
CSC 553 Operating Systems

Lecture 4 - Concurrency: Mutual

Exclusion and Synchronization

Multiple Processes

• Operating System design is concerned

with the management of processes and

threads:

• Multiprogramming

• Multiprocessing

• Distributed Processing

Concurrency

Arises in Three Different Contexts:

• Multiple Applications

– invented to allow processing time to be shared

among active applications

• Structured Applications

– extension of modular design and structured

programming

• Operating System Structure

– OS themselves implemented as a set of

processes or threads

Key Terms

Related

to

Concurrency

Principles of Concurrency

• Interleaving and overlapping

• can be viewed as examples of concurrent processing

• both present the same problems

• Uniprocessor – the relative speed of execution of

processes cannot be predicted

• depends on activities of other processes

• the way the OS handles interrupts

• scheduling policies of the OS

Difficulties of Concurrency

• Sharing of global resources

• Difficult for the OS to manage the

allocation of resources optimally

• Difficult to locate programming errors as

results are not deterministic and

reproducible

Race Condition

• Occurs when multiple processes or threads

read and write data items

• The final result depends on the order of

execution

– the “loser” of the race is the process that

updates last and will determine the final

value of the variable

Operating System Concerns

• Design and management issues raised by the

existence of concurrency:

• The OS must:

– be able to keep track of various processes

– allocate and de-allocate resources for each active

process

– protect the data and physical resources of each process

against interference by other processes

– ensure that the processes and outputs are independent

of the processing speed

Process

Interaction

Degree of Awareness Relationship Influence that One

Process Has on the

Other

Potential Control

Problems

Processes unaware of

each other

Competition •Results of one

process independent

of the action of

others

•Timing of process

may be affected

•Mutual exclusion

•Deadlock (renewable

resource)

•Starvation

Processes indirectly

aware of each other

(e.g., shared object)

Cooperation by

sharing

•Results of one

process may depend

on information

obtained from others

•Timing of process

may be affected

•Mutual exclusion

•Deadlock (renewable

resource)

•Starvation

•Data coherence

Processes directly

aware of each other

(have communication

primitives available to

them)

Cooperation by

communication

•Results of one

process may depend

on information

obtained from others

•Timing of process

may be affected

•Deadlock

(consumable

resource)

•Starvation

Resource Competition

• Concurrent processes come into conflict when

they are competing for use of the same resource

– for example: I/O devices, memory, processor time,

clock

– In the case of competing processes three control

problems must be faced

• the need for mutual exclusion

• deadlock

• starvation

Illustration of Mutual Exclusion

PROCESS 1 */

void P1
{

 while (true) {
 /* preceding code */;

 entercritical (Ra);

 /* critical section */;

 exitcritical (Ra);

 /* following code */;

 }

}

/* PROCESS 2 */

void P2
{

 while (true) {
 /* preceding code */;

 entercritical (Ra);

 /* critical section */;

 exitcritical (Ra);

 /* following code */;

 }

}

• • •

/* PROCESS n */

void Pn
{

 while (true) {
 /* preceding code */;

 entercritical (Ra);

 /* critical section */;

 exitcritical (Ra);

 /* following code */;

 }

}

Requirements for Mutual Exclusion

• Must be enforced

• A process that halts must do so without

interfering with other processes

• No deadlock or starvation

• A process must not be denied access to a critical

section when there is no other process using it

• No assumptions are made about relative process

speeds or number of processes

• A process remains inside its critical section for a

finite time only

Mutual Exclusion: Hardware Support

– Interrupt Disabling

– uniprocessor system

– disabling interrupts guarantees mutual exclusion

– Disadvantages:

– the efficiency of execution could be noticeably

degraded

– this approach will not work in a multiprocessor

architecture

Mutual Exclusion: Hardware

Support

• Compare & Swap Instruction

– also called a “compare and exchange

instruction”

– a compare is made between a memory value

and a test value

– if the values are the same a swap occurs

– carried out atomically

Hardware Support for Mutual Exclusion

/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;

void P(int i)
{

 while (true) {
 while (compare_and_swap(&bolt, 0, 1) == 1)

 /* do nothing */;

 /* critical section */;

 bolt = 0;

 /* remainder */;

