
CSC 553 Operating Systems

Lecture 12 - File Management

Files

– Data collections created by users

– The File System is one of the most important parts of

the OS to a user

– Desirable properties of files:

• Long-term existence - Files are stored on disk or other

secondary storage and do not disappear when a user logs off

• Sharable between processes - Files have names and can have

associated access permissions that permit controlled sharing

• Structure - Files can be organized into hierarchical or more

complex structure to reflect the relationships among files

File Systems

• Provide a means to store data organized as

files as well as a collection of functions that

can be performed on files

• Maintain a set of attributes associated with

the file

• Typical operations include:

– Create - Delete

– Open - Close

– Read - Write

File Structure

• Four terms are commonly used when discussing

files:

– Field

– Record

– File

– Database

Structure Terms

• File

– Basic element of data

– Contains a single value

– Fixed or variable length

• Database

– Collection of related data

– Relationships among elements of data are explicit

– Designed for use by a number of different applications

– Consists of one or more types of files

Structure Terms

• File

– Collection of similar records

– Treated as a single entity

– May be referenced by name

– Access control restrictions usually apply at the file level

• Record

– Collection of related fields that can be treated as a unit

by some application program

– Fixed or variable length

File Management System

• Meet the data management needs of the user

• Guarantee that the data in the file are valid

• Optimize performance

• Provide I/O support for a variety of storage device

types

• Minimize the potential for lost or destroyed data

• Provide a standardized set of I/O interface routines

to user processes

• Provide I/O support for multiple users in the case

of multiple-user systems

Minimal Use Requirements

• Each user:

1. Should be able to create, delete, read, write and

modify files

2. May have controlled access to other users’ files

3. May control what type of accesses are allowed to the

users’ files

4. Should be able to move data between files

5. Should be able to back up and recover files in case of

damage

6. Should be able to access his or her files by name

rather than by numeric identifier

Indexed

Sequential
Pile Sequential

Logical I/O

Basic I/O Supervisor

Figure 12.1 File System Software Architecture

Basic File System

Disk Device Driver Tape Device Driver

Indexed Hashed

User Program

Device Drivers

• Lowest level

• Communicates directly with peripheral devices

• Responsible for starting I/O operations on a device

• Processes the completion of an I/O request

• Considered to be part of the operating system

Basic File System

• Also referred to as the physical I/O level

• Primary interface with the environment

outside the computer system

• Deals with blocks of data that are

exchanged with disk or tape systems

• Concerned with the placement of blocks on

the secondary storage device

Basic File System

• Concerned with buffering blocks in main

memory

• Does not understand the content of the data

or the structure of the files involved

• Considered part of the operating system

Basic I/O Supervisor

• Responsible for all file I/O initiation and

termination

• At this level, control structures are

maintained that deal with device I/O,

scheduling, and file status

• Selects the device on which I/O is to be

performed

Basic I/O Supervisor

• Concerned with scheduling disk and tape

accesses to optimize performance

• I/O buffers are assigned and secondary

memory is allocated at this level

• Part of the operating system

Logical I/O

• Enables users and applications to access

records

• Provides general-purpose record I/O

capability

• Maintains basic data about file

Access Method

• Level of the file system closest to the user

• Provides a standard interface between

applications and the file systems and

devices that hold the data

• Different access methods reflect different

file structures and different ways of

accessing and processing the data

Directory

management

Access

method
Blocking

Disk

scheduling

File

allocation

File

Structure

Records

File management concerns

Figure 12.2 Elements of File Management

Operating system concerns

Physical blocks

in main memory

buffers

Physical blocks

in secondary

storage (disk)

User access

control

User & program

comands Operation,

File name

Free storage

management

File

manipulation

functions

I/O

File Organization and Access

• File organization is the logical structuring

of the records as determined by the way in

which they are accessed

File Organization and Access

• In choosing a file organization, several

criteria are important:

