
CSC 553 Operating Systems

Lecture 2- Operating System

Overview

What is an Operating System?

• A program that controls the execution of

application programs

• An interface between applications and

hardware

• Main objectives of an OS:

– Convenience

– Efficiency

– Ability to evolve

Hardware and Software Structure

for a Computer

I/O devices

and

networking

System interconnect

(bus)

Software

Application

programming interface

Instruction Set

Architecture

Hardware

Main

memory

Memory

translation

Execution hardware

Figure 2.1 Computer Hardware and Software Structure

Application programs

Application

binary interface

Operating system

Libraries/utilities

Operating System Services

• Program development

• Program execution

• Access I/O devices

• Controlled access to files

• System access

• Error detection and response

• Accounting

Key Interfaces

• Instruction set architecture (ISA)

• Application binary interface (ABI)

• Application programming interface (API)

The Operating System as

Resource Manager

• The OS is responsible for controlling the

use of a computer’s resources, such as:

– I/O

– Main and secondary memory

– Processor execution time

Operating System

as Resource Manager

• Functions in the same way as ordinary

computer software

• Program, or suite of programs, executed by

the processor

• Frequently relinquishes control and must

depend on the processor to allow it to regain

control

Operating System as Resource

Manager

Memory

Computer System

I/O Devices

Operating

System

Software

Programs

and Data

Processor Processor

OS

Programs

Data

Storage

I/O Controller

I/O Controller

Printers,

keyboards,

digital camera,

etc.

I/O Controller

Figure 2.2 The Operating System as Resource Manager

Evolution of Operating Systems

• A major OS will evolve over time for a

number of reasons:

Hardware upgrades

New types of hardware

New services

Fixes

Evolution of

Operating Systems

Serial
Processing

Simple Batch
Systems

Multiprogrammed
Batch Systems

Time
Sharing
Systems

Serial Processing – Earliest

Computers

• No operating system

– Programmers interacted directly with the
computer hardware

• Computers ran from a console with display
lights, toggle switches, some form of input
device, and a printer

• Users have access to the computer in
“series”

Serial Processing - Problems

• Scheduling:

– Most installations used a hardcopy sign-up

sheet to reserve computer time

• Time allocations could run short or long, resulting in

wasted computer time

• Setup time

– A considerable amount of time was spent on

setting up the program to run

Simple Batch Systems

• Early computers were very expensive

– Important to maximize processor utilization

• Monitor

– User no longer has direct access to processor

– Job is submitted to computer operator who

batches them together and places them on an

input device

– Program branches back to the monitor when

finished

Monitor Point of View

• Monitor controls the

sequence of events

• Resident Monitor is

software always in

memory

• Monitor reads in job

and gives control

• Job returns control to

monitor

Interrupt

Processing

Device

Drivers

Job

Sequencing

Control Language

Interpreter

User

Program

Area

Monitor

Boundary

Figure 2.3 Memory Layout for a Resident Monitor

Processor Point of View

• Processor executes instruction from the memory

containing the monitor

• Executes the instructions in the user program until

it encounters an ending or error condition

• “Control is passed to a job” means processor is

fetching and executing instructions in a user

program

• “Control is returned to the monitor” means that

the processor is fetching and executing

instructions from the monitor program

Job Control Language (JCL)

Special type of programming
language used to provide

instructions to the monitor

What compiler to use

What data to use

Desirable Hardware Features

• While the user program is executing, it must not alter the memory area
containing the monitor

Memory protection

• Prevents a job from monopolizing the system

Timer

• Can only be executed by the monitor

Privileged instructions

• Gives OS more flexibility in controlling user programs

Interrupts

Modes of Operation

User Mode

• User program executes in
user mode

• Certain areas of memory are
protected from user access

• Certain instructions may not
be executed

Kernel Mode

• Monitor executes in kernel
mode

• Privileged instructions may
be executed

• Protected areas of memory
may be accessed

Simple Batch System Overhead

• Processor time alternates between execution

of user programs and execution of the

monitor

• Sacrifices:

