
1

CS 453 Operating Systems

Lecture 7 : Deadlock

2

What is Deadlock?

Every New Yorker knows what a gridlock alert is - it’s one of those days when there

is so much traffic that nobody can move. Everything just sits there! The REAL

reason for gridlock is that there are so many cars getting stuck in the intersection

that traffic on the cross streets can’t get through. As a result, that street backs up as

well, and after a while, if there are enough cars on the street, no one can move

because all the intersections are blocked and one way or the other.

Essentially, this is what deadlock is. Processes effectively block each other,

because each process is standing in the way of another process trying to finish its

jobs. Each process is holding something that the other process wants, and as a

result, neither can move foreward.

4

Example of Deadlock

• Process A wants to copy a file from disk

drive A to drive B. It’s holding drive A and

waiting for drive B.

• Process B wants to copy a file from disk

drive B to drive A. It’s holding drive B and

waiting for drive A.

Imagine two processes running on the same computer. Both are trying to copy files.

One process is trying to copy from Drive A to Drive B. The other process is doing

the reverse. And they both request (and get) the drive from which they are reading.

The end result is that they are both waiting for the drive onto which they are going

to write - which the other one is holding onto for dear life because they are going to

read from it. Without some intervention, this standoff can continue forever - unless

we unplug the computer first!

3

How Does Deadlock Occur?

Resource

1

Process A Process B

Resource

2

Process A has

Resource 1 and

seeks Resource 2

Process B has

Resource 2 and

seeks Resource 1

This diagram illustrates the problem pretty well. The green circles represent the

resources and the blue rectangles the processes. The green arrows show that

Resource 1 belongs to Process A and that Resource 2 belongs to Process B. The

blue arrows show that Process A is waiting for Resource 2 and that Process B is

waiting for Resource 1. Unless they can share these resources, we have a 2-process

deadlock.

We’ll see quite soon that deadlocks do not necessarily involve two processes. This

little standoff can involve a larger circle of processes, which actually makes it more

dangerous. It isn’t a matter of starving one or two processes - it can actually involve

a fairly large number directly or indirectly!

Processes and Resources

A process using a resource goes through the

following sequence of events:

• Request: The process asks the operating system

for the resource. If it isn’t available immediately,

it waits until it is available.

• Use: The process does whatever operations it

needs to do using the resources that it requested.

• Release: The process surrenders the resource back

to the operating system

There are essentially 3 events that describe the role that a resource plays in the life

of a process. The process must first request the use of the resource. Since it may

very well not be available immediately, the process may have to wait. This is the

stage where the process may be deadlocked. After securing the resource and

whatever other resources it may need, the process uses the resource. After it’s

finished with its need of the resource, it releases it and now it can be used by other

processes. Release is also important, because if processes do not release their

resources, other processes can’t use them.

5

The Necessary Conditions For Deadlock

• A deadlock can only happen when these four
conditions are met:

– Mutual exclusion – At least one resources can be used
by only one process at a time

– Hold and wait – A process will hold a resource while
waiting for another one.

– No preemption – A resource cannot be taken away
from a process that has not released it voluntarily.

– Circular wait – E.g, P0 is waiting for a resource that P1

is holding, P1 is waiting for a resource that P2 is
holding, and P2 is waiting for a resource that P0 is
holding.

There are four conditions that must be true for deadlock to occur. These are mutual exclusion, hold

and wait, lack of pre-emption and circular wait.

Mutual exclusion means that only one process can use a resource at a time. This is fairly common.

Only one process can read from a keyboard at a time, for example. But even resources that can be

shared may only allow x number of processes to use it at a time. The sign that barber shops used to

have “8 chairs, no waiting” assumed that there would never be more than 8 customers in the shop at

once to get their hair cut. If there were, then there would be some waiting.

Hold and wait means that a process can hold onto a resource while it waits for another. The

assumption is that it is using the two resources in conjunction, such as copying or printing a file.

No pre-emption means that a process cannot be strip of a resource without surrendering it

voluntarily. Pre-empting the resources of a process means that when it resumes, it must somehow

replace the resource that it lost and find a reasonable place to resume execution.

