
CSC 553 Operating Systems

Lecture 4- Threads

Processes and Threads

• Resource Ownership

– Process includes a virtual address space to hold the 

process image

• The OS performs a protection function to prevent 

unwanted interference between processes with 

respect to resources

• Scheduling/Execution

– Follows an execution path that may be interleaved with 

other processes

• A process has an execution state (Running, Ready, 

etc.) and a dispatching priority, and is the entity that 

is scheduled and dispatched by the OS



Processes and Threads

• The unit of dispatching is referred to as a 

thread or lightweight process

• The unit of resource ownership is referred 

to as a process or task

• Multithreading - The ability of an OS to 

support multiple, concurrent paths of 

execution within a single process

Single Threaded Approaches

• A single thread of 

execution per 

process, in which 

the concept of a 

thread is not 

recognized, is 

referred to as a 

single-threaded 

approach

• MS-DOS is an 

example Figure 4.1   Threads and Processes

one process

one thread

one process

multiple threads

multiple processes

one thread per process

= instruction trace

multiple processes

multiple threads per process



Multithreaded Approaches

• The right half of 

Figure 4.1 depicts 

multithreaded 

approaches

• A Java run-time 

environment is an 

example of a 

system of one 

process with 

multiple threads
Figure 4.1   Threads and Processes

one process

one thread

one process

multiple threads

multiple processes

one thread per process

= instruction trace

multiple processes

multiple threads per process

Process

• Defined in a multithreaded environment as “the 

unit of resource allocation and a unit of 

protection”

• Associated with processes:

• A virtual address space that holds the process image

• Protected access to:

• Processors

• Other processes (for interprocess

communication) 

• Files

• I/O resources (devices and channels)



One or More Threads 

in a Process

• An execution state (Running, Ready, etc.)

• A saved thread context when not running

• An execution stack

• Some per-thread static storage for local 
variables

• Access to the memory and resources of its 
processes, shared with all other threads in that 
process

Each thread has:

Single-Threaded

Process Model

Process

Control

Block

User

Address

Space

User

Stack

Kernel

Stack

Multithreaded

Process Model

Process

Control

Block

User

Address

Space

User

Stack

Kernel

Stack

User

Stack

Kernel

Stack

User

Stack

Kernel

Stack

Thread

Control

Block

Thread Thread Thread

Figure 4.2   Single Threaded and Multithreaded Process Models

Thread

Control

Block

Thread

Control

Block



Key Benefits of Threads

Takes less 
time to create 
a new thread 

than a 
process

Less time to 
terminate a 

thread than a 
process

Switching between 
two threads takes 

less time than 
switching between 

processes

Threads enhance 
efficiency in 

communication 
between programs

Thread Use in a 

Single-User System

• Foreground and background work

• Asynchronous processing

• Speed of execution

• Modular program structure



Threads

� Most of the state information dealing with 
execution is maintained in thread-level data 
structures

� In an OS that supports threads, scheduling and 
dispatching is done on a thread basis

�Suspending a process involves suspending all      
threads of the process 

�Termination of a process terminates all         
threads within the process

Threads Execution States

• The key states for a thread are:

– Running    - Ready    - Blocked

• Thread operations associated with a change in 

thread state are:

• Spawn

• Block

• Unblock

• Finish



Figure 4.3  Remote Procedure Call (RPC) Using Threads

(a) RPC Using Single Thread

(b) RPC Using One Thread per Server (on a uniprocessor)

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server

Server

Server

Server

RPC

Request

RPC

Request

RPC

Request

RPC

Request

Time

Blocked

I/O

request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Figure 4.4    Multithreading Example on a Uniprocessor

Ready Running

Request

complete

Time quantum

expires

Time quantum

expires

Process

created



Threads Synchronization

• It is necessary to synchronize the activities 

of the various threads

– All threads of a process share the same 

address space and other resources

– Any alteration of a resource by one 

thread affects the other threads in the 

same process

Types of Threads

User Level 
Thread (ULT)