 }

}

void main()
{

 bolt = 0;

 parbegin (P(1), P(2), . . . ,P(n));

}

/* program mutualexclusion */
int const n = /* number of processes*/;
int bolt;

void P(int i)
{

 while (true) {
 int keyi = 1;

 do exchange (&keyi, &bolt)
 while (keyi != 0);
 /* critical section */;

 bolt = 0;

 /* remainder */;

 }

}

void main()

{

 bolt = 0;

 parbegin (P(1), P(2), . . ., P(n));
}

Compare and swap instruction (b) Exchange instruction

Special Machine Instructions:

Advantages

• Applicable to any number of processes on

either a single processor or multiple

processors sharing main memory

• Simple and easy to verify

• It can be used to support multiple critical

sections; each critical section can be defined

by its own variable

Special Machine Instructions:

Disadvantages

• Busy-waiting is employed, thus while a

process is waiting for access to a critical

section it continues to consume processor

time

• Starvation is possible when a process leaves

a critical section and more than one process

is waiting

• Deadlock is possible

Semaphore An integer value used for signaling among processes. Only three

operations may be performed on a semaphore, all of which are

atomic: initialize, decrement, and increment. The decrement

operation may result in the blocking of a process, and the increment
operation may result in the unblocking of a process. Also known as a

counting semaphore or a general semaphore

Binary Semaphore A semaphore that takes on only the values 0 and 1.

Mutex Similar to a binary semaphore. A key difference between the two is

that the process that locks the mutex (sets the value to zero) must be

the one to unlock it (sets the value to 1).

Condition Variable A data type that is used to block a process or thread until a particular

condition is true.

Monitor A programming language construct that encapsulates variables,

access procedures and initialization code within an abstract data type.

The monitor's variable may only be accessed via its access

procedures and only one process may be actively accessing the

monitor at any one time. The access procedures are critical sections.

A monitor may have a queue of processes that are waiting to access
it.

Event Flags A memory word used as a synchronization mechanism. Application

code may associate a different event with each bit in a flag. A thread

can wait for either a single event or a combination of events by
checking one or multiple bits in the corresponding flag. The thread is

blocked until all of the required bits are set (AND) or until at least

one of the bits is set (OR).

Mailboxes/Messages A means for two processes to exchange information and that may be

used for synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an

infinite loop waiting for the value of a lock variable to indicate
availability.

Common

Concurrency

Mechanisms

Semaphore

• A variable that has an integer value upon

which only three operations are defined:

– There is no way to inspect or manipulate

semaphores other than these three operations

1. May be initialized to a nonnegative integer

value

2. The semWait operation decrements the value

3. The semSignal operation increments the value

Consequences

There is no way to
know before a

process decrements a
semaphore whether it

will block or not

There is no way to
know which process

will continue
immediately on a

uniprocessor system
when two processes

are running
concurrently

You don’t know
whether another

process is waiting so
the number of

unblocked processes
may be zero or one

A

Definition

of

Semaphore

Primitives

A

Definition

of Binary

Semaphor

e

struct binary_semaphore {

 enum {zero, one} value;
 queueType queue;
};

void semWaitB(binary_semaphore s)
{

 if (s.value == one)
 s.value = zero;

 else {
 /* place this process in s.queue */;

 /* block this process */;

 }

}

void semSignalB(semaphore s)
{

 if (s.queue is empty())

 s.value = one;

 else {
 /* remove a process P from s.queue */;

 /* place process P on ready list */;

 }

}

Strong/Weak Semaphores

A queue is used to hold processes waiting on

the semaphore

• Strong Semaphores - the process that has been

blocked the longest is released from the queue first

(FIFO)

• Weak Semaphores - the order in which processes

are removed from the queue is not specified

A

A issues semWait, later times out

B issues semWait

D issues semSignal

s = 1
Ready queue Processor

D BC

1

2

Figure 5.5 Example of Semaphore Mechanism

Blocked queue

D

D issues semSignal, later times out

s = 0
Ready queue Processor

A CB

4

Blocked queue

B

s = 0
Ready queue

Processor

C DA

Blocked queue

C issues semWait

5

C

s = 0
Ready queue

Processor

B AD

Blocked queue

3

D

s = –1
Ready queue

Processor

A C

Blocked queue

B

D issues semSignal

7

D

s = –2
Ready queue

Processor

C

Blocked queue

A B

D issues semSignal

6

D

s = –3
Ready queue

Processor

Blocked queue

C A B

Mutual Exclusion Using Semaphores

–1B

BC

C

1

semWait(lock)

