
CSC 553 Operating Systems

Lecture 10 - Multiprocessor,

Multicore and Real-Time Scheduling

Classifications of Multiprocessor Systems

• Loosely coupled or distributed multiprocessor, or cluster

– Consists of a collection of relatively autonomous

systems, each processor having its own main memory

and I/O channels

• Functionally specialized processors

– There is a master, general-purpose processor;

specialized processors are controlled by the master

processor and provide services to it

• Tightly coupled multiprocessor

– Consists of a set of processors that share a common

main memory and are under the integrated control of an

operating system

Synchronization Granularity and

Processes

Grain Size Description
Synchronization Interval

(Instructions)

Fine Parallelism inherent in a single

instruction stream.

<20

Medium Parallel processing or multitasking

within a single application

20-200

Coarse Multiprocessing of concurrent processes

in a multiprogramming environment

200-2000

Very Coarse Distributed processing across network
nodes to form a single computing

environment

2000-1M

Independent Multiple unrelated processes not applicable

Independent Parallelism

• No explicit synchronization among processes

• Each represents a separate, independent

application or job

• Typical use is in a time-sharing system

• Each user is performing a particular application

• Multiprocessor provides the same service as a

multiprogrammed uniprocessor

• Because more than one processor is available,

average response time to the users will be less

Coarse and Very Coarse Grained

Parallelism

• Synchronization among processes, but at a

very gross level

• Good for concurrent processes running on a

multiprogrammed uniprocessor

– can be supported on a multiprocessor with little

or no change to user software

Medium-Grained Parallelism

• Single application can be effectively

implemented as a collection of threads

within a single process

– programmer must explicitly specify the

potential parallelism of an application

– there needs to be a high degree of coordination

and interaction among the threads of an

application, leading to a medium-grain level of

synchronization

Medium-Grained Parallelism

• Because the various threads of an

application interact so frequently,

scheduling decisions concerning one thread

may affect the performance of the entire

application

Fine-Grained Parallelism

• Represents a much more complex use of

parallelism than is found in the use of

threads

• Is a specialized and fragmented area with

many different approaches

Design Issues

• The approach taken will depend on the

degree of granularity of applications and the

number of processors available

• Scheduling on a multiprocessor involves

three interrelated issues:

– assignment of processes to processors

– use of multiprogramming on individual

processors

– actual dispatching of a process

Assignment of Processes to Processors

• Assuming all processors are equal, it is simplest to

treat processors as a pooled resource and assign

processes to processors on demand:

– Static or dynamic needs to be determined

• If a process is permanently assigned to one

processor from activation until its completion,

then a dedicated short-term queue is maintained

for each processor

– Advantage is that there may be less overhead in the

scheduling function

– Allows group or gang scheduling

Assignment of

Processes to Processors

• Both dynamic and static methods require some

way of assigning a process to a processor

• Approaches:

– Master/Slave

– Peer

Master/Slave Architecture

• Key kernel functions always run on a particular

processor

• Master is responsible for scheduling

• Slave sends service request to the master

• Is simple and requires little enhancement to a

uniprocessor multiprogramming operating system

• Conflict resolution is simplified because one

processor has control of all memory and I/O

resources

Master/Slave Architecture

• Disadvantages:

