
CSC 553 Operating Systems

Lecture 8 - Virtual Memory

Virtual memory A storage allocation scheme in which secondary memory can be

addressed as though it were part of main memory. The addresses a

program may use to reference memory are distinguished from the

addresses the memory system uses to identify physical storage sites, and
program-generated addresses are translated automatically to the

corresponding machine addresses.The size of virtual storage is limited by

the addressing scheme of the computer system and by the amount of

secondary memory available and not by the actual number of main storage

locations.

Virtual address The address assigned to a location in virtual memory to allow that location

to be accessed as though it were part of main memory.

Virtual address

space

The virtual storage assigned to a process.

Address space The range of memory addresses available to a process.

Real address The address of a storage location in main memory.

What is Virtual Memory?

Hardware and Control Structures

• Two characteristics fundamental to memory

management:

1) All memory references are logical addresses that are

dynamically translated into physical addresses at run

time

2) A process may be broken up into a number of pieces

that don’t need to be contiguously located in main

memory during execution

• If these two characteristics are present, it is not

necessary that all of the pages or segments of a

process be in main memory during execution

Execution of a Process

• Operating system brings into main memory a few

pieces of the program

• Resident set - Portion of process that is in main

memory

• An interrupt is generated when an address is

needed that is not in mainmemory

• Operating system places the process in a blocking

state

• After the page fault , a piece of process that

contains the logical address is brought into

main memory

– Operating system issues a disk I/O Read

request

– Another process is dispatched to run while the

disk I/O takes place

– An interrupt is issued when disk I/O is

complete, which causes the operating system to

place the affected process in the Ready state

Execution of a Process

Implications of Virtual Memory

• More processes may be maintained in main

memory

– Because only some of the pieces of any

particular process are loaded, there is room for

more processes

– This leads to more efficient utilization of the

processor because it is more likely that at least

one of the more numerous processes will be in

a Ready state at any particular time

Implications of Virtual Memory

• A process may be larger than all of main memory

– If the program being written is too large, the

programmer must devise ways to structure the program

into pieces that can be loaded separately in some sort of

overlay strategy

– With virtual memory based on paging or segmentation,

that job is left to the OS and the hardware

– The OS automatically loads pieces of a process into

main memory as required

Real and Virtual Memory

• Real memory

– Main memory, the actual RAM

• Virtual memory

– Memory on disk

– Allows for effective multiprogramming and

relieves the user of tight constraints of main

memory

Characteristics

of Paging and

Segmentation

Simple Paging Virtual Memory

Paging

Simple Segmentation Virtual Memory

Segmentation

Main memory partitioned into small fixed-size

chunks called frames

Main memory not partitioned

Program broken into pages by the compiler or

memory management system

Program segments specified by the programmer to

the compiler (i.e., the decision is made by the
programmer)

Internal fragmentation within frames No internal fragmentation

No external fragmentation External fragmentation

Operating system must maintain a page table for

each process showing which frame each page
occupies

Operating system must maintain a segment table

for each process showing the load address and
length of each segment

Operating system must maintain a free frame list Operating system must maintain a list of free holes

in main memory

Processor uses page number, offset to calculate

absolute address

Processor uses segment number, offset to calculate

absolute address

All the pages of a

process must be in main

memory for process to
run, unless overlays are

used

Not all pages of a

process need be in main

memory frames for the
process to run. Pages

may be read in as

needed

All the segments of a

process must be in main

memory for process to
run, unless overlays are

used

Not all segments of a

process need be in main

memory for the process
to run. Segments may

be read in as needed

 Reading a page into

main memory may
require writing a page

out to disk

 Reading a segment into

main memory may
require writing one or

more segments out to

disk

Thrashing

• A state in which the system spends most of

its time swapping process pieces rather than

executing instructions

• To avoid this, the operating system tries to

guess, based on recent history, which pieces

are least likely to be used in the near future

Principle of Locality

• Program and data references within a

process tend to cluster

• Only a few pieces of a process will be

needed over a short period of time

• Therefore it is possible to make intelligent

guesses about which pieces will be needed

in the future

• Avoids thrashing

Support Needed for Virtual Memory

• For virtual memory to be practical and

effective:

