
CSC 553 Operating Systems

Lecture 3- Process Description and

Control

Let’s Review

• A computer platform consists of a collection
of hardware resources

• Computer applications are developed to
perform some task

• It is inefficient for applications to be written
directly for a given hardware platform

Let’s Review

• The OS was developed to provide a

convenient, feature-rich, secure, and

consistent interface for applications to use

• We can think of the OS as providing a

uniform, abstract representation of

resources that can be requested and

accessed by applications

OS Management of Application

Execution

• Resources are made available to multiple

applications

• The processor is switched among multiple

applications so all will appear to be

progressing

• The processor and I/O devices can be used

efficiently

Process Elements

• Two essential elements of a process are:

– Program code

• which may be shared with other processes

that are executing the same program

– A set of data associated with that code

• when the processor begins to execute the

program code, we refer to this executing

entity as a process

Process Elements

• While the program is executing, this process can

be uniquely characterized by a number of

elements, including:

Identifier

State Priority
Program
counter

Memory
pointers

Context data
I/O status

information
Accounting
information

Process Control

Block

• Contains the process elements

• It is possible to interrupt a

running process and later

resume execution as if the

interruption had not occurred

• Created and managed by the

operating system

• Key tool that allows support for

multiple processes

Identifier

Figure 3.1 Simplified Process Control Block

State

Priority

Program counter

Memory pointers

Context data

I/O status

information

Accounting

information

Process States

Trace

The behavior of an
individual process

by listing the
sequence of

instructions that
execute for that

process

The behavior of the processor
can be characterized by

showing how the traces of the
various processes are

interleaved

Dispatcher

Small program
that switches the
processor from
one process to

another

Process

Execution Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)

at Instruction Cycle 13

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

8000

8001

8002

8003

12000

12001

12002

12003

12004

12005

12006

12007

12008

12009

12010

12011

 (a) Trace of Process A (b) Trace of Process B (c) Trace of Process C

5000 = Starting address of program of Process A

8000 = Starting address of program of Process B

12000 = Starting address of program of Process C

Figure 3.3 Traces of Processes of Figure 3.2

1 5000

2 5001

3 5002

4 5003

5 5004

6 5005

-------------------- Timeout

7 100

8 101

9 102

10 103

11 104

12 105

13 8000

14 8001

15 8002

16 8003

----------------I/O Request

17 100

18 101

19 102

20 103

21 104

22 105

23 12000

24 12001

25 12002

26 12003

27 12004

28 12005

-------------------- Timeout

29 100

30 101

31 102

32 103

33 104

34 105

35 5006

36 5007

37 5008

38 5009

39 5010

40 5011

-------------------- Timeout

41 100

42 101

43 102

44 103

45 104

46 105

47 12006

48 12007

49 12008

50 12009

51 12010

52 12011

-------------------- Timeout

 100 = Starting address of dispatcher program

 Shaded areas indicate execution of dispatcher process;
 first and third columns count instruction cycles;

 second and fourth columns show address of instruction being executed

Figure 3.4 Combined Trace of Processes of Figure 3.2

Two-State Process Model

Not

Running Running

Dispatch

Pause

Enter Exit

(a) State transition diagram

Figure 3.5 Two-State Process Model

Dispatch

Queue

Enter Exit

Pause

(b) Queuing diagram

Processor

Reasons for Process Creation

Process Creation

Process
spawning

• When the
OS creates a
process at
the explicit
request of
another
process

Parent
process

• Is the
original,
creating,
process

Child process

• Is the new
process

Process Termination

• There must be a means for a process to indicate its

completion

• A batch job should include a HALT instruction or

an explicit OS service call for termination

• For an interactive application, the action of the

user will indicate when the process is completed

(e.g. log off, quitting an application)

Reasons for

Process

Termination

Normal completion The process executes an OS service call to indicate that it has completed

running.

Time limit exceeded The process has run longer than the specified total time limit. There are a
number of possibilities for the type of time that is measured. These include total

elapsed time ("wall clock time"), amount of time spent executing, and, in the
case of an interactive process, the amount of time since the user last provided

any input.

Memory unavailable The process requires more memory than the system can provide.

Bounds violation The process tries to access a memory location that it is not allowed to access.

Protection error The process attempts to use a resource such as a file that it is not allowed to use,

or it tries to use it in an improper fashion, such as writing to a read-only file.

Arithmetic error The process tries a prohibited computation, such as division by zero, or tries to
store numbers larger than the hardware can accommodate.

Time overrun The process has waited longer than a specified maximum for a certain event to

occur.