Circular waiting means that A is waiting for B which is waiting for C which is waiting for A. This,

taken together with hold and wait, means that they are each holding something that the other one

wants. Mutual exclusion means that the very fact that they are holding it prevents the other from

having it. And no preemption means that neither will give it up.

6

Resource-Allocation Graph

P1 P2 P3 P4

R1 R2 R3

R4 R5 R6

A resource-allocation graph is a directed graph that shows us each resource (along

with each instance of it which can be reserved) with the processes that have

requested them and are waiting for them, each process with the resources that are

reserved them.

An arrow pointing from resource to process means that the process is holding the

resources. The arrow pointing from resource to process means that the process is

waiting for the resource. If any of these arrow completed a cycle or circuit, then

that would indicate circular wait. You don’t see any circuits here, so there is no

circular wait, hence no deadlock.

6

Resource-Allocation Graph Showing

Deadlock

P1 P2 P3 P4

R1 R2 R3

R4 R5 R6

A circuit does not necessarily mean a deadlock, although it will indicate the

possibility of one. Here you’ll notice that there is clearly a circuit from R5 to P2 to

R2 to P3 back to R5. That means that there is circular wait. But since R5 has two

instances, each of which can be reserved, we need that second circuit from R5 to P1

to R2 to P3 back to R5 . Since this completes a circuit which includes the same

resource (R2), we have a deadlock.

6

Resource-Allocation Graph Showing A

Circuit But No Deadlock

P1 P2 P3 P4

R1 R2 R3

R4 R5 R6

This diagram includes a circuit, but there is no deadlock. R5 has a second instances

which was reserved by P1. Since P1 can complete its execution - it has all the

resources it needs) - it will free R5 and then P3 can use R5 and complete its own

execution. Lastly, P2 can finish. Since they all can finish, there is no deadlock.

7

How To Handle Deadlock

• We can prevent deadlock from ever

happening.

• We can allow deadlock, detect it when it

happens and recover from it.

• We can pretend that deadlock never

happens.

How do we handle deadlock? For all practical purposes, we can either prevent,

detect it whenever it happens and then recover from it, or simply pretend that it

never happens. Many operating systems take this last approach, which is not

without problems. There is a story of one system that was shut down and they

discovered on it a process that had been waiting for ten years. Ignoring deadlock

can potentially lead to situations like this.

8

Deadlock Prevention

Deadlock prevention means that we will eliminate
one of the four necessary conditions for deadlock:

• We cannot eliminate mutual exclusion

• We can forbid processes to request resources
while holding others before executing. (Eliminates
hold and wait)

• We can require that a process denied a resource
must give up the others. (Eliminates no pre-
emption)

• We can require that resources be requested in a
specific order. (Eliminates circular waiting)

Preventing deadlock, in theory, is simple: prevent one of the four necessary

conditions from becoming true. The most immediate problem is that you cannot

prevent the first condition in most instances where you find it. The only way to

eliminate mutual exclusion is a hardware solution: increase the number of devices.

But even that will always eliminate mutual exclusion.

Any possibility is to prevent processes from holding resources while they wait for

other resources. This prevents the hold and wait condition.

We can require that a process that was denied a resource give up the ones that it is

holding. This adds the possibility of pre-emption, preventing deadlock.

Lastly, we can require that resources be requested and allocated in a specific order.

This eliminates the possibility of circular waiting.

Eliminating Hold and Wait

• There are two ways of eliminating hold

and wait:

– Processes must request all their resources

before executing (resource requests must

come before all system requests).

– Processes cannot request resources before

releasing others.

There are two ways of eliminating hold and wait:

The first possibility is that process request all the resources before starting. This

eliminates the scenario of a process holding one resource while waiting for another.

The other possibility is that process cannot request resources if it is holding any.

This would require a process to surrender its resources before requesting any others.

Pitfalls With Eliminating Hold and

Wait

• Both methods will lead to low resource utilization

because a resource will be held without being used

for extended periods of times.

• This can lead to starvation because a process may

wait indefinitely if one or more of the required

resources is in heavy demand.

Both methods will lead to low utilization because resources will sit idle but reserved

for long periods of time. A process would request everything at the start but not use

one or more of these resources for quite some time.

Additionally, it opens up the possibility of starvation because a process may wait

forever for the situation where all the resources it needs to all be available at the

same time.