– Some main memory is now given over to the

monitor

– Some processor time is consumed by the

monitor

• Despite overhead, the simple batch system

improves utilization of the computer

Multiprogrammed Batch Systems

Processor is often
idle

Even with
automatic

job
sequencing

I/O devices
are slow

compared to
processor

System Utilization

Read one record from file 15 µs

Execute 100 instructions 1 µs

Write one record to file 15 µs

TOTAL 31 µs

Percent CPU Utilization =

1

31
= 0.032 = 3.2%

Figure 2.4 System Utilization Example

Uniprogramming

Run Wait WaitRun

Time

(a) Uniprogramming

Program A

The processor spends a certain amount of time executing,

until it reaches an I/O instruction; it must then wait until

that I/O instruction concludes before proceeding

Multiprogramming

Run Wait WaitRun

Run

A

Run

A

Run WaitWait WaitRun

Run

B
Wait Wait

Run

B

Time

(b) Multiprogramming with two programs

Program A

Program B

Combined

There must be enough memory to hold the OS

(resident monitor) and one user program

When one job needs to wait for I/O, the processor can switch

to the other job, which is likely not waiting for I/O

Multiprogramming

Run

A

Run

A

Run

B

Run

B

Run

C

Run

C

Time

(c) Multiprogramming with three programs

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Also known as multitasking

Memory is expanded to hold three, four, or more

programs and switch among all of them

Multiprogramming Example

 JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration 5 min 15 min 10 min

Memory required 50 M 100 M 75 M

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Effects of Multiprogramming on

Resource Utilization

 Uniprogramming Multiprogramming

Processor use 20% 40%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min 15 min

Throughput 6 jobs/hr 12 jobs/hr

Mean response time 18 min 10 min

Utilization Histograms for

Uniprogramming and Multiprogramming

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3
Job History

Printer

Terminal

Disk

Memory

CPU

100%

0%

100%

0%

100%

0%

100%

0%

100%

0%

0 5 10 15

minutes

(b) Multiprogramming

Figure 2.6 Utilization Histograms

JOB1

JOB2

JOB3

Job History

Printer

Terminal

Disk

Memory

CPU

100%

0%

100%

0%

100%

0%

100%

0%

100%

time

Time-Sharing Systems

• Can be used to handle multiple interactive

jobs

• Processor time is shared among multiple

users

• Multiple users simultaneously access the

system through terminals, with the OS

interleaving the execution of each user

program in a short burst or quantum of

computation

Batch Multiprogramming vs Timesharing

 Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to

operating system

Job control language

commands provided with the

job

Commands entered at the

terminal

Compatible Time-Sharing System (CTSS)

• One of the first time-sharing operating

systems

– Developed at MIT by a group known as Project

MAC

– The system was first developed for the IBM

709 in 1961

– Ran on a computer with 32,000 36-bit words of

main memory, with the resident monitor

consuming 5000 of that

Compatible Time-Sharing System

(CTSS)

• CTSS utilized a technique known as time

slicing

– System clock generated interrupts at a rate of

approximately one every 0.2 seconds

– At each clock interrupt the OS regained control

and could assign the processor to another user

– Thus, at regular time intervals the current user

would be pre-empted and another user loaded in

Compatible Time-Sharing System

(CTSS)

• CTSS utilized a technique known as time

slicing

– To preserve the old user program status for later

resumption, the old user programs and data were

written out to disk before the new user programs

and data were read in

– Old user program code and data were restored in

main memory when that program was next given

a turn

Monitor

Free
Free Free

JOB 1

0

32000

5000

20000

20000

(a)

Monitor

JOB 2

0

32000

5000

25000 25000

(b)

Free

Monitor

JOB 2

0

32000

5000

25000

(f)

Monitor

JOB 3

(JOB 2)

0

32000

5000

10000

(c)

Free

25000

Monitor

JOB 1

(JOB 2)

0

32000

5000

(d)

20000

15000

Free

25000

Monitor

JOB 4

(JOB 2)

(JOB 1)

0

32000

5000

(e)

Figure 2.7 CTSS Operation

Major Achievements

• Operating Systems are among the most

complex pieces of software ever developed

• Major advances in development include:

– Processes

– Memory management

– Information protection and security

– Scheduling and resource management

– System structure

Process

• Fundamental to the structure of operating

systems

A process can be defined as:

A program in execution

An instance of a running program

The entity that can be assigned to, and executed on, a processor

A unit of activity characterized by a single sequential thread of execution, a
current state, and an associated set of system resources

Causes of Errors

• Improper synchronization

– It is often the case that a routine must be
suspended awaiting an event elsewhere in the
system

– Improper design of the signaling mechanism
can result in loss or duplication

Causes of Errors

• Failed mutual exclusion

– More than one user or program attempts to

make use of a shared resource at the same time

– There must be some sort of mutual exclusion

mechanism that permits only one routine at a

time to perform an update against the file

Causes of Errors

• Nondeterminate program operation

– When programs share memory, and their

execution is interleaved by the processor, they

may interfere with each other by overwriting

common memory areas in unpredictable ways

– The order in which programs are scheduled

may affect the outcome of any particular

program

Causes of Errors

• Deadlocks

– It is possible for two or more
programs to be hung up waiting for
each other

Components of a Process

• A process contains three components:

– An executable program

– The associated data needed by the program

(variables, work space, buffers, etc.)