I/O failure An error occurs during input or output, such as inability to find a file, failure to

read or write after a specified maximum number of tries (when, for example, a
defective area is encountered on a tape), or invalid operation (such as reading

from the line printer).

Invalid instruction The process attempts to execute a nonexistent instruction (often a result of
branching into a data area and attempting to execute the data).

Privileged instruction The process attempts to use an instruction reserved for the operating system.

Data misuse A piece of data is of the wrong type or is not initialized.

Operator or OS intervention For some reason, the operator or the operating system has terminated the process
(e.g., if a deadlock exists).

Parent termination When a parent terminates, the operating system may automatically terminate all

of the offspring of that parent.

Parent request A parent process typically has the authority to terminate any of its offspring.

Five-State Process Model

New Ready

Blocked

Running Exit

Figure 3.6 Five-State Process Model

Admit
Dispatch

Timeout

Release

Event

Wait

Event

Occurs

Dispatcher

= Running = Ready

Figure 3.7 Process States for Trace of Figure 3.4

= Blocked

0 5 10 15 20 25 30 35 40 45 50

Process C

Process B

Process A

Figure 3.8 Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event

Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch

ReleaseReady Queue
Admit

Processor

Timeout

Event 1 Queue

Event 1

Occurs

Event 2

Occurs

Event n

Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

Suspended Processes

• Swapping

– Involves moving part of all of a process
from main memory to disk

Suspended Processes

• Swapping

– When none of the processes in main memory is in the
Ready state, the OS swaps one of the blocked processes
out on to disk into a suspend queue

� This is a queue of existing processes that have
been temporarily kicked out of main memory, or
suspended

� The OS then brings in another process from the
suspend queue or it honors a new-process request

� Execution then continues with the newly arrived
process

Suspended Processes

• Swapping

– Swapping, however, is an I/O operation

and therefore there is the potential for

making the problem worse, not better.

Because disk I/O is generally the fastest

I/O on a system, swapping will usually

enhance performance

Process State Transition Diagram

with Suspend State

New

Suspend

Ready

Blocked

Running Exit
Admit

(a) With One Suspend State

Suspend

E
ve

nt W
ai

t

E
v
en

t

O
cc

u
rs

A
ct

iv
at

e

Dispatch

Timeout

Release

E
v

en
t

O
cc

u
rs

Figure 3.9 Process State Transition Diagram with Suspend States

Ready/

Suspend

New

Ready

Blocked

Running Exit

A
d
m

it

A
d
m

it

(b) With Two Suspend States

E
ve

nt W
ai

t

E
v

en
t

O
cc

u
rs

Dispatch

Timeout

Activate

Suspend

Suspend

Activate

Suspend

Release

Blocked/

Suspend

Characteristics of a Suspended

Process

• The process is not immediately available for

execution

• The process was placed in a suspended state by an

agent: either itself, a parent process, or the OS, for

the purpose of preventing its execution

• The process may or may not be waiting on an

event

• The process may not be removed from this state

until the agent explicitly orders the removal

Reasons for Process Suspension

Processor I/O I/O

Figure 3.10 Processes and Resources (resource allocation at one snapshot in time)

I/O
Main

Memory

Computer

Resources

Virtual

Memory

P1 P2 Pn

Memory

Devices

Files

Processes

Process 1

Memory Tables

Process

Image

Process

1

Process

Image

Process

n

I/O Tables

File Tables

Figure 3.11 General Structure of Operating System Control Tables

Primary Process Table

Process 2

Process 3

Process n

Memory Tables

• Used to keep track of

both main (real) and

secondary (virtual)

memory

• Processes are

maintained on

secondary memory

using some sort of

virtual memory or

simple swapping

mechanism

I/O Tables

• Used by the OS to

manage the I/O

devices and channels

of the computer

system

• At any given time, an

I/O device may be

available or assigned

to a particular process

File Tables

• These tables provide information about:

– Existence of files

– Location on secondary memory

– Current status

– Other attributes

• Information may be maintained and used by a file

management system

– In which case the OS has little or no knowledge of files

• In other operating systems, much of the detail of

file management is managed by the OS itself

Process Tables

• Must be maintained to manage processes

• There must be some reference to memory,

I/O, and files, directly or indirectly

• The tables themselves must be accessible by

the OS and therefore are subject to memory

management

Process Control Structures

• Where the
process is located

• The attributes of
the process that
are necessary for
its management

To manage
and control
a process
the OS
must

know:

Process Control Structures - Process

Location

• A process must include a program or set of

programs to be executed

• A process will consist of at least sufficient

memory to hold the programs and data of that

process

• The execution of a program typically involves a

stack that is used to keep track of procedure calls

and parameter passing between procedures

Process Control Structures - Process

Attributes

• Each process has associated with it a number of

attributes that are used by the OS for process

control

• The collection of program, data, stack, and

attributes is referred to as the process image

• Process image location will depend on the

memory management scheme being used

Typical Elements of a Process Image

User Data

 The modifiable part of the user space. May include program data, a user stack area, and

programs that may be modified.