Eliminating Lack of Pre-emption

• Process A is holding Resource 1 and
requests Resource 2.

• Resource 2 is not available because Process
B is holding it.

• We can require that Process A give up
Resource 1 immediately or discover that
Process B is waiting for Resource 1 and
allow it to be re-allocated.

We can also allow pre-emption to occur. This means that we can take a resource

away from one process and give it to another that it waiting for it.

Eliminating Circular Wait

• We can establish a precedence in which

resources must be requested.

• If a requested resource is not available, we

wait until it is before requesting any other

resources.

• This precedence should follow the normal

order of usage for these resources.

Eliminating circular wait requires us to establish some kind of order to the manner

in which processes request resources. If processes must always get Resource 1

before waiting for Resource 2, then circular wait is impossible and therefore there

can never be a deadlock.

9

Deadlock Avoidance

• Deadlock prevention algorithms reduce

resource utilization and systems throughput.

• If the operating system knows in advance

about a process’s resource requests, it can

determine whether or not they can be

fulfilled without a risk of deadlock.

• This strategy is called deadlock avoidance.

The problem with preventing deadlock is that it also makes our use of the system

resources much less efficient. Our utilization of resources will be diminished as

will our systems throughput. Since we want to maximize throughput and resource

utilization and not minimize them, deadlock prevention may not be worthwhile

design goals.

There is an alternative that may be more worthwhile. Let’s give the operating

system prior notice of what resources a process may request. Now we can

determine the likelihood of deadlock and avoid situations where we are more likely

to encounter it. This is what we mean by deadlock avoidance.

10

What is a Safe State?

Deadlock

Safe

Unsafe

A state is safe if the system can allocate resources to the various processes in some

particular order and avoid deadlock in doing so.

An unsafe state is a state that may lead to deadlock. Not all unsafe states are actual

deadlock.

Our goal in avoiding deadlock is to avoid the unsafe states. Since safe states cannot

lead to deadlock, we can avoid it without incurring as high a cost as we would in

eliminating the necessary conditions for deadlock.

An Example of a Safe State

2 3P3

2 6P2

3 6P1

510P0

Current NeedsMaximum Needs
Total available

= 15 tape drives

Imagine a situation where we have four processes that are looking to use some of a

system’s 15 tape drives. They each have indicated what their maximum needs

could be. Although they could request a total of 25 tape drives on a system that

only has 15, currently they have only requested 12 tape drives.

That leaves 3 tape drives available. With those three tape drives, P1, P2 or P3 could

finish their work. As each finishes, the drives that they have reserved become

available for the remaining processes. Then there will be the extra tape drives

available that P2 needs and eventually even the 5 tape drives that P0 needs. Since

all the processes can get the necessary resources and run through completion, this is

a safe state.

An Example of an Unsafe State

2 3P3

2 6P2

3 6P1

710P0

Current NeedsMaximum Needs
Total available

= 15 tape drives

If any of these processes were to request another tape drive, the system would not be

able to fulfill the request. This means that it is not a safe state

11

Resource-Allocation Graph Showing a

Safe State

P1

R1

P1

P1

R3

R2

assignment edge

request edge

claim edge

It is possible to use resource-allocation graphs to show whether a state is safe or

unsafe if each resource has only one instance. In addition to the assignment edges

and request edges that we discussed earlier, we add another type of edge: the claim

edge. Processes must inform the operating system of the resources that they may

request over their lifetime. These potential requests, or claims, are shown as claim

edges.

Claims are not requests, because the requests have not yet been made, but the

process has the right to request them if necessary. We will now include them in our

analysis. If we have a circuit, there is a possibility that there will be a circular wait.

Since there is only one instance of each resource, there is mutual exclusion also, as

well as hold and wait and no pre-emption. This could become a deadlock, although

it may not. We will avoid these because without unsafe states, there is no deadlock.

11

Resource-Allocation Graph Showing an

Unsafe State

P1

R1

P1

P1

R3

R2

In this case, there is a circuit, so we are obviously in an unsafe state.

11

Resource-Allocation Graph Showing a

Deadlock

P1

R1

P1

P1

R3

R2

This graph shows a state in deadlock. Like the unsafe state, there is a circuit, but

what makes this different is that the claim edge is replaced by a request edge. Now

our circuit indicates that all the conditions are present to create a deadlock.