– Short access time

– Ease of update

– Economy of storage

– Simple maintenance

– Reliability

• Priority of criteria depends on the

application that will use the file

(a) Pile File

(c) Indexed Sequential File

(d) Indexed File

Figure 12.3 Common File Organizations

Variable-length records

Variable set of fields

Chronological order

(b) Sequential File

Fixed-length records

Fixed set of fields in fixed order

Sequential order based on key field

Main File

Overflow

File

Index

levels

Exhaustive

index

Exhaustive

index

Partial

index

Primary File

(variable-length records)

Index

1
2

n

File Organization Types

• Five of the common file organizations are:

– The pile

– The sequential file

– The indexed sequential file

– The indexed file

– The direct, or hashed, file

The Pile

• Least complicated form of file organization

• Data are collected in the order they arrive

• Each record consists of one burst of data

• Purpose is simply to accumulate the mass of

data and save it

• Record access is by exhaustive search

(a) Pile File

Variable-length records

Variable set of fields

Chronological order

The Sequential File

• Most common form of file structure

• A fixed format is used for records

• Key field uniquely identifies the record

• Typically used in batch applications

• Only organization that is easily stored on

tape as well as disk

(b) Sequential File

Fixed-length records

Fixed set of fields in fixed order

Sequential order based on key field

Indexed Sequential File

• Adds an index to the file to support random

access

• Adds an overflow file

• Greatly reduces the time required to access

a single record

• Multiple levels of indexing can be used to

provide greater efficiency in access

(c) Indexed Sequential File

Main File

Overflow

File

Index

levels
Index

1
2

n

Indexed File

• Records are accessed only through their indexes

• Variable-length records can be employed

• Exhaustive index contains one entry for every

record in the main file

• Partial index contains entries to records where the

field of interest exists

• Used mostly in applications where timeliness of

information is critical

• Examples would be airline reservation systems

and inventory control systems

(d) Indexed File

Exhaustive

index

Exhaustive

index

Partial

index

Primary File

(variable-length records)

Direct or Hashed File

• Access directly any block of a known

address

• Makes use of hashing on the key value

• Often used where:

– Very rapid access is required

– Fixed-length records are used

– Records are always accessed one at a time

Direct or Hashed File

• Examples are:

– Directories

– Pricing tables

– Schedules

– Name lists

B-Trees

• A balanced tree structure with all branches

of equal length

• Standard method of organizing indexes for

databases

• Commonly used in OS file systems

• Provides for efficient searching, adding, and

deleting of items

Key1

Subtree1 Subtree2 Subtree3 Subtreek–1 Subtreek

Figure 12.4 A B-tree Node with k Children

Key2 Keyk–1

B-Tree Characteristics

• A B-tree is characterized by its minimum

degree d and satisfies the following

properties:

– Every node has at most 2d – 1 keys and 2d

children or, equivalently, 2d pointers

– Every node, except for the root, has at least d –

1 keys and d pointers, as a result, each internal

node, except the root, is at least half full and

has at least d children

B-Tree Characteristics

• A B-tree is characterized by its minimum

degree d and satisfies the following

properties:

– The root has at least 1 key and 2 children

– All leaves appear on the same level and contain

no information. This is a logical construct to

terminate the tree; the actual implementation

may differ

– A nonleaf node with k pointers contains k – 1

keys

Figure 12.5 Inserting Nodes into a B-tree

(b) Key = 90 inserted. This is a simple insertion into a node.

(c) Key = 45 inserted. This requires splitting a node into two parts and promoting one key to the root node.

(d) Key = 84 inserted. This requires splitting a node into two parts and promoting one key to the root node

This then requires the root node to be split and a new root created.

(a) B-tree of minimum degree d = 3.

2 30 52 59 60

60

60

67 68 73 85 88 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 39 43 44

23 51 61 71

10

2 30 52 59 67 68 73 85 88 90 9632 43 44 45

23 39 51 61 71

10

2 30 52 59 60 67 68 73 84 85 90 9632 43 44 45

23 39

51

61 71 88

10

Basic Information

File Name Name as chosen by creator (user or program). Must be unique within a specific

directory.