– Hardware must support paging and

segmentation

– Operating system must include software

for managing the movement of pages

and/or segments between secondary

memory and main memory

Paging

• The term virtual memory is usually

associated with systems that employ paging

• Use of paging to achieve virtual memory

was first reported for the Atlas computer

Paging

• Each process has its own page table

– Each page table entry (PTE) contains the

frame number of the corresponding page

in main memory

– A page table is also needed for a virtual

memory scheme based on paging

Memory Management Format -

Paging

P = Present

M = Modified

Memory Management Format -

Segmentation

P = Present

M = Modified

Memory Management Format –

Combined Paging and Segmentation

Page # Offset Frame #

Virtual Address Physical Address

Page

Frame

Offset

Offset

Figure 8.2 Address Translation in a Paging System

Program Paging Mechanism Main Memory

P
a

g
e#

Page Table Ptrn bits

m bits

Register

Page Table

Frame #

+

4-kbyte root

page table

4-Mbyte user

page table

Figure 8.3 A Two-Level Hierarchical Page Table

4-Gbyte user

address space

10 bits10 bits 12 bits

Root page

table ptr

Frame #

Virtual Address

4-kbyte page

table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

Page

Frame

Offset

Figure 8.4 Address Translation in a Two-Level Paging System

+
+

Program Paging Mechanism Main Memory

Inverted Page Table

• Page number portion of a virtual address is

mapped into a hash value

– Hash value points to inverted page table

• Fixed proportion of real memory is required for

the tables regardless of the number of processes or

virtual pages supported

• Structure is called inverted because it indexes

page table entries by frame number rather than by

virtual page number

Page # Offset

Frame #

m bits

m bits

n bits

n bits

Virtual Address

hash

function

Page #

Process

ID

Control

bits

Chain

Inverted Page Table

(one entry for each

physical memory frame)

Real Address

Offset

Figure 8.5 Inverted Page Table Structure

i

0

j

2m 1

Inverted Page Table

• Each entry in the page table includes:

– Page number - page number portion of the

virtual address

– Process identifier - process that owns this page

– Control bits - Includes flags and protection and

locking information

– Chain pointer - The index value of the next

entry in the chain

Translation Lookaside

Buffer (TLB)

• Each virtual memory reference can cause

two physical memory accesses:

– One to fetch the page table entry

– One to fetch the data

Translation Lookaside

Buffer (TLB)

• To overcome the effect of doubling the

memory access time, most virtual memory

schemes make use of a special high-speed

cache called a translation lookaside buffer

(TLB)

– This cache functions in the same way as a

memory cache and contains those page table

entities that have been most recently used

Page # Offset

Frame #

Virtual Address

Offset

Figure 8.6 Use of a Translation Lookaside Buffer

Offset

Load

page
Page Table

Main Memory
Secondary

Memory

Real Address

Translation

Lookaside Buffer

TLB hit

TLB miss

Page fault

Associative Mapping

• The TLB only contains some of the page table

entries so we cannot simply index into the TLB

based on page number

– Each TLB entry must include the page number

as well as the complete page table entry

• The processor is equipped with hardware that

allows it to interrogate simultaneously a number

of TLB entries to determine if there is a match on

page number

Page #

Page Table

5 502

Offset

Virtual Address

Frame #

37

37

37

19

511

37

27

14

5

211

1

90

502

Offset

Real Address

(a) Direct mapping

Page #

Page #

5 502

Offset

PT Entries

Virtual Address

Translation Lookaside Buffer Frame #

37 502

Offset

Real Address

(b) Associative mapping

Figure 8.8 Direct Versus Associative Lookup for Page Table Entries

Page # Offset

Virtual Address

TLB Operation

Figure 8.9 Translation Lookaside Buffer and Cache Operation

Page Table

Main

Memory

TLB miss

Miss

Hit Value

TLB

hit

TLB

Tag Remainder

Real Address

Cache Operation

Cache
+

Value

Page Size

• The smaller the page size, the lesser the amount of

internal fragmentation

– However, more pages are required per process

More pages per process means larger page tables

– For large programs in a heavily multiprogrammed

environment some portion of the page tables of active

processes must be in virtual memory instead of main

memory

– The physical characteristics of most secondary-memory

devices favor a larger page size for more efficient block

transfer of data

P

(a) Page Size

Figure 8.10 Typical Paging Behavior of a Program

P
a

g
e

F
a

u
lt

 R
a
te

NW

(b) Number of Page Frames Allocated

P
a

g
e

F
a

u
lt

 R
a
te

P = size of entire process

W = working set size

N = total number of pages in process

Examples of Page Sizes

Computer Page Size

Atlas 512 48-bit words

Honeywell-Multics 1024 36-bit words

IBM 370/XA and 370/ESA 4 Kbytes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 Kbytes to 16 Mbytes

