics are present, it is not 

necessary that all of the pages or segments of a 

process be in main memory during execution

Execution of a Process

• Operating system brings into main memory a few 

pieces of the program

• Resident set - Portion of process that is in main 

memory

• An interrupt is generated when an address is 

needed that is not in mainmemory

• Operating system places the process in a blocking 

state



• After the page fault , a piece of process that 

contains the logical address is brought into 

main memory

– Operating system issues a disk I/O Read 

request

– Another process is dispatched to run while the 

disk I/O takes place

– An interrupt is issued when disk I/O is 

complete, which causes the operating system to 

place the affected process in the Ready state

Execution of a Process

Implications of Virtual Memory

• More processes may be maintained in main 

memory

– Because only some of the pieces of any 

particular process are loaded, there is room for 

more processes

– This leads to more efficient utilization of the 

processor because it is more likely that at least 

one of the more numerous processes will be in 

a Ready state at any particular time



Implications of Virtual Memory

• A process may be larger than all of main memory

– If the program being written is too large, the 

programmer must devise ways to structure the program 

into pieces that can be loaded separately in some sort of 

overlay strategy

– With virtual memory based on paging or segmentation, 

that job is left to the OS and the hardware

– The OS automatically loads pieces of a process into 

main memory as required

Real and Virtual Memory

• Real memory

– Main memory, the actual RAM

• Virtual memory

– Memory on disk

– Allows for effective multiprogramming and 

relieves the user of tight constraints of main 

memory



Characteristics 

of Paging and 

Segmentation 

Simple Paging  Virtual Memory 

Paging 

Simple Segmentation Virtual Memory 

Segmentation 

Main memory partitioned into small fixed-size 

chunks called frames 

Main memory not partitioned 

Program broken into pages by the compiler or 

memory management system 

Program segments specified by the programmer to 

the compiler (i.e., the decision is made by the 
programmer) 

Internal fragmentation within frames No internal fragmentation 

No external fragmentation External fragmentation 

Operating system must maintain a page table for 

each process showing which frame each page 
occupies 

Operating system must maintain a segment table 

for each process showing the load address and 
length of each segment 

Operating system must maintain a free frame list Operating system must maintain a list of free holes 

in main memory 

Processor uses page number, offset to calculate 

absolute address 

Processor uses segment number, offset to calculate 

absolute address 

All the pages of a 

process must be in main 

memory for process to 
run, unless overlays are 

used 

Not all pages of a 

process need be in main 

memory frames for the 
process to run. Pages 

may be read in as 

needed 

All the segments of a 

process must be in main 

memory for process to 
run, unless overlays are 

used 

Not all segments of a 

process need be in main 

memory for the process 
to run. Segments may 

be read in as needed 

 Reading a page into 

main memory may 
require writing a page 

out to disk 

 Reading a segment into 

main memory may 
require writing one or 

more segments out to 

disk 

 

Thrashing

• A state in which the system spends most of 

its time swapping process pieces rather than 

executing instructions

• To avoid this, the operating system tries to 

guess, based on recent history, which pieces 

are least likely to be used in the near future



Principle of Locality

• Program and data references within a 

process tend to cluster

• Only a few pieces of a process will be 

needed over a short period of time

• Therefore it is possible to make intelligent 

guesses about which pieces will be needed 

in the future

• Avoids thrashing

Support Needed for Virtual Memory

• For virtual memory to be practical and 

effective:

– Hardware must support paging and 

segmentation 

– Operating system must include software 

for managing the movement of pages 

and/or segments between secondary 

memory and main memory



Paging

• The term virtual memory is usually 

associated with systems that employ paging

• Use of paging to achieve virtual memory 

was first reported for the Atlas computer

Paging

• Each process has its own page table

– Each page table entry (PTE) contains the 

frame number of the corresponding page 

in main memory

– A page table is also needed for a virtual 

memory scheme based on paging



Memory Management Format -

Paging

P = Present

M = Modified

Memory Management Format -

Segmentation

P = Present

M = Modified



Memory Management Format –

Combined Paging and Segmentation
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Inverted Page Table