– The execution context (or “process state”) of

the program

Components of a Process

• The execution context is essential:

– It is the internal data by which the OS is able to

supervise and control the process

– Includes the contents of the various process

registers

– Includes information such as the priority of the

process and whether the process is waiting for

the completion of a particular I/O event

Process

Management

• The entire state of the

process at any instant is

contained in its context

• New features can be

designed and incorporated

into the OS by expanding

the context to include any

new information needed to

support the feature

Figure 2.8 Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
Limit

Other

registers

i

b
h

j

b

h
Process

B

Process

A

Main

Memory

Processor

Registers

Process

list

Program
(code)

Memory Management

• The OS has five principal storage

management responsibilities:

Process
isolation

Automatic
allocation and
management

Support of
modular

programming

Protection and
access control

Long-term
storage

Virtual Memory

• A facility that allows programs to address

memory from a logical point of view,

without regard to the amount of main

memory physically available

• Conceived to meet the requirement of

having multiple user jobs reside in main

memory concurrently

Paging

• Allows processes to be comprised of a number of

fixed-size blocks, called pages

• Program references a word by means of a virtual

address, consisting of a page number and an offset

within the page

• Each page of a process may be located anywhere

in main memory

• The paging system provides for a dynamic

mapping between the virtual address used in the

program and a real address (or physical address)

in main memory

Figure 2.9 Virtual Memory Concepts

Main Memory Disk

User

program

A

0

A.0

B.0 B.1

B.5 B.6

B.2 B.3

A.1

A.2

A.7

A.8

A.5

A.9

1

2

3

4

5

6

7

8

9

10

User

program

B

0

1

2

3

4

5

6

Main memory consists of a

number of fixed-length frames,

each equal to the size of a page.

For a program to execute, some

or all of its pages must be in

main memory.

Secondary memory (disk) can

hold many fixed-length pages. A

user program consists of some

number of pages. Pages for all

programs plus the operating system

are on disk, as are files.

Processor
Virtual

Address

Figure 2.10 Virtual Memory Addressing

Real

Address

Disk

Address

Memory

Management

Unit
Main

Memory

Secondary

Memory

Information Protection and Security

• The nature of the

threat that concerns

an organization will

vary greatly

depending on the

circumstances

• The problem

involves controlling

access to computer

systems and the

information stored in

them

Main
issues Availability

Confidentiality

Data integrity

Authenticity

Scheduling and Resource Management

• Key responsibility

of an OS is

managing

resources

• Resource

allocation policies

must consider:

Fairness

Differential
responsiveness

Efficiency

Service

Call

Handler (code)

Service Call

from Process

Interrupt

from Process

Pass Control

to Process

Interrupt

from I/O

Interrupt

Handler (code)

Short-Term

Scheduler

(code)

Long-

Term

Queue

Short-

Term

Queue

I/O

Queues

Operating System

Figure 2.11 Key Elements of an Operating System for Multiprogramming

Different Architectural Approaches

• Demands on operating systems require

new ways of organizing the OS

• Different approaches and design elements

have been tried:

• Microkernel architecture

• Multithreading

• Symmetric multiprocessing

• Distributed operating systems

• Object-oriented design

Microkernel Architecture

• Assigns only a few essential functions to the
kernel:

• The approach:

Address
space

management

Interprocess
communication

(IPC)

Basic
scheduling

Simplifies
implementation

Provides
flexibility

Well suited to a
distributed

environment

Multithreading

• Technique in

which a

process,

executing an

application,

is divided

into threads

that can run

concurrently

Thread

Dispatchable unit of
work

Includes a processor
context and its own
data area for a stack

Executes sequentially
and is interruptible

Process

A collection of one or
more threads and
associated system

resources

By breaking a single
application into

multiple threads, a
programmer has

greater control over
the modularity of the
application and the

timing of application-
related events

Symmetric Multiprocessing (SMP)