12

The Banker’s Safety Algorithm

Let Work and Finish are vectors of length m and n respectively.

Initialize Work := Available and Finish[I] for I := 1 to n

Complete := False

REPEAT

Find I such that

(Finish[I] = false) AND Need[I] <= Work

IF such an I exists

THEN BEGIN

Work := Work + Allocation [I]

Finish[I] := True;

END; { then }

ELSE Complete := True

UNTIL Complete;

If Finish[I] = true for all I,

then the system is in a safe state.

The problem with using resource-allocation graphs is that they are hard to turn into

programs if there is more than one instance of a resource. In that event we will use

something called the Banker’s Algorithm. A banker does not want to have too

much cash on hand because it isn’t earning interest or any other return on

investment. But he or she must have at least enough to meet the demands of the

day.In figuring out how much cash, he or she needs, a banker can take into account

the amount of money coming in as well as how much likely to go out. The

estimates should be as conservative as necessary because it is better to keep too

much on hand than to run out.

The algorithm that you see here tells us if a given state is safe. It requires that we

must have at least one process that can get everything that it is allowed to reserve.

Then we’ll pretend to free its resources and see if there is a process which can get

the rest of what it may need. We continue this until every process is able to

complete its execution or until we are certain that they can’t. In the first case, the

system is safe and in the second case it is unsafe.

12

The Banker’s Resource Request Algorithm

Let Requesti be request vector for Process Pi.

Requesti[j] = k means that process Pi want k instances of resource Rk

IF Requesti > Need THEN Error(Exceeded maximum claim)

ELSE IF Requesti > Available THEN Wait(Resources are not available)

Have the system pretend to allocate the requested resource. This means

that for Pi:

Available := Available - Requesti;

Allocationi := Allocationi + Requesti;

Needi := Needi + Requesti;

IF the resulting state is safe

THEN Complete transaction and allocate resources

ELSE Pi waits for the resources and old allocation is restored.

The last algorithm tells us if the system is safe. But will it be safe if we allocate a

resource (or more than one resource) to a process? Let’s pretend to allocate the

resource or resources and see if the system is in a safe state. If it is, we’ll do the

allocation. If not, we won’t.

Banker’s Algorithm - An Example

84P3

52P2

440P1

Avail.NeedMax.Alloc.

Let’s look at a simple example. Imagine that there are three processes, which have

been allocated our one resource as shown in the slide. They each have a maximum

allowed allocation of as shown.

Banker’s Algorithm Example – What Is the

Need?

484P3

352P2

4440P1

AvailNeedMax.Alloc

safe

The first step is to calculate what they might need. For Process P1, it is 4 because a

maximum of 4 minus an allocation of 0 yields 4. For process P2, it is 5 minus 2

yielding a need of 3. For process P3, it is 8 minus 4 yielding a need of 4. With the

sequence <P2, P1, P3>, we have determined that the system is in a safe state.

With 4 instances of the resource available, we could complete any of the three

processes; let’s say that we complete P2 first.Now we can free the 2 that P2 is

holding. With the 6 available, we can complete either P1 or P3; let’s compete P1

first. Since there is nothing to free we don’t change the amount available and we

complete P3

Banker’s Algorithm Example – What If We

Allocate A Few More?

484P3

253P2

1242P1

AvailNeedMax.Alloc

unsafe

Let’s allocate 2 instances of our resource to P1 and one more to P2. With only one

instance of the resource left, there is no process whose potential need can be met.

So we cannot be certain that any will run to completion. The system is in an unsafe

state and the allocation was not a prudent move.

Banker’s Algorithm Example – 3 Types of

Resources

4 3 30 0 2P4

2 2 22 1 1P3

9 0 23 0 2P2

3 2 22 0 0P1

3 3 27 5 30 1 0P0

Avail

A B C

Need

A B C

Max

A B C

Alloc

A B C

Let’s take a look at a more typical situation. There are three different types of

resources, A, B and C. Shown here is their current allocations, the maximum

allocations that they may request and what remains available. Our first step is to

calculate the needs.

