
CSC 553 Operating Systems

Lecture 10 - Multiprocessor, 

Multicore and Real-Time Scheduling

Classifications of Multiprocessor Systems

• Loosely coupled or distributed multiprocessor, or cluster

– Consists of a collection of relatively autonomous 

systems, each processor having its own main memory 

and I/O channels

• Functionally specialized processors

– There is a master, general-purpose processor; 

specialized processors are controlled by the master 

processor and provide services to it

• Tightly coupled multiprocessor

– Consists of a set of processors that share a common 

main memory and are under the integrated control of an 

operating system



Synchronization Granularity and 

Processes 

Grain Size Description 
Synchronization Interval 

(Instructions) 

Fine Parallelism inherent in a single 

instruction stream. 

<20 

Medium Parallel processing or multitasking 

within  a single application 

20-200 

Coarse Multiprocessing of concurrent processes 

in a multiprogramming environment 

200-2000 

Very Coarse Distributed processing across network 
nodes to form a single computing 

environment 

2000-1M 

Independent Multiple unrelated processes not applicable 

 

Independent Parallelism

• No explicit synchronization among processes

• Each represents a separate, independent 

application or job

• Typical use is in a time-sharing system

• Each user is performing a particular application

• Multiprocessor provides the same service as a 

multiprogrammed uniprocessor

• Because more than one processor is available, 

average response time to the users will be less



Coarse and Very Coarse Grained 

Parallelism

• Synchronization among processes, but at a 

very gross level

• Good for concurrent processes running on a 

multiprogrammed uniprocessor

– can be supported on a multiprocessor with little 

or no change to user software

Medium-Grained Parallelism

• Single application can be effectively 

implemented as a collection of threads 

within a single process 

– programmer must explicitly specify the 

potential parallelism of an application

– there needs to be a high degree of coordination 

and interaction among the threads of an 

application, leading to a medium-grain level of 

synchronization



Medium-Grained Parallelism

• Because the various threads of an 

application interact so frequently, 

scheduling decisions concerning one thread 

may affect the performance of the entire 

application

Fine-Grained Parallelism

• Represents a much more complex use of 

parallelism than is found in the use of 

threads

• Is a specialized and fragmented area with 

many different approaches



Design Issues

• The approach taken will depend on the 

degree of granularity of applications and the 

number of processors available

• Scheduling on a multiprocessor involves 

three interrelated issues:

– assignment of processes to processors

– use of multiprogramming on individual 

processors

– actual dispatching of a process

Assignment of Processes to Processors

• Assuming all processors are equal, it is simplest to 

treat processors as a pooled resource and assign 

processes to processors on demand:

– Static or dynamic needs to be determined

• If a process is permanently assigned to one 

processor from activation until its completion, 

then a dedicated short-term queue is maintained 

for each processor

– Advantage is that there may be less overhead in the 

scheduling function

– Allows group or gang scheduling



Assignment of

Processes to Processors

• Both dynamic and static methods require some 

way of assigning a process to a processor

• Approaches:

– Master/Slave

– Peer

Master/Slave Architecture

• Key kernel functions always run on a particular 

processor

• Master is responsible for scheduling

• Slave sends service request to the master

• Is simple and requires little enhancement to a 

uniprocessor multiprogramming operating system

• Conflict resolution is simplified because one 

processor has control of all memory and I/O 

resources



Master/Slave Architecture

• Disadvantages:

– Failure of master brings down whole system

– Master can become a performance bottleneck

Peer Architecture

• Kernel can execute on any processor

• Each processor does self-scheduling from 

the pool of available processes

• Complicates the operating system

– Operating system must ensure that two 

processors do not choose the same process and 

that the processes are not somehow lost from 

the queue



Process Scheduling

• Usually processes are not dedicated to 

processors

• A single queue is used for all processors

– If some sort of priority scheme is used, there 

are multiple queues based on priority

• System is viewed as being a multi-server 

queuing architecture
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Figure 10.1  Comparison of Scheduling Performance for One and Two Processors
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Thread Scheduling