• Term that refers to a computer hardware

architecture and also to the OS behavior that

exploits that architecture

• The OS of an SMP schedules processes or

threads across all of the processors

• The OS must provide tools and functions to

exploit the parallelism in an SMP system

Symmetric Multiprocessing (SMP)

• Multithreading and SMP are often discussed

together, but the two are independent

facilities

• An attractive feature of an SMP is that the

existence of multiple processors is

transparent to the user

SMP Advantages

Performance
More than one process can be running

simultaneously, each on a different
processor

Availability
Failure of a single process does not

halt the system

Incremental
Growth

Performance of a system can be
enhanced by adding an additional

processor

Scaling
Vendors can offer a range of products

based on the number of processors
configured in the system

Process 1

Figure 2.12 Multiprogramming and Multiprocessing

Process 2

Process 3

(a) Interleaving (multiprogramming, one processor)

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

OS Design

• Distributed Operating System

– Provides the illusion of a single main memory

space and a single secondary memory space

plus other unified access facilities, such as a

distributed file system

– State of the art for distributed operating systems

lags that of uniprocessor and SMP operating

systems

OS Design

• Object-Oriented Design

– Lends discipline to the process of adding

modular extensions to a small kernel

– Enables programmers to customize an

operating system without disrupting system

integrity

– Also eases the development of distributed tools

and full-blown distributed operating systems

Fault Tolerance

• Refers to the ability of a system or component to

continue normal operation despite the presence of

hardware or software faults

• Typically involves some degree of redundancy

• Intended to increase the reliability of a system

– Typically comes with a cost in financial terms or

performance

• The extent adoption of fault tolerance measures

must be determined by how critical the resource is

Fundamental Concepts

• The basic measures are:

– Reliability

• R(t)

• Defined as the probability of its correct

operation up to time t given that the

system was operating correctly at time

t=0

Fundamental Concepts

• The basic measures are:

– Mean time to failure (MTTF)

• Mean time to repair (MTTR) is the

average time it takes to repair or

replace a faulty element

Fundamental Concepts

• The basic measures are:

– Availability

• Defined as the fraction of time the

system is available to service users’

requests

Availability Classes

Class Availability Annual Downtime

Continuous 1.0 0

Fault Tolerant 0.99999 5 minutes

Fault Resilient 0.9999 53 minutes

High Availability 0.999 8.3 hours

Normal Availability 0.99 - 0.995 44-87 hours

Faults

• Are defined by the IEEE Standards

Dictionary as an erroneous hardware or

software state resulting from:

– Component failure

– Operator error

– Physical interference from the environment

– Design error

– Program error

– Data structure error

Faults

• The standard also states that a fault

manifests itself as:

– A defect in a hardware device or component

– An incorrect step, process, or data definition in

a computer program

Fault Categories

• Permanent

– A fault that, after it occurs, is always

present

– The fault persists until the faulty

component is replaced or repaired

Fault Categories

• Temporary

– A fault that is not present all the time for all

operating conditions

– Can be classified as

• Transient – a fault that occurs only once

• Intermittent – a fault that occurs at multiple,

unpredictable times

Methods of Redundancy

Spatial (physical)
redundancy

Involves the use of
multiple components
that either perform
the same function

simultaneously or are
configured so that
one component is

available as a backup
in case of the failure

of another component

Temporal
redundancy

Involves repeating a
function or operation

when an error is
detected

Is effective with
temporary faults but

not useful for
permanent faults

Information
redundancy

Provides fault
tolerance by

replicating or coding
data in such a way

that bit errors can be
both detected and

corrected

Operating System Mechanisms

• A number of techniques can be incorporated

into OS software to support fault tolerance:

– Process isolation

– Concurrency controls

– Virtual machines

– Checkpoints and rollbacks

Symmetric Multiprocessor OS

Considerations

• A multiprocessor OS must provide all the

functionality of a multiprogramming system plus

additional features to accommodate multiple

processors

• Key design issues:

– Simultaneous concurrent processes or threads

– Scheduling

– Synchronization

– Memory Management

– Reliability and Fault Tolerance

Symmetric Multiprocessor OS

Considerations

• Simultaneous concurrent processes or

threads:

– Kernel routines need to be reentrant to allow

several processors to execute the same kernel

code simultaneously

Symmetric Multiprocessor OS

Considerations

• Scheduling:

– Any processor may perform scheduling, which

complicates the task of enforcing a scheduling

policy

Symmetric Multiprocessor OS

Considerations

• Synchronization:

– With multiple active processes having potential

access to shared address spaces or shared I/O

resources, care must be taken to provide

effective synchronization

Symmetric Multiprocessor OS

Considerations

• Memory management:

– The reuse of physical pages is the biggest

problem of concern

Symmetric Multiprocessor OS

Considerations

• Reliability and Fault Tolerance:

– The OS should provide graceful degradation in

the face of processor failure

Multicore OS Considerations

Hardware parallelism within each
core processor, known as

instruction level parallelism

Potential for multiprogramming
and multithreaded execution

within each processor

Potential for a single application
to execute in concurrent

processes or threads across
multiple cores

• The design challenge

for a many-core

multicore system is to

efficiently harness the

multicore processing

power and intelligently

manage the substantial

on-chip resources

efficiently

• Potential for

parallelism exists at

three levels:

Grand Central Dispatch (GCD)

• Is a multicore support capability

– Once a developer has identified something that

can be split off into a separate task, GCD makes

it as easy and noninvasive as possible to

actually do so

• In essence, GCD is a thread pool

mechanism, in which the OS maps tasks

onto threads representing an available

degree of concurrency

Grand Central Dispatch (GCD)

• Provides the extension to programming

languages to allow anonymous functions,

called blocks, as a way of specifying tasks

• Makes it easy to break off the entire unit of

work while maintaining the existing order

and dependencies between subtasks

Virtual Machine Approach

• Allows one or more cores to be dedicated to

a particular process and then leave the

processor alone to devote its efforts to that

process

• Multicore OS could then act as a hypervisor

that makes a high-level decision to allocate

cores to applications but does little in the

way of resource allocation beyond that

Traditional UNIX Systems

• Developed at Bell Labs and became

operational on a PDP-7 in 1970

• The first notable milestone was porting the

UNIX system from the PDP-7 to the PDP-

11

– First showed that UNIX would be an OS for all

computers

Traditional UNIX Systems

• Next milestone was rewriting UNIX in the

programming language C

– Demonstrated the advantages of using a high-

level language for system code

• Was described in a technical journal for the

first time in 1974

• First widely available version outside Bell

Labs was Version 6 in 1976

Traditional UNIX Systems

• Version 7, released in 1978, is the ancestor

of most modern UNIX systems

• Most important of the non-AT&T systems

was UNIX BSD (Berkeley Software

Distribution), running first on PDP and then

on VAX computers

Hardware Level

Kernel Level

User Level

User Programs

Trap

Hardware Control

System Call Interface

Libraries

Device Drivers

File Subsystem
Process

Control

Subsystem

character block

Buffer Cache

Inter-process

communication

Scheduler

Memory

management

Figure 2.15 Traditional UNIX Kernel

Common

Facilities

virtual

memory

framework

block

device

switch

exec

switch

a.out

file mappings

disk driver

tape driver

network

driver

tty

driver

system

processes

time-sharing

processes

RFS

s5fs

FFS

NFS

device

mappings

anonymous

mappings

coff

elf

STREAMS

vnode/vfs

interface

scheduler

framework

Modern UNIX Kernel

System V Release 4 (SVR4)

• Developed jointly by AT&T and Sun

Microsystems

• Combines features from SVR3, 4.3BSD,

Microsoft Xenix System V, and SunOS

System V Release 4 (SVR4)

• New features in the release include:

– Real-time processing support

– Process scheduling classes

– Dynamically allocated data structures

– Virtual memory management

– Virtual file system

– Preemptive kernel

BSD

• Berkeley Software Distribution

• 4.xBSD is widely used in academic

installations and has served as the basis of a

number of commercial UNIX products

• 4.4BSD was the final version of BSD to be

released by Berkeley

BSD

• There are several widely used, open-source

versions of BSD:

– FreeBSD

• Popular for Internet-based servers and

firewalls

• Used in a number of embedded

systems

BSD

• There are several widely used, open-source

versions of BSD:

– NetBSD

• Available for many platforms

• Often used in embedded systems

– OpenBSD

• An open-source OS that places special

emphasis on security

Solaris 11

• Oracle’s SVR4-based UNIX release

• Provides all of the features of SVR4 plus a

number of more advanced features such as:

– A fully preemptable, multithreaded kernel

– Full support for SMP

– An object-oriented interface to file systems