Kernel level 
Thread (KLT) 



User-Level Threads (ULTs)

• All thread 

management is 

done by the 

application

• The kernel is 

not aware of the 

existence of 

threads

P

User

Space
Threads

Library

Kernel

Space

(a) Pure user-level

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(b)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready

Figure 4.6  Examples of the Relationships Between User -Level Thread States and Process States

Running

Colored state

is current state

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)



Advantages of ULTs

Thread switching does not 
require kernel mode 
privileges

Scheduling can be 
application specific

ULTs can 
run on 
any OS

Disadvantages of ULTs

• In a typical OS many system calls are blocking 

– As a result, when a ULT executes a system call, not 

only is that thread blocked, but all of the threads within 

the process are blocked as well

• In a pure ULT strategy, a multithreaded application cannot 

take advantage of multiprocessing

– A kernel assigns one process to only one processor at a 

time, therefore, only a single thread within a process 

can execute at a time



Overcoming ULTs Disadvantages

Jacketing

• Purpose is to convert a blocking 
system call into a non-blocking 
system call

Writing an application as 
multiple processes rather than 
multiple threads

• However, this approach eliminates 
the main advantage of threads

Kernel Level Threads (KLTs)

� Thread management is 

done by the kernel

� There is no thread 

management code in the 

application level, simply 

an application 

programming interface 

(API) to the kernel thread 

facility

� Windows is an example of 

this approach

P

User

Space

Kernel

Space

(b) Pure kernel-level



Advantages of KLTs

• The kernel can simultaneously schedule 

multiple threads from the same process on 

multiple processors 

• If one thread in a process is blocked, the 

kernel can schedule another thread of the 

same process

• Kernel routines themselves can be     

multithreaded

Disadvantages of KLTs

• The transfer of control from one thread to 

another within the same process requires a 

mode switch to the kernel

Operation User-Level Threads 
Kernel-Level 

Threads Processes 

Null Fork 34 948 11,300 

Signal Wait 37 441 1,840 

Thread and Process Operation Latencies (µs)



Combined Approaches

• Thread creation is 

done completely in 

the user space, as is 

the bulk of the 

scheduling and 

synchronization of 

threads within an 

application

• Solaris is a good 

example
P P

User

Space
Threads

Library

Kernel

Space

(c) Combined

Threads:Processes Description Example Systems 

1:1 Each thread of execution is a 

unique process with its own 

address space and resources. 

Traditional UNIX 

implementations 

M:1 A process defines an address 

space and dynamic resource 
ownership. Multiple threads 

may be created and executed 

within that process. 

Windows NT, Solaris, Linux, 

OS/2, OS/390, MACH 

1:M A thread may migrate from 

one process environment to 

another. This allows a thread 

to be easily moved among 
distinct systems. 

Ra (Clouds), Emerald 

M:N Combines attributes of M:1 

and 1:M cases. 

TRIX 

Relationship between Threads and Processes 



re
la

ti
v

e 
sp

ee
d

u
p

0

2

4

6

8

21

number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

7 8

Figure 4.7  Performance Effect of Multiple Cores

re
la

ti
v

e 
sp

ee
d

u
p

10%

5%

15%
20%

0

0.5

1.0

1.5

2.0

2.5

21

number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 4.8  Scaling of Database Workloads on Multiple-Processor Hardware

0
0

16

32

48

64

16 32

number of CPUs

sc
a
li

n
g

48 64

per
fe

ct
 s
ca

lin
g

Oracle DSS 4-way join

TMC data mining
DB2 DSS scan & aggs

Oracle ad hoc insurance OLTP



Applications That Benefit

• Multithreaded native applications

– Characterized by having a small number of highly 

threaded processes 

• Multiprocess applications

– Characterized by the presence of many single-threaded 

processes

Applications That Benefit

• Java applications

– All applications that use a Java 2 Platform, Enterprise 

Edition application server can immediately benefit from 

multicore technology

• Multi-instance applications

– Multiple instances of the application in parallel



Render

Skybox Main View

Scene List

For each object

Particles

Sim and Draw

Bone Setup

Draw

Character

Etc.