– Failure of master brings down whole system

– Master can become a performance bottleneck

Peer Architecture

• Kernel can execute on any processor

• Each processor does self-scheduling from

the pool of available processes

• Complicates the operating system

– Operating system must ensure that two

processors do not choose the same process and

that the processes are not somehow lost from

the queue

Process Scheduling

• Usually processes are not dedicated to

processors

• A single queue is used for all processors

– If some sort of priority scheme is used, there

are multiple queues based on priority

• System is viewed as being a multi-server

queuing architecture

Single

processor

Dual

processor

S
R

T
 t

o
 F

C
F

S
 t

h
r
o
u

g
h

p
u

t
r
a
ti

o

0

1.00

1.05

1.10

1.15

1.20

1.25

1 2 3 4 5

Coefficient of variation

(a) Comparison of RR and FCFS

Coefficient of variation

(b) Comparison of SRT and FCFS

Figure 10.1 Comparison of Scheduling Performance for One and Two Processors

0 1 2

Single

processor

Dual

processor

0.98

R
R

 t
o
 F

C
F

S
 t

h
ro

u
g
h

p
u

t
r
a
ti

o

3 4 5

1.00

1.05

1.10

1.15

Thread Scheduling

• Thread execution is separated from the rest

of the definition of a process

• An application can be a set of threads that

cooperate and execute concurrently in the

same address space

• On a uniprocessor, threads can be used as a

program structuring aid and to overlap I/O

with processing

Thread Scheduling

• In a multiprocessor system threads can be

used to exploit true parallelism in an

application

• Dramatic gains in performance are possible

in multi-processor systems

• Small differences in thread management

and scheduling can have an impact on

applications that require significant

interaction among threads

Approaches to Thread Scheduling

• Four approaches for multiprocessor thread

scheduling and processor assignment are:

– Load Sharing - processes are not assigned to a

particular processor

– Gang Scheduling - a set of related threads scheduled to

run on a set of processors at the same time, on a one-to-

one basis

– Dedicated Processor Assignment - provides implicit

scheduling defined by the assignment of threads to

processors

– Dynamic Scheduling - the number of threads in a

process can be altered during the course of execution

Load Sharing

• Simplest approach and carries over most

directly from a uniprocessor environment

• Advantages:

– load is distributed evenly across the processors

– no centralized scheduler required

– the global queue can be organized and accessed

using any of the schemes discussed in Lecture 9

Load Sharing

• Versions of load sharing:

• first-come-first-served

• smallest number of threads first

• preemptive smallest number of threads first

Disadvantages of Load Sharing

• Central queue occupies a region of memory that

must be accessed in a manner that enforces mutual

exclusion - can lead to bottlenecks

• Preemptive threads are unlikely to resume

execution on the same processor - caching can

become less efficient

• If all threads are treated as a common pool of

threads, it is unlikely that all of the threads of a

program will gain access to processors at the same

time - the process switches involved may seriously

compromise performance

Gang Scheduling

• Simultaneous scheduling of the threads that

make up a single process

• Benefits:

– synchronization blocking may be reduced, less

process switching may be necessary, and

performance will increase

– scheduling overhead may be reduced

Gang Scheduling

• Useful for medium-grained to fine-grained

parallel applications whose performance

severely degrades when any part of the

application is not running while other parts

are ready to run

• Also beneficial for any parallel application

1/21/2Time

Group 1 Group 2

Uniform Division

PE1

PE2

PE3

PE4

1/5

15% Waste37.5% Waste

4/5

Group 1 Group 2

Division by Weights

PE1

PE2

PE3

PE4

Figure 10.2 Example of Scheduling Groups with Four and One Threads [FEIT90b]

idle

idle

idle

idle

idle

idle

Dedicated Processor Assignment

• When an application is scheduled, each of

its threads is assigned to a processor that

remains dedicated to that thread until the

application runs to completion

• If a thread of an application is blocked

waiting for I/O or for synchronization with

another thread, then that thread’s processor

remains idle

– there is no multiprogramming of processors

Dedicated Processor Assignment

• Defense of this strategy:

– in a highly parallel system, with tens or

hundreds of processors, processor utilization is

no longer so important as a metric for

effectiveness or performance

– the total avoidance of process switching during

the lifetime of a program should result in a

substantial speedup of that program

Application Speedup as a Function

of Number of Threads

Number of threads

per application

Matrix multiplication FFT

1 1 1

2 1.8 1.8

4 3.8 3.8

8 6.5 6.1

12 5.2 5.1

16 3.9 3.8

20 3.3 3

24 2.8 2.4

Dynamic Scheduling

• For some applications it is possible to

provide language and system tools that

permit the number of threads in the process

to be altered dynamically

– This would allow the operating system to adjust

the load to improve utilization

• Both the operating system and the

application are involved in making

scheduling decisions

Dynamic Scheduling

• The scheduling responsibility of the

operating system is primarily limited to

processor allocation

• This approach is superior to gang

scheduling or dedicated processor

assignment for applications that can take

advantage of it

Figure 10.3 AMD Bulldozer Architecture

Core 0

16 kB L1D

Cache

16 kB L1D

Cache

16 kB L1D

Cache

16 kB L1D

Cache

2 MB

L2 Cache

2 MB

L2 Cache

Core 1

2 8B @ 1.86 GT/s

Core 6 Core 7

8 MB

L3 Cache

DDR3 Memory

Controllers
Hypertransport 3.1

8 2B @ 6.4 GT/s

Cache Sharing

• Cooperative resource sharing:

– Multiple threads access the same set of main

memory locations

– Examples:

• applications that are multithreaded

• producer-consumer thread interaction

Cache Sharing

• Resource contention:

– Threads, if operating on adjacent cores, compete for

cache memory locations

– If more of the cache is dynamically allocated to one

thread, the competing thread necessarily has less cache

space available and thus suffers performance

degradation

– Objective of contention-aware scheduling is to allocate

threads to cores to maximize the effectiveness of the

shared cache memory and minimize the need for off-

chip memory accesses

Real-Time Systems

• The operating system, and in particular the

scheduler, is perhaps the most important

component

• Examples:

– control of laboratory experiments

– process control in industrial plants

– robotics

– air traffic control

– telecommunications

– military command and control systems

Real-Time Systems

• Correctness of the system depends not only on the

logical result of the computation but also on the

time at which the results are produced

• Tasks or processes attempt to control or react to

events that take place in the outside world

• These events occur in “real time” and tasks must

be able to keep up with them

Hard and Soft Real-Time Tasks

• Hard real-time task

– one that must meet its deadline

– otherwise it will cause unacceptable damage or

a fatal error to the system

• Soft real-time task

– has an associated deadline that is desirable but

not mandatory

– it still makes sense to schedule and complete

the task even if it has passed its deadline

Periodic and Aperiodic Tasks

• Periodic tasks

– requirement may be stated as:

• once per period T

• exactly T units apart

• Aperiodic tasks

– has a deadline by which it must finish or start

– may have a constraint on both start and finish

time

Characteristics of Real Time

Systems

• Real-time operating systems have

requirements in five general areas:

– Determinism

– Responsiveness

– User control

– Reliability

– Fail-soft operation

Determinism

• Concerned with how long an operating

system delays before acknowledging an

interrupt

• Operations are performed at fixed,

predetermined times or within

predetermined time intervals

– When multiple processes are competing for

resources and processor time, no system will be

fully deterministic

Determinism

• The extent to which an operating system

can deterministically satisfy requests

depends on

– The speed with which it can respond to

interrupts

– Whether the system has sufficient capacity to

handle all requests within the required time

Responsiveness

• Together with determinism make up the

response time to external events

• critical for real-time systems that must meet timing

requirements imposed by individuals, devices, and

data flows external to the system

• Concerned with how long, after

acknowledgment, it takes an operating

system to service the interrupt

Responsiveness

• Responsiveness includes:

– amount of time required to initially handle the

interrupt and begin execution of the interrupt

service routine (ISR)

– amount of time required to perform the ISR

– effect of interrupt nesting

User Control

• Generally much broader in a real-time

operating system than in ordinary operating

systems

• It is essential to allow the user fine-grained

control over task priority

• User should be able to distinguish between

hard and soft tasks and to specify relative

priorities within each class

User Control

• May allow user to specify such

characteristics as:

– Paging or process swapping

– What processes must always be resident in

main memory

– What disk transfer algorithms are to be used

– What rights the processes in various priority

bands have

Reliability

• More important for real-time systems than

non-real time systems

• Real-time systems respond to and control

events in real time so loss or degradation of

performance may have catastrophic

consequences such as:

– Financial loss

– Major equipment damage

– Loss of life

Fail-Soft Operation

• A characteristic that refers to the ability of a

system to fail in such a way as to preserve

as much capability and data as possible

• Important aspect is stability

– a real-time system is stable if the system will

meet the deadlines of its most critical, highest-

priority tasks even if some less critical task

deadlines are not always met

Process 1

Request from a

real-time process

(a) Round-robin Preemptive Scheduler

Clock

tick

Process 2 Process n
Real-time

process

Scheduling time

Real-time process added to

run queue to await its next slice

Current process

Current process

blocked or completed

Request from a

real-time process

(b) Priority-Driven Nonpreemptive Scheduler

Real-time

process

Scheduling time

Preemption

point

Real-time process added

to head of run queue

Current process

Request from a

real-time process

(c) Priority-Driven Preemptive Scheduler on Preemption Points

Real-time

process

Scheduling time

Wait for next

preemption point

Current process

Request from a

real-time process

(d) Immediate Preemptive Scheduler

Figure 10.4 Scheduling of Real-Time Process

Real-time

process

Scheduling time

Real-time process preempts current

process and executes immediately

Real-Time Scheduling

• Scheduling approaches depend on:

– Whether a system performs schedulability

analysis

• If it does, whether it is done statically or

dynamically

– Whether the result of the analysis itself

produces a scheduler plan according to which

tasks are dispatched at run time

Classes of Real-Time Scheduling Algorithms

• Static table-driven approaches

– Performs a static analysis of feasible schedules of

dispatching

– Result is a schedule that determines, at run time, when a

task must begin execution

• Static priority-driven preemptive approaches

– A static analysis is performed but no schedule is drawn

up

– Analysis is used to assign priorities to tasks so that a

traditional priority-driven preemptive scheduler can be

used

Classes of Real-Time Scheduling Algorithms

• Dynamic planning-based approaches

– Feasibility is determined at run time rather than offline

prior to the start of execution

– One result of the analysis is a schedule or plan that is

used to decide when to dispatch this task

• Dynamic best effort approaches

– No feasibility analysis is performed

– System tries to meet all deadlines and aborts any started

process whose deadline is missed

Deadline Scheduling

• Real-time operating systems are designed with the

objective of starting real-time tasks as rapidly as

possible and emphasize rapid interrupt handling

and task dispatching

• Real-time applications are generally not concerned

with sheer speed but rather with completing (or

starting) tasks at the most valuable times

• Priorities provide a crude tool and do not capture

the requirement of completion (or initiation) at the

most valuable time

Information Used for Deadline

Scheduling

• Ready time - Time task becomes ready for

execution

• Starting deadline - Time task must begin

• Completion deadline - Time task must be

completed

• Processing time - Time required to execute

the task to completion

Information Used for Deadline

Scheduling

• Resource requirements - resources

required by the task while it is executing

• Priority - measures relative importance of

the task

• Subtask scheduler - a task may be

decomposed into a mandatory subtask and

an optional subtask

Execution Profile of Two Periodic Tasks

Process Arrival Time Execution Time Ending Deadline

A(1) 0 10 20

A(2) 20 10 40

A(3) 40 10 60

A(4) 60 10 80

A(5) 80 10 100

•

•
•

•

•
•

•

•
•

•

•
•

B(1) 0 25 50

B(2) 50 25 100

•

•

•

•

•

•

•

•

•

•

•

•

9070402010 30 50 60 80 1000 Time(ms)

B1 B2

A1 A2 A3 A4 A5Arrival times, execution

times, and deadlines

A1
deadline

A2
deadline

A3
deadline

A4
deadline

A5
deadline

B1
deadline

B2
deadline

A3 A4 A5A1 B1 A2 B1 B2 B2 B2

A1 A2 A3 A4 A5, B2B1
(missed)

A1
(missed)

A2 A3 A4
(missed)