• Page number portion of a virtual address is 

mapped into a hash value

– Hash value points to inverted page table

• Fixed proportion of real memory is required for 

the tables regardless of the number of processes or 

virtual pages supported

• Structure is called inverted because it indexes 

page table entries by frame number rather than by 

virtual page number
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Inverted Page Table

• Each entry in the page table includes:

– Page number - page number portion of the 

virtual address

– Process identifier - process that owns this page

– Control bits - Includes flags and protection and 

locking information

– Chain pointer - The index value of the next 

entry in the chain

Translation Lookaside

Buffer (TLB)

• Each virtual memory reference can cause 

two physical memory accesses:

– One to fetch the page table entry

– One to fetch the data



Translation Lookaside

Buffer (TLB)

• To overcome the effect of doubling the 

memory access time, most virtual memory 

schemes make use of a special high-speed 

cache called a translation lookaside buffer 

(TLB)

– This cache functions in the same way as a 

memory cache and contains those page table 

entities that have been most recently used
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Associative Mapping

• The TLB only contains some of the page table 

entries so we cannot simply index into the TLB 

based on page number

– Each TLB entry must include the page number 

as well as the complete page table entry

• The processor is equipped with hardware that 

allows it to interrogate simultaneously a number 

of TLB entries to determine if there is a match on 

page number
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Page Size

• The smaller the page size, the lesser the amount of 

internal fragmentation

– However, more pages are required per process

More pages per process means larger page tables

– For large programs in a heavily multiprogrammed

environment some portion of the page tables of active 

processes must be in virtual memory instead of main 

memory

– The physical characteristics of most secondary-memory 

devices favor a larger page size for more efficient block 

transfer of data

P

(a) Page Size

Figure 8.10  Typical Paging Behavior of a Program
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Examples of Page Sizes

Computer Page Size 

Atlas 512 48-bit words 

Honeywell-Multics 1024 36-bit words 

IBM 370/XA and 370/ESA 4 Kbytes 

VAX family 512 bytes 

IBM AS/400 512 bytes 

DEC Alpha 8 Kbytes 

MIPS 4 Kbytes to 16 Mbytes 

UltraSPARC 8 Kbytes to 4 Mbytes 

Pentium 4 Kbytes or 4 Mbytes 

IBM POWER 4 Kbytes 

Itanium 4 Kbytes to 256 Mbytes 

 

Page Size

• The design issue of page size is related to the size 

of physical main memory and program size

– Main memory is getting larger and address 

space used by applications is also growing

– Most obvious on personal computers where 

applications are becoming increasingly 

complex

• Contemporary programming techniques used in 

large programs tend to decrease the locality of 

references within a process



Segmentation

• Segmentation allows the programmer to view 

memory as consisting of multiple address spaces 

or segments

• Advantages:

• Simplifies handling of growing data structures

• Allows programs to be altered and recompiled 

independently

• Lends itself to sharing data among processes

• Lends itself to protection

Segment Organization

• Each segment table entry contains the starting 

address of the corresponding segment in main 

memory and the length of the segment

• A bit is needed to determine if the segment is 

already in main memory

• Another bit is needed to determine if the segment 

has been modified since it was loaded in main 

memory



Seg #

S
eg

 #

Offset = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

S
eg

m
en

t

Base + d

d

Figure 8.11   Address Translation in a Segmentation System

+

+

Program Segmentation mechanism Main memory

Combined Paging and 

Segmentation

• In a combined paging/segmentation system a 

user’s address space is broken up into a number of 

segments. 