• Thread execution is separated from the rest 

of the definition of a process

• An application can be a set of threads that 

cooperate and execute concurrently in the 

same address space

• On a uniprocessor, threads can be used as a 

program structuring aid and to overlap I/O 

with processing

Thread Scheduling

• In a multiprocessor system threads can be 

used to exploit true parallelism in an 

application

• Dramatic gains in performance are possible 

in multi-processor systems

• Small differences in thread management 

and scheduling can have an impact on 

applications that require significant 

interaction among threads



Approaches to Thread Scheduling

• Four approaches for multiprocessor thread 

scheduling and processor assignment are:

– Load Sharing - processes are not assigned to a 

particular processor

– Gang Scheduling - a set of related threads scheduled to 

run on a set of processors at the same time, on a one-to-

one basis

– Dedicated Processor Assignment - provides implicit 

scheduling defined by the assignment of threads to 

processors

– Dynamic Scheduling - the number of threads in a 

process can be altered during the course of execution

Load Sharing

• Simplest approach and carries over most 

directly from a uniprocessor environment

• Advantages:

– load is distributed evenly across the processors

– no centralized scheduler required

– the global queue can be organized and accessed 

using any of the schemes discussed in Lecture 9



Load Sharing

• Versions of load sharing:

• first-come-first-served

• smallest number of threads first

• preemptive smallest number of threads first

Disadvantages of Load Sharing

• Central queue occupies a region of memory that 

must be accessed in a manner that enforces mutual 

exclusion - can lead to bottlenecks

• Preemptive threads are unlikely to resume 

execution on the same processor - caching can 

become less efficient

• If all threads are treated as a common pool of 

threads, it is unlikely that all of the threads of a 

program will gain access to processors at the same 

time - the process switches involved may seriously 

compromise performance



Gang Scheduling

• Simultaneous scheduling of the threads that 

make up a single process

• Benefits:

– synchronization blocking may be reduced, less 

process switching may be necessary, and 

performance will increase

– scheduling overhead may be reduced

Gang Scheduling

• Useful for medium-grained to fine-grained 

parallel applications whose performance 

severely degrades when any part of the 

application is not running while other parts 

are ready to run

• Also beneficial for any parallel application
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Dedicated Processor Assignment

• When an application is scheduled, each of 

its threads is assigned to a processor that 

remains dedicated to that thread until the 

application runs to completion

• If a thread of an application is blocked 

waiting for I/O or for synchronization with 

another thread, then that thread’s processor 

remains idle

– there is no multiprogramming of processors



Dedicated Processor Assignment

• Defense of this strategy:

– in a highly parallel system, with tens or 

hundreds of processors, processor utilization is 

no longer so important as a metric for 

effectiveness or performance

– the total avoidance of process switching during 

the lifetime of a program should result in a 

substantial speedup of that program

Application Speedup as a Function 

of Number of Threads 

Number of threads 

per application 

Matrix multiplication FFT 

1 1 1 

2 1.8 1.8 

4 3.8 3.8 

8 6.5 6.1 

12 5.2 5.1 

16 3.9 3.8 

20 3.3 3 

24 2.8 2.4 

 



Dynamic Scheduling

• For some applications it is possible to 

provide language and system tools that 

permit the number of threads in the process 

to be altered dynamically

– This would allow the operating system to adjust 

the load to improve utilization

• Both the operating system and the 

application are involved in making 

scheduling decisions

Dynamic Scheduling

• The scheduling responsibility of the 

operating system is primarily limited to 

processor allocation

• This approach is superior to gang 

scheduling or dedicated processor 

assignment for applications that can take 

advantage of it



Figure 10.3  AMD Bulldozer Architecture
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Cache Sharing

• Cooperative resource sharing:

– Multiple threads access the same set of main 

memory locations

– Examples:

• applications that are multithreaded

• producer-consumer thread interaction



Cache Sharing

• Resource contention:

– Threads, if operating on adjacent cores, compete for 

cache memory locations

– If more of the cache is dynamically allocated to one 

thread, the competing thread necessarily has less cache 

space available and thus suffers performance 

degradation

– Objective of contention-aware scheduling is to allocate 

threads to cores to maximize the effectiveness of the 

shared cache memory and minimize the need for off-

chip memory accesses

Real-Time Systems

• The operating system, and in particular the 

scheduler, is perhaps the most important 

component

• Examples:

– control of laboratory experiments

– process control in industrial plants

– robotics

– air traffic control

– telecommunications

– military command and control systems



Real-Time Systems

• Correctness of the system depends not only on the 

logical result of the computation but also on the 

time at which the results are produced

• Tasks or processes attempt to control or react to 

events that take place in the outside world

• These events occur in “real time” and tasks must 

be able to keep up with them

Hard and Soft Real-Time Tasks

• Hard real-time task

– one that must meet its deadline

– otherwise it will cause unacceptable damage or 

a fatal error to the system

• Soft real-time task

– has an associated deadline that is desirable but 

not mandatory

– it still makes sense to schedule and complete 

the task even if it has passed its deadline



Periodic and Aperiodic Tasks

• Periodic tasks

– requirement may be stated as:

• once per period T

• exactly T units apart

• Aperiodic tasks

– has a deadline by which it must finish or start

– may have a constraint on both start and finish 

time

Characteristics of Real Time 

Systems

• Real-time operating systems have 

requirements in five general areas:

– Determinism

– Responsiveness

– User control

– Reliability

– Fail-soft operation



Determinism

• Concerned with how long an operating 

system delays before acknowledging an 

interrupt

• Operations are performed at fixed, 

predetermined times or within 

predetermined time intervals

– When multiple processes are competing for 

resources and processor time, no system will be 

fully deterministic

Determinism

• The extent to which an operating system 

can deterministically satisfy requests 

depends on

– The speed with which it can respond to 

interrupts

– Whether the system has sufficient capacity to 

handle all requests within the required time



Responsiveness

• Together with determinism make up the 

response time to external events

• critical for real-time systems that must meet timing 

requirements imposed by individuals, devices, and 

data flows external to the system

• Concerned with how long, after 

acknowledgment, it takes an operating 

system to service the interrupt

Responsiveness

• Responsiveness includes:

– amount of time required to initially handle the 

interrupt and begin execution of the interrupt 

service routine (ISR)

– amount of time required to perform the ISR

– effect of interrupt nesting



User Control

• Generally much broader in a real-time 

operating system than in ordinary operating 

systems

• It is essential to allow the user fine-grained 

control over task priority

• User should be able to distinguish between 

hard and soft tasks and to specify relative 

priorities within each class

User Control

• May allow user to specify such 

characteristics as:

– Paging or process swapping

– What processes must always be resident in 

main memory

– What disk transfer algorithms are to be used

– What rights the processes in various priority 

bands have



Reliability

• More important for real-time systems than 

non-real time systems

• Real-time systems respond to and control 

events in real time so loss or degradation of 

performance may have catastrophic 

consequences such as:

– Financial loss

– Major equipment damage

– Loss of life

Fail-Soft Operation

• A characteristic that refers to the ability of a 

system to fail in such a way as to preserve 

as much capability and data as possible

• Important aspect is stability

– a real-time system is stable if the system will 

meet the deadlines of its most critical, highest-

priority tasks even if some less critical task 

deadlines are not always met
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Real-Time Scheduling

• Scheduling approaches depend on:

– Whether a system performs schedulability

analysis

• If it does, whether it is done statically or 

dynamically

– Whether the result of the analysis itself 

produces a scheduler plan according to which 

tasks are dispatched at run time



Classes of Real-Time Scheduling Algorithms

• Static table-driven approaches

– Performs a static analysis of feasible schedules of 

dispatching

– Result is a schedule that determines, at run time, when a 

task must begin execution

• Static priority-driven preemptive approaches

– A static analysis is performed but no schedule is drawn 

up

– Analysis is used to assign priorities to tasks so that a 

traditional priority-driven preemptive scheduler can be 

used

Classes of Real-Time Scheduling Algorithms

• Dynamic planning-based approaches

– Feasibility is determined at run time rather than offline 

prior to the start of execution

– One result of the analysis is a schedule or plan that is 

used to decide when to dispatch this task

• Dynamic best effort approaches

– No feasibility analysis is performed

– System tries to meet all deadlines and aborts any started 

process whose deadline is missed



Deadline Scheduling

• Real-time operating systems are designed with the 

objective of starting real-time tasks as rapidly as 

possible and emphasize rapid interrupt handling 

and task dispatching

• Real-time applications are generally not concerned 

with sheer speed but rather with completing (or 

starting) tasks at the most valuable times

• Priorities provide a crude tool and do not capture 

the requirement of completion (or initiation) at the 

most valuable time

Information Used for Deadline 

Scheduling

• Ready time - Time task becomes ready for 

execution

• Starting deadline - Time task must begin

• Completion deadline - Time task must be 

completed

• Processing time - Time required to execute 

the task to completion



Information Used for Deadline 

Scheduling

• Resource requirements - resources 

required by the task while it is executing

• Priority - measures relative importance of 

the task

• Subtask scheduler - a task may be 

decomposed into a mandatory subtask and 

an optional subtask

Execution Profile of Two Periodic Tasks 

Process Arrival Time Execution Time Ending Deadline 

A(1) 0 10 20 

A(2) 20 10 40 

A(3) 40 10 60 

A(4) 60 10 80 

A(5) 80 10 100 

• 

• 
• 

• 

• 
• 

• 

• 
• 

• 

• 
• 

B(1) 0 25 50 

B(2) 50 25 100 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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Figure 10.5  Scheduling of Periodic Real-time Tasks with Completion Deadlines (based on Table 10.2)
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Execution Profile of Five 

Aperiodic Tasks 

Process Arrival Time Execution Time Starting Deadline 

A 10 20 110 

B 20 20 20 

C 40 20 50 

D 50 20 90 

E 60 20 70 
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Figure 10.7  A Task Set with RMS
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Figure 10.8  Periodic Task Timing Diagram
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Priority Inversion

• Can occur in any priority-based preemptive 

scheduling scheme

• Particularly relevant in the context of real-time 

scheduling

• Best-known instance involved the Mars Pathfinder 

mission

• Occurs when circumstances within the system 

force a higher priority task to wait for a lower 

priority task

Unbounded Priority Inversion

• Unbounded Priority Inversion - the 

duration of a priority inversion depends not 

only on the time required to handle a shared 

resource, but also on the unpredictable 

actions of other unrelated tasks
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Linux Scheduling

• The three classes are:

– SCHED_FIFO: First-in-first-out real-time 

threads

– SCHED_RR: Round-robin real-time threads

– SCHED_OTHER: Other, non-real-time threads

• Within each class multiple priorities may be 

used

maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling

D

D B C A
middleC

middleB

minimumA

(c) Flow with RR scheduling

Figure 10.10  Example of Linux Real-Time Scheduling

D B C B C A



Non-Real-Time Scheduling

• The Linux 2.4 scheduler for the SCHED_OTHER 

class did not scale well with increasing number of 

processors and processes

• Linux 2.6 uses a new priority scheduler known as 

the O(1) scheduler

• Time to select the appropriate process and assign it 

to a processor is constant regardless of the load on 

the system or number of processors

• Kernel maintains two scheduling data structures 

for each processor in the system

Figure 10.11   Linux Scheduling Data Structures for Each Processor
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