Monitor Etc.

Figure 4.9  Hybrid Threading for Rendering Module

Valve Game Software

Windows Process and Thread 

Management

• An application consists of one or more 

processes

• Each process provides the resources needed 

to execute a program

• A thread is the entity within a process that 

can be scheduled for execution

• A job object allows groups of process to be 

managed as a unit



Windows Process and Thread 

Management

• A thread pool is a collection of worker threads 

that efficiently execute asynchronous callbacks on 

behalf of the application

• A fiber is a unit of execution that must be 

manually scheduled by the application

• User-mode scheduling (UMS) is a lightweight 

mechanism that applications can use to schedule 

their own threads

Management of Background 

Tasks and Application Lifetimes

• Beginning with Windows 8, and carrying 

through to Windows 10, developers are 

responsible for managing the state of their 

individual applications

• Previous versions of Windows always give 

the user full control of the lifetime of a 

process



Management of Background 

Tasks and Application Lifetimes

• In the new Metro interface Windows takes 

over the process lifecycle of an application

– A limited number of applications can run 

alongside the main app in the Metro UI 

using the SnapView functionality

– Only one Store application can run at one 

time

Management of Background 

Tasks and Application Lifetimes

• Live Tiles give the appearance of 

applications constantly running on the 

system

– In reality they receive push notifications 

and do not use system resources to 

display the dynamic content offered



Metro Interface

• Foreground application in the Metro interface has 

access to all of the processor, network, and disk 

resources available to the user

– All other apps are suspended and have no 

access to these resources

• When an app enters a suspended mode, an event 

should be triggered to store the state of the user’s 

information

– This is the responsibility of the application 

developer

Metro Interface

• Windows may terminate a background app

– You need to save your app’s state when it’s 

suspended, in case Windows terminates it so 

that you can restore its state later

– When the app returns to the foreground another 

event is triggered to obtain the user state from 

memory



Windows Process

Important characteristics of Windows 
processes are:

• Windows processes are implemented as objects

• A process can be created as a new process or a copy of an 

existing process

• An executable process may contain one or more threads

• Both process and thread objects have built-in 

synchronization capabilities

Process

object

Access

token

Virtual address descriptors

Thread x

File y

Section z

Handle1

Handle2

Handle3

Available

objects

Figure 4.10  A Windows Process and Its Resources

Handle Table



Process and Threads Objects

Windows makes use of two types of        

process-related objects:

Processes

• An entity 
corresponding to 
a user job or 
application that 
owns resources

Threads

• A dispatchable 
unit of work that 
executes 
sequentially and 
is interruptible

Windows 

Process 

Object 

Attributes

Process ID A unique value that identifies the process to the operating system. 
 

Security descriptor Describes who created an object, who can gain access to or use the 

object, and who is denied access to the object. 

 

Base priority A baseline execution priority for the process's threads. 

 

Default processor affinity The default set of processors on which the process's threads can 
run. 

 

Quota limits The maximum amount of paged and nonpaged system memory, 

paging file space, and processor time a user's processes can use. 

 

Execution time The total amount of time all threads in the process have executed. 

 
I/O counters Variables that record the number and type of I/O operations that 

the process's threads have performed. 

 

VM operation counters Variables that record the number and types of virtual memory 

operations that the process's threads have performed. 

 

Exception/debugging ports  Interprocess communication channels to which the process 
manager sends a message when one of the process's threads causes 

an exception. Normally, these are connected to environment 

subsystem and debugger processes, respectively. 

 

Exit status The reason for a process's termination. 



Windows 

Process 

Thread

Attributes

Thread ID A unique value that identifies a thread when it calls a server. 
 

Thread context The set of register values and other volatile data that defines the 

execution state of a thread. 

 

Dynamic priority The thread's execution priority at any given moment. 

 

Base priority The lower limit of the thread's dynamic priority. 
 