User Program

 The program to be executed.

Stack

 Each process has one or more last-in-first-out (LIFO) stacks associated with it. A stack is

used to store parameters and calling addresses for procedure and system calls.

Process Control Block

 Data needed by the OS to control the process (see Table 3.5).

Typical

Elements

of a

Process

Control

Block

Process Identification

Identifiers
 Numeric identifiers that may be stored with the process control block include

 •Identifier of this process

 •Identifier of the process that created this process (parent process)
 •User identifier

Processor State Information

User-Visible Registers

 A user-visible register is one that may be referenced by means of the machine language that the

processor executes while in user mode. Typically, there are from 8 to 32 of these registers, although
some RISC implementations have over 100.

Control and Status Registers
 These are a variety of processor registers that are employed to control the operation of the processor.

These include

 •Program counter: Contains the address of the next instruction to be fetched

 •Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry,
equal, overflow)

 •Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers

 Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used

to store parameters and calling addresses for procedure and system calls. The stack pointer points to
the top of the stack.

Typical

Elements

of a

Process

Control

Block

Process Control Information

Scheduling and State Information
 This is information that is needed by the operating system to perform its scheduling function. Typical

items of information:

 •Process state: Defines the readiness of the process to be scheduled for execution (e.g., running,
ready, waiting, halted).

 •Priority: One or more fields may be used to describe the scheduling priority of the process. In

some systems, several values are required (e.g., default, current, highest-allowable)

 •Scheduling-related information: This will depend on the scheduling algorithm used. Examples
are the amount of time that the process has been waiting and the amount of time that the process

executed the last time it was running.

 •Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring

 A process may be linked to other process in a queue, ring, or some other structure. For example, all
processes in a waiting state for a particular priority level may be linked in a queue. A process may

exhibit a parent-child (creator-created) relationship with another process. The process control block

may contain pointers to other processes to support these structures.

Interprocess Communication

 Various flags, signals, and messages may be associated with communication between two

independent processes. Some or all of this information may be maintained in the process control
block.

Process Privileges
 Processes are granted privileges in terms of the memory that may be accessed and the types of

instructions that may be executed. In addition, privileges may apply to the use of system utilities and

services.

Memory Management

 This section may include pointers to segment and/or page tables that describe the virtual memory

assigned to this process.

Resource Ownership and Utilization

 Resources controlled by the process may be indicated, such as opened files. A history of utilization of
the processor or other resources may also be included; this information may be needed by the

scheduler.

Process Identification

• Each process is assigned a unique numeric

identifier

– Otherwise there must be a mapping that allows

the OS to locate the appropriate tables based on

the process identifier

• Many of the tables controlled by the OS

may use process identifiers to cross-

reference process tables

Process Identification

• Memory tables may be organized to provide a map

of main memory with an indication of which

process is assigned to each region

– Similar references will appear in I/O and file tables

• When processes communicate with one another,

the process identifier informs the OS of the

destination of a particular communication

• When processes are allowed to create other

processes, identifiers indicate the parent and

descendents of each process

Processor State Information

• Contains condition
codes plus other
status information

• EFLAGS register
is an example of a
PSW used by any
OS running on an
x86 processor

Program
status
word

(PSW)

• User-visible
registers

• Control and
status
registers

• Stack
pointers

Consists
of the

contents
of

processor
registers

Figure 3.12 x86 EFLAGS Register

X ID = Identification flag

X VIP = Virtual interrupt pending

X VIF = Virtual interrupt flag

X AC = Alignment check

X VM = Virtual 8086 mode

X RF = Resume flag

X NT = Nested task flag

X IOPL = I/O privilege level

S OF = Overflow flag

C DF = Direction flag

X IF = Interrupt enable flag

X TF = Trap flag

S SF = Sign flag

S ZF = Zero flag

S AF = Auxiliary carry flag

S PF = Parity flag

S CF = Carry flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0
I

D

V

I

P

V

I

F

A

C

V

M

R

F
0

N

T

I

O

P

L

O

F

D

F

I

F

T

F

S

F

Z

F
0

A

F
0

P

F
1

C

F

0

S Indicates a Status Flag

C Indicates a Control Flag

X Indicates a System Flag

Shaded bits are reserved

x86

EFLAGS

Register

Bits

Status Flags (condition codes)
AF (Auxiliary carry flag)
Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation using the

AL register.