File Type For example: text, binary, load module, etc.

File Organization For systems that support different organizations

Address Information

Volume Indicates device on which file is stored

Starting Address Starting physical address on secondary storage (e.g., cylinder, track, and block
number on disk)

Size Used Current size of the file in bytes, words, or blocks

Size Allocated The maximum size of the file

Access Control Information

Owner User who is assigned control of this file. The owner may be able to grant/deny

access to other users and to change these privileges.

Access Information A simple version of this element would include the user's name and password for
each authorized user.

Permitted Actions Controls reading, writing, executing, transmitting over a network

Usage Information

Date Created When file was first placed in directory

Identity of Creator Usually but not necessarily the current owner

Date Last Read Access Date of the last time a record was read

Identity of Last Reader User who did the reading

Date Last Modified Date of the last update, insertion, or deletion

Identity of Last Modifier User who did the modifying

Date of Last Backup Date of the last time the file was backed up on another storage medium

Current Usage Information about current activity on the file, such as process or processes that

have the file open, whether it is locked by a process, and whether the file has been

updated in main memory but not yet on disk

Information

Elements of

a File

Directory

Operations Performed on a

Directory

• To understand the requirements for a file

structure, it is helpful to consider the types

of operations that may be performed on the

directory:

– Search

– Create files

– Delete files

– List directory

– Update directory

Two-Level Scheme

• There is one directory for each user and a master directory

• Master directory has an entry for each user directory

providing address and access control information

• Each user directory is a simple list of the files of that user

• Names must be unique only within the collection of files of

a single user

• File system can easily enforce access restriction on

directories

Master Directory

Subirectory

Subirectory

File

Figure 12.6 Tree-Structured Directory

Subirectory

Subirectory

File

Subirectory

File

File

System

Master Directory

User_A

User_B

User_C

Directory

"User_C"

Directory

"User_A"Directory "User_B"

Draw

Word

Directory "Unit_A"

ABC

Directory "Word"

Unit_A

Directory "Draw"

ABC

File

"ABC"

Pathname: /User_B/Word/Unit_A/ABC

Pathname: /User_B/Draw/ABC

Figure 12.7 Example of Tree-Structured Directory

File

"ABC"

File Sharing

• Two issues arise when allowing files to be

shared among a number of users:

– Access rights

– Management of simultaneous access

Access Rights

• None - The user would not be allowed to read the
user directory that includes the file

• Knowledge - The user can determine that the file
exists and who its owner is and can then petition
the owner for additional access rights

• Execution - The user can load and execute a
program but cannot copy it

• Reading - The user can read the file for any
purpose, including copying and execution

Access Rights

• Appending - The user can add data to the file but
cannot modify or delete any of the file’s contents

• Updating - The user can modify, delete, and add
to the file’s data

• Changing protection - The user can change the
access rights granted to other users

• Deletion - The user can delete the file from the
file system

User Access Rights

• Owner

– Usually the initial creator of the file

– Has full rights

– May grant rights to others

• Specific Users

– Individual users who are designated by user ID

• User Groups

– A set of users who are not individually defined

• All

– All users who have access to this system

– These are public files

Record Blocking

• Blocks are the unit of I/O with secondary

storage

– For I/O to be performed records must be

organized as blocks

• Given the size of a block, three methods of

blocking can be used:

– Fixed-Length Block

– Variable-Length Spanned Bloc

– Variable-Length Unspanned Blocking

Fixed-Length Block

– Fixed-Length Blocking – fixed-length records

are used, and an integral number of records are

stored in a block

– Internal fragmentation – unused space at the

end of each block

Variable-Length Blocking

• Variable-Length Spanned Blocking –

variable-length records are used and are

packed into blocks with no unused space

• Variable-Length Unspanned Blocking –

variable-length records are used, but

spanning is not employed

(a) Fixed Blocking

(b) Variable Blocking: Spanned

(c) Variable Blocking: Unspanned

Figure 12.8 Record Blocking Methods

Track 1

Track 2

Track 1

Track 2

Record 1

Record 1

Record 4 Record 5 Record 6

Record 2 Record 3

Record 4 (rest) Record 5 Record 6 Record 1 Ptr

Record 2 Record 3 Record 4 Ptr

Track 1

Track 2

Record 1 Record 2 Record 3 Record 4

Record 5 Record 6 Record 7 Record 8

File Allocation

� On secondary storage, a file consists of a

collection of blocks

� The operating system or file management system

is responsible for allocating blocks to files

� The approach taken for file allocation may

influence the approach taken for free space

management

File Allocation

• Space is allocated to a file as one or more

portions (contiguous set of allocated

blocks)

• File allocation table (FAT)

– Data structure used to keep track of the portions

assigned to a file

Preallocation vs. Dynamic Allocation

• A preallocation policy requires that the maximum

size of a file be declared at the time of the file

creation request

• For many applications it is difficult to estimate

reliably the maximum potential size of the file

– Tends to be wasteful because users and application

programmers tend to overestimate size

• Dynamic allocation allocates space to a file in

portions as needed

Portion Size

• In choosing a portion size there is a trade-

off between efficiency from the point of

view of a single file versus overall system

efficiency

Portion Size

• Items to be considered:

1) Contiguity of space increases performance,

especially for Retrieve_Next operations, and greatly

for transactions running in a transaction-oriented

operating system

2) Having a large number of small portions increases

the size of tables needed to manage the allocation

information

3) Having fixed-size portions simplifies the reallocation

of space

4) Having variable-size or small fixed-size portions

minimizes waste of unused storage due to

overallocation

Alternatives

• Two major alternatives:

– Variable, large contiguous portions

• Provides better performance

• The variable size avoids waste

• The file allocation tables are small

– Blocks

• Small fixed portions provide greater flexibility

• They may require large tables or complex structures for their

allocation

• Contiguity has been abandoned as a primary goal

• Blocks are allocated as needed

File Allocation Methods

 Contiguous Chained Indexed

Preallocation? Necessary Possible Possible

Fixed or variable

size portions?

Variable Fixed blocks Fixed blocks Variable

Portion size Large Small Small Medium

Allocation

frequency

Once Low to high High Low

Time to allocate Medium Long Short Medium

File allocation

table size

One entry One entry Large Medium

0 1 2 3 4

5 6 7

File A

File Allocation Table

Figure 12.9 Contiguous File Allocation

File B

File C

File E

File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Name

File A

File B

File C

File D

File E

2

9

18

30

26

3

5

8

2

3

Start Block Length

0 1 2 3 4

5 6 7

File A

File Allocation Table

Figure 12.10 Contiguous File Allocation (After Compaction)

File B

File C

File E File D

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Name

File A

File B

File C

File D

File E

0

3

8

19

16

3

5

8

2

3

Start Block Length

0 1 2 3 4

5 6 7

File Allocation Table

Figure 12.11 Chained Allocation

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Name

File B 1 5

Start Block Length

0 1 2 3 4

5 6 7

File Allocation Table

Figure 12.12 Chained Allocation (After Consolidation)

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Name

File B 0 5

Start Block Length

0 1 2 3 4

5 6 7

File Allocation Table

Figure 12.13 Indexed Allocation with Block Portions

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Name

File B

1

8

3

14

28

24

Index Block

0 1 2 3 4

5 6 7

File Allocation Table

Figure 12.14 Indexed Allocation with Variable-Length Portions

File B

8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Name

Start Block

1

28

14

3

4

1

Length

File B 24

Index Block

Free Space Management

• Just as allocated space must be managed, so

must the unallocated space

• To perform file allocation, it is necessary to

know which blocks are available

• A disk allocation table is needed in addition

to a file allocation table

Bit Tables

• This method uses a vector containing one

bit for each block on the disk

• Each entry of a 0 corresponds to a free

block, and each 1 corresponds to a block in

use

• Advantages:

– Works well with any file allocation method

– It is as small as possible

Chained Free Portions

• The free portions may be chained together

by using a pointer and length value in each

free portion

• Negligible space overhead because there is

no need for a disk allocation table

• Suited to all file allocation methods

Chained Free Portions

• Disadvantages:

– Leads to fragmentation

– Every time you allocate a block you need to

read the block first to recover the pointer to the

new first free block before writing data to that

block

Indexing

• Treats free space as a file and uses an index

table as it would for file allocation

• For efficiency, the index should be on the

basis of variable-size portions rather than

blocks

• This approach provides efficient support for

all of the file allocation methods

Free Block List

• Each block is assigned a number sequentially

– The list of the numbers of all free blocks is maintained

in a reserved portion of the disk

• Depending on the size of the disk, either 24 or 32

bits will be needed to store a single block number

– The size of the free block list is 24 or 32 times the size

of the corresponding bit table and must be stored on

disk

Free Block List

• There are two effective techniques for

storing a small part of the free block list in

main memory:

– The list can be treated as a push-down stack

with the first few thousand elements of the

stack kept in main memory

– The list can be treated as a FIFO queue, with a

few thousand entries from both the head and the

tail of the queue in main memory

Volumes

• A collection of addressable sectors in secondary

memory that an OS or application can use for data

storage

• The sectors in a volume need not be consecutive

on a physical storage device

– They need only appear that way to the OS or

application

• A volume may be the result of assembling and

merging smaller volumes

UNIX File Management

• In the UNIX file system, six types of files

are distinguished:

– Regular, or ordinary - Contains arbitrary data

in zero or more data blocks

– Directory - Contains a list of file names plus

pointers to associated inodes (index nodes)

– Special - Contains no data but provides a

mechanism to map physical devices to file

names

UNIX File Management

• In the UNIX file system, six types of files

are distinguished:

– Named pipes - An interprocess

communications facility

– Links - An alternative file name for an existing

file

– Symbolic links - A data file that contains the

name of the file to which it is linked

Inodes

• All types of UNIX files are administered by the

OS by means of inodes

• An inode (index node) is a control structure that

contains the key information needed by the

operating system for a particular file

• Several file names may be associated with a single

inode

– An active inode is associated with exactly one file

– Each file is controlled by exactly one inode

Inode

mode

owners (2)

timestamps (4)

size

direct(0)

direct (1)

direct(12)

single indirect

double indirect

triple indirect

block count

reference count

flags (2)

generation number

blocksize

extended attr size

extended

attribute

blocks

Data

Data Data Data

Data Data Data

Data Data

Data Data

Data

Data

Data

Data

Data

Data

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Pointers

Figure 12.15 Structure of FreeBSD inode and File

File Allocation

• File allocation is done on a block basis

• Allocation is dynamic, as needed, rather than

using preallocation

• An indexed method is used to keep track of each

file, with part of the index stored in the inode for

the file

• In all UNIX implementations the inode includes a

number of direct pointers and three indirect

pointers (single, double, triple)

Capacity of a FreeBSD File with 4-

Kbyte Block Size

Level Number of Blocks Number of Bytes

Direct 12 48K

Single Indirect 512 2M

Double Indirect 512 × 512 = 256K 1G

Triple Indirect 512 × 256K = 128M 512G

Figure 12.16 UNIX Directories and Inodes

Inode table Directory

Name1i1

Name2i2

Name3i3

Name4i4

Volume Structure

• A UNIX file system resides on a single logical

disk or disk partition and is laid out with the

following elements:

– Boot block - Contains code required to boot the

operating system

– Superblock - Contains attributes and information

about the file system

– Inode table - Collection of inodes for each file

– Data blocks - Storage space available for data files

and subdirectories