Thread processor affinity The set of processors on which the thread can run, which is a 

subset or all of the processor affinity of the thread's process. 

 

Thread execution time The cumulative amount of time a thread has executed in user mode 

and in kernel mode. 

 
Alert status A flag that indicates whether a waiting thread may execute an 

asynchronous procedure call. 

 

Suspension count The number of times the thread's execution has been suspended 

without being resumed. 

 

Impersonation token A temporary access token allowing a thread to perform operations 
on behalf of another process (used by subsystems). 

 

Termination port An interprocess communication channel to which the process 

manager sends a message when the thread terminates (used by 

subsystems). 

 

Thread exit status The reason for a thread's termination. 

Multithreading

Achieves concurrency 
without the overhead of 
using multiple processes

Threads within the same 
process can exchange 

information through their 
common address space and 
have access to the shared 
resources of the process

Threads in different 
processes can exchange 

information through shared 
memory that has been set up 
between the two processes



Figure 4.11   Windows Thread States

Transition

Ready

Waiting

Runnable

Not Runnable

StandbyPick to

Run
Switch

Preempted

Block/

Suspend

Unblock/Resume

Resource Available
Resource

Available

Unblock

Resource Not Available

Terminate

Terminated

Running

Solaris Process

• Includes the user’s address space, stack, and 
process control blockProcess

• A user-created unit of execution within a process
User-level 
Threads

• A mapping between ULTs and kernel threads
Lightweight 

Processes (LWP)

• Fundamental entities that can be scheduled and 
dispatched to run on one of the system processorsKernel Threads

• Makes use of four thread-related concepts:



Hardware

Figure 4.12   Processes and Threads in Solaris

Kernel

System calls

syscall()syscall()

Process

Kernel

thread

Kernel

thread

Lightweight

process (LWP)

Lightweight

process (LWP)

user

thread

user

thread

Process ID

UNIX Process Structure

User IDs

Signal Dispatch Table

File Descriptors

Memory Map

Priority
Signal Mask

Registers

STACK

Priority
LWP ID

Signal Mask
Registers

STACK

Processor State

Process ID

Solaris Process Structure

User IDs

Signal Dispatch Table

File Descriptors

LWP 1

Priority
LWP ID

Signal Mask
Registers

STACK

LWP 2

Memory Map

Figure 4.13  Process Structure in Traditional UNIX and Solaris [LEWI96]



A Lightweight Process (LWP) 

Data Structures Includes:

• An LWP identifier

• The priority of this LWP and hence the 

kernel thread that supports it 

• A signal mask that tells the kernel which 

signals will be accepted 

• Saved values of user-level registers 

A Lightweight Process (LWP) 

Data Structures Includes:

• The kernel stack for this LWP, which 

includes system call arguments, results, and 

error codes for each call level

• Resource usage and profiling data

• Pointer to the corresponding kernel thread

• Pointer to the process structure



IDLE

thread_create() intr()

swtch()
syscall()

wakeup()

prun() pstop() exit() reap()

preempt()

RUN

PINNED

ONPROC SLEEP

STOP ZOMBIE FREE

Figure 4.14  Solaris Thread States

Interrupts as Threads

� Most operating systems contain two fundamental 

forms of concurrent activity:

Processes 
(threads)

Cooperate with each other and manage the use of shared data 
structures by primitives that enforce mutual exclusion and 
synchronize their execution

Interrupts Synchronized by preventing their handling for a period of time

� Solaris unifies these two concepts into a single model, namely 
kernel threads, and the mechanisms for scheduling and executing 
kernel threads