A
Value of

semaphore lock

Queue for

semaphore lock B C

0

–2

–1

0

1

semSignal(lock)

semSignal(lock)

semSignal(lock)

semWait(lock)

Figure 5.7 Processes Accessing Shared Data

Protected by a Semaphore

semWait(lock)

Critical

region

Normal

execution

Blocked on

semaphore

lock

Note that normal

execution can

proceed in parallel

but that critical

regions are serialized.

Producer/Consumer Problem

General
Statement:

one or more producers are generating data and placing
these in a buffer

a single consumer is taking items out of the buffer one at
a time

only one producer or consumer may access the buffer at
any one time

The
Problem: ensure that the producer can’t add

data into full buffer and consumer
can’t remove data from an empty
buffer

b[1] b[2]

out

b[3] b[4] b[5]

0 1 2 3 4

in

Figure 5.8 Infinite Buffer for the Producer/Consumer Problem

Note: shaded area indicates portion of buffer that is occupied

An Incorrect

Solution

to the

Infinite-

Buffer

Producer/

Consumer

Problem

Using

Binary

Semaphores

 /* program producerconsumer */

 int n;
 binary_semaphore s = 1, delay = 0;

 void producer()

 {

 while (true) {
 produce();

 semWaitB(s);

 append();

 n++;

 if (n==1) semSignalB(delay);
 semSignalB(s);

 }
 }

 void consumer()
 {

 semWaitB(delay);

 while (true) {
 semWaitB(s);

 take();

 n--;

 semSignalB(s);

 consume();

 if (n==0) semWaitB(delay);

 }
 }
 void main()
 {

 n = 0;

 parbegin (producer, consumer);
 }

Possible

Scenario

for the

Program

of

Previous

slide

 Producer Consumer s n Delay

1 1 0 0

2 semWaitB(s) 0 0 0

3 n++ 0 1 0

4 if (n==1)
(semSignalB(delay))

 0 1 1

5 semSignalB(s) 1 1 1

6 semWaitB(delay) 1 1 0

7 semWaitB(s) 0 1 0

8 n-- 0 0 0

9 semSignalB(s) 1 0 0

10 semWaitB(s) 0 0 0

11 n++ 0 1 0

12 if (n==1)
(semSignalB(delay))

 0 1 1

13 semSignalB(s) 1 1 1

14 if (n==0) (semWaitB(delay)) 1 1 1

15 semWaitB(s) 0 1 1

16 n-- 0 0 1

17 semSignalB(s) 1 0 1

18 if (n==0) (semWaitB(delay)) 1 0 0

19 semWaitB(s) 0 0 0

20 n-- 0 –1 0

21 semSignalB(s) 1 –1 0

A Correct

Solution to the

Infinite-Buffer

Producer/Consu

mer Problem

Using Binary

Semaphores

A Solution

to the

Infinite-

Buffer

Producer/C

onsumer

Problem

Using

Semaphores

 /* program producerconsumer */

 semaphore n = 0, s = 1;

 void producer()
 {

 while (true) {

 produce();

 semWait(s);

 append();

 semSignal(s);

 semSignal(n);

 }

 }

 void consumer()

 {

 while (true) {
 semWait(n);

 semWait(s);

 take();

 semSignal(s);

 consume();

 }

 }

 void main()
 {

 parbegin (producer, consumer);

 }

b[1] b[2]

out

(a)

b[3] b[4] b[5] b[n]

in

b[1] b[2]

out

(b)

b[3] b[4]

in

Figure 5.12 Finite Circular Buffer for the Producer/Consumer Problem

b[5] b[n]

A Solution

to the

Bounded-

Buffer

Producer/

Consumer

Problem

Using

Semaphores

Implementation of Semaphores

• Imperative that the semWait and

semSignal operations be implemented as

atomic primitives

• Can be implemented in hardware or

firmware

• Software schemes such as Dekker’s or

Peterson’s algorithms can be used

• Use one of the hardware-supported

schemes for mutual exclusion

Two Possible Implementations of

Semaphores

semWait(s)