UltraSPARC 8 Kbytes to 4 Mbytes

Pentium 4 Kbytes or 4 Mbytes

IBM POWER 4 Kbytes

Itanium 4 Kbytes to 256 Mbytes

Page Size

• The design issue of page size is related to the size

of physical main memory and program size

– Main memory is getting larger and address

space used by applications is also growing

– Most obvious on personal computers where

applications are becoming increasingly

complex

• Contemporary programming techniques used in

large programs tend to decrease the locality of

references within a process

Segmentation

• Segmentation allows the programmer to view

memory as consisting of multiple address spaces

or segments

• Advantages:

• Simplifies handling of growing data structures

• Allows programs to be altered and recompiled

independently

• Lends itself to sharing data among processes

• Lends itself to protection

Segment Organization

• Each segment table entry contains the starting

address of the corresponding segment in main

memory and the length of the segment

• A bit is needed to determine if the segment is

already in main memory

• Another bit is needed to determine if the segment

has been modified since it was loaded in main

memory

Seg #

S
eg

 #

Offset = d

Seg Table Ptr

Virtual address

Register

Segment table

Physical address

Length Base

S
eg

m
en

t

Base + d

d

Figure 8.11 Address Translation in a Segmentation System

+

+

Program Segmentation mechanism Main memory

Combined Paging and

Segmentation

• In a combined paging/segmentation system a

user’s address space is broken up into a number of

segments.

• Each segment is broken up into a number of fixed-

sized pages which are equal in length to a main

memory frame

– Segmentation is visible to the programmer

– Paging is transparent to the programmer

Page #Seg #

S
eg

#

Offset

Seg Table Ptr

Frame #

Virtual Address

Segment

Table
Page

Table

Page

Frame

Offset

Offset

Figure 8.12 Address Translation in a Segmentation/Paging System

+ +

P
a

g
e#

Program Segmentation

Mechanism

Paging

Mechanism

Main Memory

Segment Number Page Number Offset

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Page Table Entry

Frame NumberP MOther Control Bits

Length Segment BaseControl Bits

P= present bit

M = Modified bit

Protection and Sharing

• Segmentation lends itself to the

implementation of protection and sharing

policies

• Each entry has a base address and length so

inadvertent memory access can be

controlled

• Sharing can be achieved by segments

referencing multiple processes

Operating System Software

• The design of the memory management

portion of an operating system depends on

three fundamental areas of choice:

– Whether or not to use virtual memory

techniques

– The use of paging or segmentation or both

– The algorithms employed for various aspects of

memory management

Operating System Policies for

Virtual Memory
Fetch Policy

 Demand paging

 Prepaging

Placement Policy

Replacement Policy

 Basic Algorithms

 Optimal

 Least recently used (LRU)

 First-in-first-out (FIFO)
 Clock
 Page Buffering

Resident Set Management

 Resident set size

 Fixed

 Variable
 Replacement Scope

 Global

 Local

Cleaning Policy

 Demand

 Precleaning

Load Control
 Degree of multiprogramming

Fetch Policy

• Determines when a page should be brought

into memory

• Two main types:

– Demand Paging

– Prepaging

Demand Paging

• Only brings pages into main memory when a

reference is made to a location on the page

• Many page faults when process is first started

• Principle of locality suggests that as more and

more pages are brought in, most future references

will be to pages that have recently been brought

in, and page faults should drop to a very low level

Prepaging

• Pages other than the one demanded by a page fault

are brought in

• Exploits the characteristics of most secondary

memory devices

• If pages of a process are stored contiguously in

secondary memory it is more efficient to bring in a

number of pages at one time

• Ineffective if extra pages are not referenced

• Should not be confused with “swapping”