• Each segment is broken up into a number of fixed-

sized pages which are equal in length to a main 

memory frame

– Segmentation is visible to the programmer

– Paging is transparent to the programmer
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Protection and Sharing

• Segmentation lends itself to the 

implementation of protection and sharing 

policies

• Each entry has a base address and length so 

inadvertent memory access can be 

controlled

• Sharing can be achieved by segments 

referencing multiple processes



Operating System Software

• The design of the memory management 

portion of an operating system depends on 

three fundamental areas of choice:

– Whether or not to use virtual memory 

techniques

– The use of paging or segmentation or both

– The algorithms employed for various aspects of 

memory management

Operating System Policies for 

Virtual Memory 
Fetch Policy 

 Demand paging 

 Prepaging 

 
Placement Policy 

 

Replacement Policy 

 Basic Algorithms 

  Optimal 

  Least recently used (LRU) 

  First-in-first-out (FIFO) 
  Clock 
 Page Buffering 

Resident Set Management 

 Resident set size 

  Fixed 

  Variable 
 Replacement Scope 

  Global 

  Local 

 

Cleaning Policy 

 Demand 

 Precleaning 
 

Load Control 
 Degree of multiprogramming 

 



Fetch Policy

• Determines when a page should be brought 

into memory

• Two main types:

– Demand Paging 

– Prepaging

Demand Paging 

• Only brings pages into main memory when a 

reference is made to a location on the page

• Many page faults when process is first started 

• Principle of locality suggests that as more and 

more pages are brought in, most future references 

will be to pages that have recently been brought 

in, and page faults should drop to a very low level



Prepaging

• Pages other than the one demanded by a page fault 

are brought in

• Exploits the characteristics of most secondary 

memory devices

• If pages of a process are stored contiguously in 

secondary memory it is more efficient to bring in a 

number of pages at one time

• Ineffective if extra pages are not referenced

• Should not be confused with “swapping”

Placement Policy

• Determines where in real memory a process piece 

is to reside

• Important design issue in a segmentation system

• Paging or combined paging with segmentation 

placing is irrelevant because hardware performs 

functions with equal efficiency

• For NUMA systems an automatic placement 

strategy is desirable



Replacement Policy

• Deals with the selection of a page in main memory 

to be replaced when a new page must be brought 

in

– Objective is that the page that is removed be the 

page least likely to be referenced in the near 

future

• The more elaborate the replacement policy the 

greater the hardware and software overhead to 

implement it

Frame Locking

• When a frame is locked the page currently 

stored in that frame may not be replaced 

– Kernel of the OS as well as key control 

structures are held in locked frames 

– I/O buffers and time-critical areas may be 

locked into main memory frames

– Locking is achieved by associating a lock bit 

with each frame



Basic Algorithms

• Algorithms used for the selection of a page 

to replace:

– Optimal

– Least recently used (LRU)

– First-in-first-out (FIFO)

– Clock
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Optimal Policy

• The optimal policy selects for replacement 

that page for which the time to the next 

reference is the longest.

– It can be shown that this policy results in the 

fewest number of page faults.

– Clearly, this policy is impossible to implement, 

but, it does serve as a standard against which to 

judge real-world algorithms.

Least Recently Used (LRU)

• Replaces the page that has not been referenced for 

the longest time

• By the principle of locality, this should be the page 

least likely to be referenced in the near future

• Difficult to implement

– One approach is to tag each page with the time 

of last reference

– This requires a great deal of overhead



First-in-First-out (FIFO)

• Treats page frames allocated to a process as 

a circular buffer

• Pages are removed in round-robin style

– Simple replacement policy to implement

• Page that has been in memory the                          

longest is replaced

Clock Policy

• Requires the association of an additional bit 

with each frame

– Referred to as the use bit

• When a page is first loaded in memory or 

referenced, the use bit is set to 1

• The set of frames is considered to be a 

circular buffer

• Any frame with a use bit of 1 is passed over                        

by the algorithm
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Page Buffering