{

 while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;

 s.count--;

 if (s.count < 0) {
 /* place this process in s.queue*/;

 /* block this process (must also set s.flag to 0)
*/;
 }
 s.flag = 0;

}

semSignal(s)

{
 while (compare_and_swap(s.flag, 0 , 1) == 1)
 /* do nothing */;

 s.count++;

 if (s.count <= 0) {
 /* remove a process P from s.queue */;

 /* place process P on ready list */;

 }

 s.flag = 0;

}

semWait(s)

{

 inhibit interrupts;

 s.count--;

 if (s.count < 0) {

 /* place this process in s.queue */;
 /* block this process and allow interrupts */;
 }
 else

 allow interrupts;

}

semSignal(s)

{

 inhibit interrupts;

 s.count++;

 if (s.count <= 0) {

 /* remove a process P from s.queue */;
 /* place process P on ready list */;
 }

 allow interrupts;

}

Compare and Swap Instruction Interrupts

Monitors

• Programming language construct that provides

equivalent functionality to that of semaphores and

is easier to control

• Implemented in a number of programming

languages

– including Concurrent Pascal, Pascal-Plus,

Modula-2, Modula-3, and Java

• Has also been implemented as a program library

• Software module consisting of one or more

procedures, an initialization sequence, and local

data

Monitor Characteristics

Only one process may be executing in the monitor at a time

Process enters monitor by invoking one of its procedures

Local data variables are accessible only by the monitor’s
procedures and not by any external procedure

Synchronization

• Achieved by the use of condition variables that

are contained within the monitor and accessible

only within the monitor

– Condition variables are operated on by two

functions:

• cwait(c): suspend execution of the calling process

on condition c

• csignal(c): resume execution of some process

blocked after a cwait on the same condition

Entrance

queue of

entering

processes

Exit

condition c1

cwait(c1)

urgent queue

csignal

condition cn

cwait(cn)

local data

condition variables

Procedure 1

Procedure k

initialization code

Figure 5.15 Structure of a Monitor

monitor waiting area

MONITOR

A Solution

to the

Bounded-

Buffer

Producer/

Consumer

Problem

Using a

Monitor

void append (char x)
{

 while(count == N) cwait(notfull);/* buffer is full; avoid overflow
*/
 buffer[nextin] = x;

 nextin = (nextin + 1) % N;
 count++;........................../* one more item in buffer */
 cnotify(notempty);............/* notify any waiting consumer */
}

void take (char x)
{

 while(count == 0) cwait(notempty); .../* buffer is empty; avoid
underflow */
 x = buffer[nextout];

 nextout = (nextout + 1) % N;
 count--; /* one fewer item in buffer */
 cnotify(notfull);/* notify any waiting producer */
}

Figure 5.17 Bounded Buffer Monitor Code for Mesa Monitor

Message Passing

• When processes interact with one another two

fundamental requirements must be satisfied:

– Synchronization - to enforce mutual exclusion

– Communication – to exchange information

• Message Passing is one approach to providing

both of these functions

• works with distributed systems and shared memory

multiprocessor and uniprocessor systems

Message Passing

• The actual function is normally provided in the

form of a pair of primitives:

send (destination, message)

receive (source, message)

• A process sends information in the form of a

message to another process designated by a

destination

• A process receives information by executing the

receive primitive, indicating the source and the

message

Design Characteristics of Message Systems for

Interprocess Communication and

Synchronization
Synchronization
 Send
 blocking
 nonblocking
 Receive
 blocking
 nonblocking
 test for arrival

Addressing
 Direct
 send
 receive
 explicit
 implicit
 Indirect
 static
 dynamic
 ownership

Format
 Content
 Length
 fixed
 variable

Queueing Discipline
 FIFO
 Priority

Synchronization

Blocking Send, Blocking Receive

• Both sender and receiver are blocked until

the message is delivered

• Sometimes referred to as a rendezvous

• Allows for tight synchronization between

processes

Nonblocking Send

• Nonblocking send. blocking receive

– sender continues on but receiver is blocked until the

requested message arrives

– most useful combination

– sends one or more messages to a variety of destinations

as quickly as possible

– example -- a service process that exists to provide a

service or resource to other processes

• Nonblocking send, nonblocking receive

– neither party is required to wait

Addressing

• Schemes for specifying processes in

send and receive primitives fall into

two categories:

Direct
addressing

Indirect
addressing

Direct Addressing

• Send primitive includes a specific identifier of

the destination process

• Receive primitive can be handled in one of two

ways:

• require that the process explicitly designate a

sending process

• effective for cooperating concurrent processes

• implicit addressing

• source parameter of the receive primitive

possesses a value returned when the receive

operation has been performed

Indirect Addressing

Messages are sent to a
shared data structure

consisting of queues that can
temporarily hold messages

Queues are
referred to as

mailboxes

One process sends a
message to the mailbox

and the other process picks
up the message from the

mailbox

Allows for greater
flexibility in the
use of messages

S1

Sn

R1

Rm

Mailbox

S1

Sn

R1Port

Figure 5.18 Indirect Process Communication

(b) Many to one

S1 R1Mailbox

S1

(a) One to one

(d) Many to many

R1

Rm

Mailbox

(c) One to many

Message Type

Destination ID

Source IDHeader

Body

Figure 5.19 General Message Format

Message Length

Control Information

Message Contents

Mutual Exclusion Using Messages

A Solution

to the Bounded

Buffer Producer

/Consumer

Problem Using

Messages

Readers/Writers Problem

• A data area is shared among many processes

• some processes only read the data area, (readers)

and some only write to the data area (writers)

• Conditions that must be satisfied:

1. any number of readers may simultaneously read

the file

2. only one writer at a time may write to the file

3. if a writer is writing to the file, no reader may

read it

A Solution to the

Readers/Writers

Problem Using

Semaphores:

Readers

Have

Priority

Readers only in the system

•wsem set

•no queues

Writers only in the system

•wsem and rsem set

•writers queue on wsem

Both readers and writers with read first

•wsem set by reader

•rsem set by writer

•all writers queue on wsem

•one reader queues on rsem

•other readers queue on z

Both readers and writers with write first

•wsem set by writer

•rsem set by writer

•writers queue on wsem

•one reader queues on rsem
•other readers queue on z

State of the

Process

Queues for

Program of

Figure

A Solution to the

Readers/Writers

Problem Using

Semaphores: Writers

Have Priority

void reader(int i)

{
 message rmsg;

 while (true) {
 rmsg = i;

 send (readrequest, rmsg);

 receive (mbox[i], rmsg);

 READUNIT ();

 rmsg = i;

 send (finished, rmsg);

 }
 }
void writer(int j)
{

 message rmsg;

 while(true) {
 rmsg = j;

 send (writerequest, rmsg);

 receive (mbox[j], rmsg);

 WRITEUNIT ();

 rmsg = j;

 send (finished, rmsg);

 }
}

void controller()
{
 while (true)
 {

 if (count > 0) {
 if (!empty (finished)) {
 receive (finished, msg);
 count++;

 }
 else if (!empty (writerequest)) {
 receive (writerequest, msg);

 writer_id = msg.id;

 count = count – 100;

 }

 else if (!empty (readrequest)) {
 receive (readrequest, msg);

 count--;

 send (msg.id, "OK");

 }
 }

 if (count == 0) {
 send (writer_id, "OK");

 receive (finished, msg);

 count = 100;

 }
 while (count < 0) {
 receive (finished, msg);

 count++;

 }
 }

}

A Solution to the Readers/Writers Problem Using Message Passing

Summary

• Principles of concurrency

– Race condition

– OS concerns

– Process interaction

– Requirements for mutual exclusion

• Mutual exclusion: hardware support

– Interrupt disabling

– Special machine instructions

Summary

• Semaphores

– Mutual exclusion

– Producer/consumer problem

– Implementation of semaphores

• Monitors

– Monitor with signal

– Alternate model of monitors with notify and broadcast

Summary

• Message passing

– Synchronization

– Addressing

– Message format

– Queueing discipline

– Mutual exclusion

• Readers/writers problem

– Readers have priority

– Writers have priority