Placement Policy

• Determines where in real memory a process piece

is to reside

• Important design issue in a segmentation system

• Paging or combined paging with segmentation

placing is irrelevant because hardware performs

functions with equal efficiency

• For NUMA systems an automatic placement

strategy is desirable

Replacement Policy

• Deals with the selection of a page in main memory

to be replaced when a new page must be brought

in

– Objective is that the page that is removed be the

page least likely to be referenced in the near

future

• The more elaborate the replacement policy the

greater the hardware and software overhead to

implement it

Frame Locking

• When a frame is locked the page currently

stored in that frame may not be replaced

– Kernel of the OS as well as key control

structures are held in locked frames

– I/O buffers and time-critical areas may be

locked into main memory frames

– Locking is achieved by associating a lock bit

with each frame

Basic Algorithms

• Algorithms used for the selection of a page

to replace:

– Optimal

– Least recently used (LRU)

– First-in-first-out (FIFO)

– Clock

2

2 3 2 1 5 2 4 5 3 2 5 2

2
3

2
3

2
3
1

F

F

F F F F F F

F F F

F F

2
3
5

2
3
5

4
3
5

4
3
5

4
3
5

2
3
5

2
3
5

2
3
5

2 2
3

2
3

2
3
1

2
5
1

2
5
1

2
5
4

2
5
4

3
5
4

3
5
2

3
5
2

3
5
2

2 2
3

2
3

2
3
1

5
3
1

5
2
1

5
2
4

5
2
4

3
2
4

3
2
4

3
5
4

3
5
2

2* 2*
3*

2*
3*

2*
3*
1*

5*
3
1

F

F = page fault occurring after the frame allocation is initially filled

F F F F

5*
2*
1

5*
2*
4*

5*
2*
4*

3*
2
4

3*
2*
4

3*
2
5*

3*
2*
5*

OPT

Page address

stream

LRU

FIFO

CLOCK

Figure 8.14 Behavior of Four Page-Replacement Algorithms

Optimal Policy

• The optimal policy selects for replacement

that page for which the time to the next

reference is the longest.

– It can be shown that this policy results in the

fewest number of page faults.

– Clearly, this policy is impossible to implement,

but, it does serve as a standard against which to

judge real-world algorithms.

Least Recently Used (LRU)

• Replaces the page that has not been referenced for

the longest time

• By the principle of locality, this should be the page

least likely to be referenced in the near future

• Difficult to implement

– One approach is to tag each page with the time

of last reference

– This requires a great deal of overhead

First-in-First-out (FIFO)

• Treats page frames allocated to a process as

a circular buffer

• Pages are removed in round-robin style

– Simple replacement policy to implement

• Page that has been in memory the

longest is replaced

Clock Policy

• Requires the association of an additional bit

with each frame

– Referred to as the use bit

• When a page is first loaded in memory or

referenced, the use bit is set to 1

• The set of frames is considered to be a

circular buffer

• Any frame with a use bit of 1 is passed over

by the algorithm

0
6 8

Number of Frames Allocated

P
a

g
e

F
a

u
lt

s
p

er
 1

0
0

0
 R

ef
er

en
ce

s

Figure 8.16 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

10 12 14

5

10

15

20

25

30

35
FIFO

CLOCK

LRU

OPT

40

Page Buffering

• Improves paging performance and allows

the use of a simpler page replacement

policy

• A replaced page is not lost, but rather

assigned to one of two lists

– Free page list - list of page frames available for

reading in pages

– Modified page list - pages are written out in

clusters

Replacement Policy and Cache

Size

• With large caches, replacement of pages can have

a performance impact

– If the page frame selected for replacement is in the

cache, that cache block is lost as well as the page that it

holds

– In systems using page buffering, cache performance can

be improved with a policy for page placement in the

page buffer

– Most operating systems place pages by selecting an

arbitrary page frame from the page buffer

Resident Set Management

• The OS must decide how many pages to bring into

main memory

– The smaller the amount of memory allocated to

each process, the more processes can reside in

memory

– Small number of pages loaded

– Increases page faults

– Beyond a certain size, further allocations

of pages will not effect the page fault rate

Resident Set Size

• Fixed-allocation

– Gives a process a fixed number of frames in

main memory within which to execute

– When a page fault occurs, one of the pages of

that process must be replaced

• Variable-Allocation

– Allows the number of page frames allocated to

a process to be varied over the lifetime of the

process

Replacement Scope

• The scope of a replacement strategy can be

categorized as global or local

– Both types are activated by a page fault when

there are no free page frames

• Local

– Chooses only among the resident pages of the

process that generated the page fault

• Global

– Considers all unlocked pages in main memory

Resident Set Management

 Local Replacement Global Replacement

Fixed Allocation •Number of frames allocated

to a process is fixed.