• Improves paging performance and allows 

the use of a simpler page replacement 

policy

• A replaced page is not lost, but rather 

assigned to one of two lists

– Free page list - list of page frames available for 

reading in pages

– Modified page list - pages are written out in 

clusters 

Replacement Policy and Cache 

Size

• With large caches, replacement of pages can have 

a performance impact

– If the page frame selected for replacement is in the 

cache, that cache block is lost as well as the page that it 

holds

– In systems using page buffering, cache performance can 

be improved with a policy for page placement in the 

page buffer

– Most operating systems place pages by selecting an 

arbitrary page frame from the page buffer



Resident Set Management

• The OS must decide how many pages to bring into 

main memory

– The smaller the amount of memory allocated to 

each process, the more processes can reside in 

memory

– Small number of pages loaded 

– Increases page faults

– Beyond a certain size, further allocations                               

of pages will not effect the page fault rate

Resident Set Size

• Fixed-allocation

– Gives a process a fixed number of frames in 

main memory within which to execute

– When a page fault occurs, one of the pages of 

that process must be replaced

• Variable-Allocation

– Allows the number of page frames allocated to 

a process to be varied over the lifetime of the 

process



Replacement Scope

• The scope of a replacement strategy can be 

categorized as global or local

– Both types are activated by a page fault when 

there are no free page frames

• Local

– Chooses only among the resident pages of the 

process that generated the page fault

• Global

– Considers all unlocked pages in main memory 

Resident Set Management

 Local Replacement Global Replacement 

Fixed Allocation •Number of frames allocated 

to a process is fixed. 

•Page to be replaced is chosen 
from among the frames 

allocated to that process. 

•Not possible. 

Variable Allocation •The number of frames 

allocated to a process may be 

changed from time to time to 
maintain the working set of 

the process. 

•Page to be replaced is chosen 

from among the frames 

allocated to that process. 

•Page to be replaced is chosen from 

all available frames in main 

memory; this causes the size of the 
resident set of processes to vary. 

 



Fixed Allocation, Local Scope

• Necessary to decide ahead of time the 

amount of allocation to give a process

• If allocation is too small, there will be a 

high page fault rate

• If allocation is too large, there will be too 

few programs in main memory

– Increased processor idle time

– Increased time spent in swapping

Variable Allocation 

Global Scope

• Easiest to implement

– Adopted in a number of operating systems

• OS maintains a list of free frames

• Free frame is added to resident set of process 

when a page fault occurs

• If no frames are available the OS must choose a 

page currently in memory

• One way to counter potential problems is to use 

page buffering



Variable Allocation - Local Scope

• When a new process is loaded into main memory, 

allocate to it a certain number of page frames as its 

resident set

• When a page fault occurs, select the page to 

replace from among the resident set of the process 

that suffers the fault

• Reevaluate the allocation provided to the process 

and increase or decrease it to improve overall 

performance

Variable Allocation - Local Scope

• Decision to increase or decrease a resident 

set size is based on the assessment of the 

likely future demands of active processes

• Key elements:

– Criteria used to determine resident set size

– The timing of changes
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Figure 8.17  Working Set of Process as Defined by Window Size 

Figure 8.18  Typical Graph of Working Set Size [MAEK87]
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Page Fault Frequency (PFF)

• Requires a use bit to be associated with 

each page in memory

• Bit is set to 1 when that page is accessed

• When a page fault occurs, the OS notes the 

virtual time since the last page fault for that 

process

• Does not perform well during the transient 

periods when there is a shift to a new 

locality

Variable-Interval Sampled 

Working Set (VSWS)

• Evaluates the working set of a process at 

sampling instances based on elapsed virtual 

time

• Driven by three parameters:

– The minimum duration of the sampling interval

– The maximum duration of the sampling interval

– The number of page faults that are allowed to 

occur between sampling instances



Cleaning Policy

• Concerned with determining when a 

modified page should be written out to 

secondary memory

• Demand Cleaning - A page is written out to 

secondary memory only when it has been 

selected for replacement

• Precleaning - Allows the writing of pages in 

batches

Load Control

• Determines the number of processes that 

will be resident in main memory

– Multiprogramming level

• Critical in effective memory management

• Too few processes, many occasions when 

all processes will be blocked and much time 

will be spent in swapping

• Too many processes will lead to thrashing



Figure 8.19 Multiprogramming Effects
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Process Suspension

• If the degree of multiprogramming is to be 

reduced, one or more of the currently resident 

processes must be swapped out

• Six possibilities exist:

– Lowest-priority process

– Faulting process

– Last process activated

– Process with the smallest resident set

– Largest process

– Process with the largest remaining execution window



UNIX

• Intended to be machine independent so its 

memory management schemes will vary

– Early UNIX: variable partitioning with no 

virtual memory scheme

– Current implementations of UNIX and Solaris 

make use of paged virtual memory

• SVR4 and Solaris use two separate schemes:

– Paging system

– Kernel memory allocator

Paging system & Kernel memory 

allocator

• Paging System

– Provides a virtual memory capability that 

allocates page frames in main memory to 

processes 

– Allocates page frames to disk block buffers

• Kernel Memory Allocator 

– Allocates memory for the kernel



Figure 8.20  UNIX SVR4 Memory Management Formats

(a) Page table entry

(b) Disk block descriptor

(c) Page frame data table entry

(d) Swap-use table entry
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Page Table Entry 

 

Page frame number 

 Refers to frame in real memory. 
 

Age 
 Indicates how long the page has been in memory without being referenced. The length and contents of this 

field are processor dependent. 
 

Copy on write 
 Set when more than one process shares a page. If one of the processes writes into the page, a separate copy 

of the page must first be made for all other processes that share the page. This feature allows the copy 
operation to be deferred until necessary and avoided in cases where it turns out not to be necessary. 

 

Modify 
 Indicates page has been modified. 

 
Reference 

 Indicates page has been referenced. This bit is set to 0 when the page is first loaded and may be periodically 
reset by the page replacement algorithm. 

 
Valid 

 Indicates page is in main memory. 

 
Protect 

 Indicates whether write operation is allowed. 
 

 
Disk Block Descriptor 

 
Swap device number 

 Logical device number of the secondary device that holds the corresponding page. This allows more than 
one device to  be used for swapping. 

 

Device block  number 
 Block location of page on swap device. 

 
Type of storage 

 Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the 

virtual memory to be allocated should be cleared first. 



UNIX SVR4 

Memory 

Management 

Parameters 

 

 
Page Frame Data Table Entry 

 

Page state 

 Indicates whether this frame is available or has an associated page. In the latter case, the 

status of the page is specified: on swap device, in executable file, or DMA in progress. 

 
Reference count 

 Number of processes that reference the page. 

 

Logical device 

 Logical device that contains a copy of the page. 

 

Block number 
 Block location of the page copy on the logical device. 

 

Pfdata pointer 

 Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages. 

 

 

Swap-Use Table Entry 
 

Reference count 

 Number of page table entries that point to a page on the swap device. 

 

Page/storage unit number 

 Page identifier on storage unit. 

Page Replacement

• The page frame data table is used for page 

replacement

• Pointers are used to create lists within the 

table

– All available frames are linked together in a list 

of free frames available for bringing in pages

– When the number of available frames drops 

below a certain threshold, the kernel will steal a 

number of frames to compensate
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Kernel Memory Allocator

• The kernel generates and destroys small tables and 

buffers frequently during the course of execution, 

each of which requires dynamic memory 

allocation.

• Most of these blocks are significantly smaller than 

typical pages (therefore paging would be 

inefficient)

• Allocations and free operations must be made as 

fast as possible



Lazy Buddy

• Technique adopted for SVR4

• UNIX often exhibits steady-state behavior

in kernel memory demand

– i.e. the amount of demand for blocks of a 

particular size varies slowly in time

• Defers coalescing until it seems likely that it 

is needed, and then coalesces as many 

blocks as possible

 

Initial value of Di is 0 

After an operation, the value of Di is updated as follows 

 

(I) if the next operation is a block allocate request: 

 if there is any free block, select one to allocate 

  if the selected block is locally free 

   then Di := Di + 2 

   else Di := Di + 1 

 otherwise 

  first get two blocks by splitting a larger one into two (recursive operation) 

  allocate one and mark the other locally free 

  Di remains unchanged (but D may change for other block sizes because of the  

    recursive call) 

 

(II) if the next operation is a block free request 

 Case Di ≥ 2 

  mark it locally free and free it locally 

  Di := Di - 2 

 Case Di = 1 

  mark it globally free and free it globally; coalesce if possible 

  Di := 0 

 Case Di = 0 

  mark it globally free and free it globally; coalesce if possible 

  select one locally free block of size 2i and free it globally; coalesce if possible 

  Di := 0 

 

Figure 8.22  Lazy Buddy System Algorithm 

 