� To do this, interrupts are converted to kernel threads



Solaris Solution

• Solaris employs a set of kernel threads to handle 

interrupts

– An interrupt thread has its own identifier, 

priority, context, and stack

– The kernel controls access to data structures 

and synchronizes among interrupt threads using 

mutual exclusion primitives

– Interrupt threads are assigned higher priorities 

than all other types of kernel threads

Linus Tasks

A process, or task, in 
Linux is represented 
by a task_struct data 

structure

This structure contains 
information in a 

number of categories



Stopped

Ready

Running

State

Uninterruptible

Interruptible

Executing Zombie

Figure 4.15   Linux Process/Thread Model

creation
scheduling

termination

signalsignal

event
signal

or

event

Linux Threads

Linux does 
not 

recognize a 
distinction 
between 

threads and 
processes

User-level 
threads are 

mapped into 
kernel-level 
processes

A new 
process is 
created by 

copying the 
attributes of 
the current 

process

The new 
process can 
be cloned so 
that it shares 

resources

The clone() 
call creates 

separate 
stack spaces 

for each 
process



Linux Namespaces

• A namespace enables a process to have a 

different view of the system than other 

processes that have other associated 

namespaces

• There are currently six namespaces in Linux

– mnt - pid

– net - ipc

– uts -user

Android Process and Thread 

Management

• An Android application is the software that 

implements an app

• Each Android application consists of one or more 

instance of one or more of four types of 

application components



Android Process and Thread 

Management

• Each component performs a distinct role in the 

overall application behavior, and each component 

can be activated independently within the 

application and even by other applications

• Four types of components:

– Activities 

– Services

– Content providers

– Broadcast receivers

Dedicated Process

Figure 4.16  Android Application

Broadcast
Receiver

Application

Dedicated
Virtual Machine

Content
Provider

Activity Service



Activities

• An Activity is an application component 

that provides a screen with which users can 

interact in order to do something

• Each Activity is given a window in which to 

draw its user interface

• The window typically fills the screen, but 

may be smaller than the screen and float on 

top of other windows

Activities

• An application may include multiple 

activities

• When an application is running, one activity 

is in the foreground, and it is this activity 

that interacts with the user

• The activities are arranged in a last-in-first-

out stack in the order in which each activity 

is opened



Activities

• If the user switches to some other activity 

within the application, the new activity is 

created and pushed on to the  top of the 

back stack, while the preceding foreground 

activity becomes the second item on the 

stack for this application

Resumed

Paused

Entire

Lifetime

Visible

Lifetime

Foreground

Lifetime

Stopped

Figure 4.17  Activity State Transition Diagram

Activity

launched

App process

killed

Activity

shut down

onCreate()

onStart() onRestart()

onResume()

onPause()

onStop()

onDestroy()

User returns

to the activity

Apps with higher

priority need memory

User navigates

to the activity

User navigates

to the activity



Processes and Threads

• A precedence hierarchy is 

used to determine which 

process or processes to kill in 

order to reclaim needed 

resources

• Processes are killed beginning 

with the lowest precedence 

first

• The levels of the hierarchy, in 

descending order of 

precedence are:

Foreground process

Visible process

Service process

Background process

Empty process

Mac OS X Grand Central 

Dispatch (GCD)

• Provides a pool of available threads

• Designers can designate portions of 

applications, called blocks, that can be 

dispatched independently and run 

concurrently

• Concurrency is based on the number of 

cores available and the thread capacity of 

the system



Block

• A simple extension to a language

• A block defines a self-contained unit of work

• Enables the programmer to encapsulate complex 

functions

• Scheduled and dispatched by queues

• Dispatched on a first-in-first-out basis

• Can be associated with an event source,              

such as a timer, network socket, or file       

descriptor

Summary

• Processes and threads

– Multithreading

– Thread functionality

• Types of threads

– User level and kernel level threads

• Multicore and multithreading

– Performance of Software on Multicore



Summary

• Windows process and thread management

– Management of background tasks and application 

lifecycles

– Windows process

– Process and thread objects

– Multithreading

– Thread states

– Support for OS subsystems

Summary

• Solaris thread and SMP management

– Multithreaded architecture

– Motivation

– Process structure

– Thread execution

– Interrupts as threads



Summary

• Linux process and thread management

– Tasks/threads/namespaces

• Android process and thread management

– Android applications

– Activities

– Processes and threads

• Mac OS X grand central dispatch