•Page to be replaced is chosen
from among the frames

allocated to that process.

•Not possible.

Variable Allocation •The number of frames

allocated to a process may be

changed from time to time to
maintain the working set of

the process.

•Page to be replaced is chosen

from among the frames

allocated to that process.

•Page to be replaced is chosen from

all available frames in main

memory; this causes the size of the
resident set of processes to vary.

Fixed Allocation, Local Scope

• Necessary to decide ahead of time the

amount of allocation to give a process

• If allocation is too small, there will be a

high page fault rate

• If allocation is too large, there will be too

few programs in main memory

– Increased processor idle time

– Increased time spent in swapping

Variable Allocation

Global Scope

• Easiest to implement

– Adopted in a number of operating systems

• OS maintains a list of free frames

• Free frame is added to resident set of process

when a page fault occurs

• If no frames are available the OS must choose a

page currently in memory

• One way to counter potential problems is to use

page buffering

Variable Allocation - Local Scope

• When a new process is loaded into main memory,

allocate to it a certain number of page frames as its

resident set

• When a page fault occurs, select the page to

replace from among the resident set of the process

that suffers the fault

• Reevaluate the allocation provided to the process

and increase or decrease it to improve overall

performance

Variable Allocation - Local Scope

• Decision to increase or decrease a resident

set size is based on the assessment of the

likely future demands of active processes

• Key elements:

– Criteria used to determine resident set size

– The timing of changes

Sequence of

Page

References

Window Size, ∆∆∆∆

 2 3 4 5

24 24 24 24 24

15 24 15 24 15 24 15 24 15

18 15 18 24 15 18 24 15 18 24 15 18

23 18 23 15 18 23 24 15 18 23 24 15 18 23

24 23 24 18 23 24 • •

17 24 17 23 24 17 18 23 24 17 15 18 23 24 17

18 17 18 24 17 18 • 18 23 24 17

24 18 24 • 24 17 18 •

18 • 18 24 • 24 17 18

17 18 17 24 18 17 • •

17 17 18 17 • •

15 17 15 17 15 18 17 15 24 18 17 15

24 15 24 17 15 24 17 15 24 •

17 24 17 • • 17 15 24

24 • 24 17 • •

18 24 18 17 24 18 17 24 18 15 17 24 18

Figure 8.17 Working Set of Process as Defined by Window Size

Figure 8.18 Typical Graph of Working Set Size [MAEK87]

W
o
rk

in
g
 S

et
 S

iz
e

Transient

Stable Stable Stable Stable

Transient Transient Transient
Time

Page Fault Frequency (PFF)

• Requires a use bit to be associated with

each page in memory

• Bit is set to 1 when that page is accessed

• When a page fault occurs, the OS notes the

virtual time since the last page fault for that

process

• Does not perform well during the transient

periods when there is a shift to a new

locality

Variable-Interval Sampled

Working Set (VSWS)

• Evaluates the working set of a process at

sampling instances based on elapsed virtual

time

• Driven by three parameters:

– The minimum duration of the sampling interval

– The maximum duration of the sampling interval

– The number of page faults that are allowed to

occur between sampling instances

Cleaning Policy

• Concerned with determining when a

modified page should be written out to

secondary memory

• Demand Cleaning - A page is written out to

secondary memory only when it has been

selected for replacement

• Precleaning - Allows the writing of pages in

batches

Load Control

• Determines the number of processes that

will be resident in main memory

– Multiprogramming level

• Critical in effective memory management

• Too few processes, many occasions when

all processes will be blocked and much time

will be spent in swapping

• Too many processes will lead to thrashing

Figure 8.19 Multiprogramming Effects

Multiprogramming Level

P
ro

ce
ss

o
r

U
ti

li
za

ti
o

n

Process Suspension

• If the degree of multiprogramming is to be

reduced, one or more of the currently resident

processes must be swapped out

• Six possibilities exist:

– Lowest-priority process

– Faulting process

– Last process activated

– Process with the smallest resident set

– Largest process

– Process with the largest remaining execution window

UNIX

• Intended to be machine independent so its

memory management schemes will vary

– Early UNIX: variable partitioning with no

virtual memory scheme

– Current implementations of UNIX and Solaris

make use of paged virtual memory

• SVR4 and Solaris use two separate schemes:

– Paging system

– Kernel memory allocator

Paging system & Kernel memory

allocator

• Paging System

– Provides a virtual memory capability that

allocates page frames in main memory to

processes

– Allocates page frames to disk block buffers

• Kernel Memory Allocator

– Allocates memory for the kernel

Figure 8.20 UNIX SVR4 Memory Management Formats

(a) Page table entry

(b) Disk block descriptor

(c) Page frame data table entry

(d) Swap-use table entry

Page frame number

Page state
Reference

count

Reference

count

Page/storage

unit number

Logical

device

Block

number

Pfdata

pointer

Swap device number Device block number Type of storage

Age
Pro-

tect
Valid

Refe-

rence

Mod-

ify

Copy
on

write

UNIX SVR4

Memory

Management

Parameters

Page Table Entry

Page frame number

 Refers to frame in real memory.

Age
 Indicates how long the page has been in memory without being referenced. The length and contents of this

field are processor dependent.

Copy on write
 Set when more than one process shares a page. If one of the processes writes into the page, a separate copy

of the page must first be made for all other processes that share the page. This feature allows the copy
operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

Modify
 Indicates page has been modified.

Reference

 Indicates page has been referenced. This bit is set to 0 when the page is first loaded and may be periodically
reset by the page replacement algorithm.

Valid

 Indicates page is in main memory.

Protect

 Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number

 Logical device number of the secondary device that holds the corresponding page. This allows more than
one device to be used for swapping.

Device block number
 Block location of page on swap device.

Type of storage

 Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the

virtual memory to be allocated should be cleared first.

UNIX SVR4

Memory

Management

Parameters

Page Frame Data Table Entry

Page state

 Indicates whether this frame is available or has an associated page. In the latter case, the

status of the page is specified: on swap device, in executable file, or DMA in progress.

Reference count

 Number of processes that reference the page.

Logical device

 Logical device that contains a copy of the page.

Block number
 Block location of the page copy on the logical device.

Pfdata pointer

 Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.

Swap-Use Table Entry

Reference count

 Number of page table entries that point to a page on the swap device.

Page/storage unit number

 Page identifier on storage unit.

Page Replacement

• The page frame data table is used for page

replacement

• Pointers are used to create lists within the

table

– All available frames are linked together in a list

of free frames available for bringing in pages

– When the number of available frames drops

below a certain threshold, the kernel will steal a

number of frames to compensate

back
hand

 fronthand

Beginning

of page list
End of

page list

Figure 8.21 Two-Handed Clock Page-Replacement Algorithm

h
a

n
d

sp
re

a
d

Kernel Memory Allocator

• The kernel generates and destroys small tables and

buffers frequently during the course of execution,

each of which requires dynamic memory

allocation.

• Most of these blocks are significantly smaller than

typical pages (therefore paging would be

inefficient)

• Allocations and free operations must be made as

fast as possible

Lazy Buddy

• Technique adopted for SVR4

• UNIX often exhibits steady-state behavior

in kernel memory demand

– i.e. the amount of demand for blocks of a

particular size varies slowly in time

• Defers coalescing until it seems likely that it

is needed, and then coalesces as many

blocks as possible

Initial value of Di is 0

After an operation, the value of Di is updated as follows

(I) if the next operation is a block allocate request:

 if there is any free block, select one to allocate

 if the selected block is locally free

 then Di := Di + 2

 else Di := Di + 1

 otherwise

 first get two blocks by splitting a larger one into two (recursive operation)

 allocate one and mark the other locally free

 Di remains unchanged (but D may change for other block sizes because of the

 recursive call)

(II) if the next operation is a block free request

 Case Di ≥ 2

 mark it locally free and free it locally

 Di := Di - 2

 Case Di = 1

 mark it globally free and free it globally; coalesce if possible

 Di := 0

 Case Di = 0

 mark it globally free and free it globally; coalesce if possible

 select one locally free block of size 2i and free it globally; coalesce if possible

 Di := 0

Figure 8.22 Lazy Buddy System Algorithm