A5, B2

B1 B2A2 A3 A5

A1 A2 A3 A4 A5, B2B1

A1 B1 A2 B1 A3 B2 A4 B2 A5

Fixed-priority scheduling;

A has priority

Fixed-priority scheduling;

B has priority

Earliest deadline scheduling

using completion deadlines

Figure 10.5 Scheduling of Periodic Real-time Tasks with Completion Deadlines (based on Table 10.2)

B1

9070402010 30 50 60 80 100 1100 120

B C E D A

B (missed) C E D A

B C E D A

C D A

A B C D E

A B C D E

A B C D E

A B C D E

A C E D

B C E D A

A C D

B (missed) E (missed)

Requirements

Arrival times

Starting deadline

Earliest
deadline

Arrival times

Starting deadline

Service

Earliest
deadline

with unforced
idle times

Arrival times

Starting deadline

Service

First-come
first-served

(FCFS)

Arrival times

Starting deadline

Service

Figure 10.6 Scheduling of Aperiodic Real-time Tasks with Starting Deadlines

Execution Profile of Five

Aperiodic Tasks

Process Arrival Time Execution Time Starting Deadline

A 10 20 110

B 20 20 20

C 40 20 50

D 50 20 90

E 60 20 70

P
ri

o
ri

ty

High

Low
Rate (Hz)

Highest rate and
highest priority task

Lowest rate and
lowest priority task

Figure 10.7 A Task Set with RMS

Processing ProcessingIdleP

task P execution time C

task P period T

Cycle 1 Cycle 2

Figure 10.8 Periodic Task Timing Diagram

Time

Value of

the RMS

Upper

Bound

n n(2
1 n

−1)

1 1.0

2 0.828

3 0.779

4 0.756

5 0.743

6 0.734

•

•

•

•

•

•

∞ ln 2 ≈ 0.693

Priority Inversion

• Can occur in any priority-based preemptive

scheduling scheme

• Particularly relevant in the context of real-time

scheduling

• Best-known instance involved the Mars Pathfinder

mission

• Occurs when circumstances within the system

force a higher priority task to wait for a lower

priority task

Unbounded Priority Inversion

• Unbounded Priority Inversion - the

duration of a priority inversion depends not

only on the time required to handle a shared

resource, but also on the unpredictable

actions of other unrelated tasks

T1

T2

T3

s locked

(a) Unbounded priority inversion

preempted

by T1

preempted

by T2

s unlocked

time

s locked
blocked by T3

(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7 t8

Priority Inheritance

T1

T2

T3

s locked

by T3

(b) Use of priority inheritance

preempted

by T1
s unlocked

s unlocked

s locked

by T1
blocked by T3

(attempt to lock s)

t1 t2 t3 t4 t5 t6 t7

Linux Scheduling

• The three classes are:

– SCHED_FIFO: First-in-first-out real-time

threads

– SCHED_RR: Round-robin real-time threads

– SCHED_OTHER: Other, non-real-time threads

• Within each class multiple priorities may be

used

maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling

D

D B C A
middleC

middleB

minimumA

(c) Flow with RR scheduling

Figure 10.10 Example of Linux Real-Time Scheduling

D B C B C A

Non-Real-Time Scheduling

• The Linux 2.4 scheduler for the SCHED_OTHER

class did not scale well with increasing number of

processors and processes

• Linux 2.6 uses a new priority scheduler known as

the O(1) scheduler

• Time to select the appropriate process and assign it

to a processor is constant regardless of the load on

the system or number of processors

• Kernel maintains two scheduling data structures

for each processor in the system

Figure 10.11 Linux Scheduling Data Structures for Each Processor

140-bit priority array for active queues

140-bit priority array for expired queues

bit 0

(priority 0)

highest-priority

non-empty

active queue

bit 139

(priority 139)

Active Queues:

140 queues by priority;

each queue contains ready

tasks for that priority

Expired Queues:

140 queues by priority;

each queue contains ready

tasks with expired time slices

for that priority