CF (Carry flag)

Indicates carrying out or borrowing into the leftmost bit position following an arithmetic operation. Also
modified by some of the shift and rotate operations.

OF (Overflow flag)

Indicates an arithmetic overflow after an addition or subtraction.
PF (Parity flag)

Parity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd parity.

SF (Sign flag)
Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)

Indicates that the result of an arithmetic or logic operation is 0.

Control Flag

DF (Direction flag)

Determines whether string processing instructions increment or decrement the 16-bit half-registers SI and
DI (for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit operations).

System Flags (should not be modified by application programs)

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or nondoubleword boundary.

ID (Identification flag)

If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction provides
information about the vendor, family, and model.

RF (Resume flag)

Allows the programmer to disable debug exceptions so that the instruction can be restarted after a debug
exception without immediately causing another debug exception.

IOPL (I/O privilege level)

When set, causes the processor to generate an exception on all accesses to I/O devices during protected

mode operation.
IF (Interrupt enable flag)

When set, the processor will recognize external interrupts.

TF (Trap flag)
When set, causes an interrupt after the execution of each instruction. This is used for debugging.

NT (Nested task flag)

Indicates that the current task is nested within another task in protected mode operation.
VM (Virtual 8086 mode)

Allows the programmer to enable or disable virtual 8086 mode, which determines whether the processor

runs as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)

Used in virtual 8086 mode instead of IF.

Process Control Information

• The additional information needed by the

OS to control and coordinate the various

active processes

Process

Identification
Process

Control

Block

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Process

Identification

Process 1 Process 2 Process n

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Process

Identification

Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Shared Address

Space

Figure 3.13 User Processes in Virtual Memory

Running

Ready

Blocked

Process

Control Block

Figure 3.14 Process List Structures

Role of the Process Control Block

• The most important data structure in an OS

– Contains all of the information about a process

that is needed by the OS

–Blocks are read and/or modified by virtually

every module in the OS

–Defines the state of the OS

Role of the Process Control Block

• Difficulty is not access, but protection

–A bug in a single routine could damage process

control blocks, which could destroy the

system’s ability to manage the affected

processes

–A design change in the structure or semantics of

the process control block could affect a number

of modules in the OS

Modes of Execution

• User Mode

– Less-privileged mode

– User programs typically execute in this mode

• System Mode

– More-privileged mode

– Also referred to as control mode or kernel

mode

– Kernel of the operating system

Typical

Functions

of an

Operating

System

Kernel

Process Management

 •Process creation and termination

 •Process scheduling and dispatching

 •Process switching

 •Process synchronization and support for interprocess communication
 •Management of process control blocks

Memory Management

 •Allocation of address space to processes

 •Swapping

 •Page and segment management

I/O Management

 •Buffer management

 •Allocation of I/O channels and devices to processes

Support Functions

 •Interrupt handling

 •Accounting

 •Monitoring

Process Creation

• Once the OS decides to create a new process it:

Assigns a unique process identifier
to the new process

Allocates space for the process

Initializes the process control block

Sets the appropriate linkages

Creates or expands other data
structures

Mechanisms for Interrupting the

Execution of a Process

Mechanism Cause Use

Interrupt External to the execution of the

current instruction

Reaction to an asynchronous

external event

Trap Associated with the execution of
the current instruction

Handling of an error or an
exception condition

Supervisor call Explicit request Call to an operating system

function

System Interrupts

• Due to some sort of event that is external to and

independent of the currently running process

– Clock interrupt

– I/O interrupt

– Memory fault

• Time slice

– The maximum amount of time that a process

can execute before being interrupted

System Interrupts - Traps

• An error or exception condition generated within

the currently running process

• OS determines if the condition is fatal

– Moved to the Exit state and a process switch

occurs

– Action will depend on the nature of the error

the design of the OS

Mode Switching

If no interrupts are
pending the processor:

Proceeds to the fetch stage and fetches the
next instruction of the current program in

the current process

If an interrupt is
pending the processor:

Sets the program counter to the starting
address of an interrupt handler program

Switches from user mode to kernel mode so
that the interrupt processing code may

include privileged instructions

Change of Process State

• The steps in
a full
process
switch are:

Save the context of
the processor

Update the process
control block of the
process currently in
the Running state

Move the process
control block of this

process to the
appropriate queue

Select another
process for
execution

Update the process
control block of the

process selected

Update memory
management data

structures

Restore the context
of the processor to

that which existed at
the time the selected

process was last
switched out

Execution

of the

Operating

System

P1 P2 Pn

Kernel

(a) Separate kernel

P1 P2 Pn OS1 OSk

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating

System and User Processes

OS

Func-

tions

OS

Func-

tions

OS

Func-

tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

Execution

Within

User

Processes

Process

Identification

Process Control

Block
Processor State

Information

Process Control

Information

User Stack

Private User

Address Space

(Programs, Data)

Kernel Stack

Shared Address

Space

Figure 3.16 Process Image: Operating System

Executes Within User Space

Unix SVR4

• Uses the model where most of the OS executes

within the environment of a user process

• System processes run in kernel mode

– Executes operating system code to perform

administrative and housekeeping functions

• User Processes

– Operate in user mode to execute user programs and

utilities

– Operate in kernel mode to execute instructions that

belong to the kernel

– Enter kernel mode by issuing a system call, when an

exception is generated, or when an interrupt occurs

UNIX Process States

Created

Sleep,

Swapped

Ready to Run

In Memory

Ready to Run

Swapped

Asleep in

Memory
Zombie

Kernel

Running

User

Running

Preempted

fork

not enough memory

(swapping system only)
enough

memory

swap in

swap out

swap out

wakeupwakeupsleep

return

preempt

return

to user

system call,

interrupt

exit

reschedule

process

interrupt,

interrupt return

Figure 3.17 UNIX Process State Transition Diagram

UNIX

Process

Image

User-Level Context

Process text Executable machine instructions of the program
Process data Data accessible by the program of this process

User stack Contains the arguments, local variables, and pointers for functions

executing in user mode

Shared memory Memory shared with other processes, used for interprocess

communication

Register Context

Program counter Address of next instruction to be executed; may be in kernel or

user memory space of this process

Processor status register Contains the hardware status at the time of preemption; contents

and format are hardware dependent

Stack pointer Points to the top of the kernel or user stack, depending on the mode

of operation at the time or preemption

General-purpose registers Hardware dependent

System-Level Context

Process table entry Defines state of a process; this information is always accessible to

the operating system
U (user) area Process control information that needs to be accessed only in the

context of the process

Per process region table Defines the mapping from virtual to physical addresses; also

contains a permission field that indicates the type of access

allowed the process: read-only, read-write, or read-execute

Kernel stack Contains the stack frame of kernel procedures as the process

executes in kernel mode

Process status Current state of process.

Pointers To U area and process memory area (text, data, stack).

Process size Enables the operating system to know how much space to allocate

the process.

User identifiers The real user ID identifies the user who is responsible for the

running process. The effective user ID may be used by a process

to gain temporary privileges associated with a particular program;

while that program is being executed as part of the process, the

process operates with the effective user ID.

Process identifiers ID of this process; ID of parent process. These are set up when the

process enters the Created state during the fork system call.

Event descriptor Valid when a process is in a sleeping state; when the event occurs,

the process is transferred to a ready-to-run state.

Priority Used for process scheduling.

Signal Enumerates signals sent to a process but not yet handled.

Timers Include process execution time, kernel resource utilization, and

user-set timer used to send alarm signal to a process.

P_link Pointer to the next link in the ready queue (valid if process is ready
to execute).

Memory status Indicates whether process image is in main memory or swapped

out. If it is in memory, this field also indicates whether it may be

swapped out or is temporarily locked into main memory.

UNIX

Process

Table

Entry

UNIX

U(for

User)

Area

Process Control

• Process creation is by means of the kernel

system call, fork()

• When a process issues a fork request, the

OS performs the functions on the following

slide:

Process Control

1
• Allocates a slot in the process table for the new process

2
• Assigns a unique process ID to the child process

3

• Makes a copy of the process image of the parent, with the
exception of any shared memory

4

• Increments counters for any files owned by the parent, to
reflect that an additional process now also owns those files

5
• Assigns the child process to the Ready to Run state

6

• Returns the ID number of the child to the parent process, and a
0 value to the child process

After Creation

• After creating the process the Kernel can do one of the

following, as part of the dispatcher routine:

– Stay in the parent process. Control returns to user

mode at the point of the fork call of the parent.

– Transfer control to the child process. The child

process begins executing at the same point in the code

as the parent, namely at the return from the fork call.

– Transfer control to another process. Both parent and

child are left in the Ready to Run state.