Banker’s Algorithm Example – Calculating

the Needs

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

1 2 23 2 22 0 0P1

3 3 27 4 37 5 30 1 0P0

Work

A B C

Need

A B C

Max

A B C

Alloc

A B C

P1 can

get its need

and finish

P0 has 0 instances of A, 1 instance of B and 0 instances of C. It has the right to 7

instances of A, 4 instances of B and 3 instances of C.

7 instances of A minus 0 allocated instances of A equals a need of 7 instances of A.

5 instances of B minus 1 allocated instance of B equals a need of 4 instances of B.

3 instances of C minus 0 allocated instances of C equals a need of 3 instances of C.

We now do the same for processes P1, P2, P3, and P4. When we finish, we see that

P1 can get everything that it may need, so it will run through completion.

Banker’s Algorithm Example – After

Finishing Process P1

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

0 0 00 0 0 0 0 0P1

5 3 27 4 37 5 30 1 0P0

Work

A B C

Need

A B C

Max

A B C

Alloc

A B C

P3 can

get its need

and finish

After we re-allocate the 2 instances of A that P1 actually is holding, we have 5 A’s,

3 B’s and 2 C’s. With this, we can satisfy P3 and it can run through completion.

Banker’s Algorithm Example – After

Finishing Process P3

4 3 14 3 30 0 2P4

0 0 00 0 00 0 0 P3

6 0 09 0 23 0 2P2

0 0 00 0 0 0 0 0P1

7 4 37 4 37 5 30 1 0P0

Work

A B C

Need

A B C

Max

A B C

Alloc

A B C

P4 can

get its need

and finish

Once P3 finishes, we re-allocate its 2 A’s, 1 B and 1 C, making 7A’s, 4 B’s and 3

C’s available for re-allocation. Now we can finish P4.

Banker’s Algorithm Example – After

Finishing Process P4

0 0 00 0 00 0 0P4

0 0 00 0 00 0 0 P3

6 0 09 0 23 0 2P2

0 0 00 0 0 0 0 0P1

7 4 57 4 37 5 30 1 0P0

Work

A B C

Need

A B C

Max

A B C

Alloc

A B C

P2 can

get its need

and finish

We can now free up the 2 C’s that belong to P4 and and now we have 7 A’s, 4 B’s

and 5 C’s. This is enough to allow us to complete P2.

Banker’s Algorithm Example – After

Finishing Process P2

0 0 00 0 00 0 0P4

0 0 00 0 00 0 0 P3

0 0 00 0 00 0 0P2

0 0 00 0 0 0 0 0P1

10 4 77 4 37 5 30 1 0P0

Work

A B C

Need

A B C

Max

A B C

Alloc

A B C

P0 can

get its need

and finish;

Lastly, we free up the 3A’s and 2 C’s that P2 has . This leaves us with enough to

complete P0.

Banker’s Algorithm Example – After

Finishing Process P0

0 0 00 0 00 0 0P4

0 0 00 0 00 0 0 P3

0 0 00 0 00 0 0P2

0 0 00 0 0 0 0 0P1

10 5 70 0 00 0 00 0 0P0

Work

A B C

Need

A B C

Max

A B C

Alloc

A B C

The system

is safe

There is a sequence in which we can complete all the processes if they do need their

maximum allocation. The system is safe.

Banker’s Algorithm Example – Can We

Grant P1’s Request?

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

1 2 23 2 22 0 0P1

3 3 27 4 37 5 30 1 0P0

Avail

A B C

Need

A B C

Max

A B C

Alloc

A B C

P1 requests

(1, 0, 2)

It is less

than the

available

resources

Let’s examine a request of process P1 for 1 A, 0 B’s and 2 C’s. Since this is less

than what is available, we have the resources available for the request, but will it

leave us in a safe state?

Banker’s Algorithm Example – After We

Grant P1’s Request

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

0 2 03 2 23 0 2P1

2 3 07 4 37 5 30 1 0P0

Avail

A B C

Need

A B C

Max

A B C

Alloc

A B C

A similar

execution

of our

algorithm

will find the

sequence

<P1, P3,

P4, P0, P2>

Let’s pretend to allocate it. This leave us with 2 A’s, 3 B’s and 0 C’s available.

We have enough for P1 to run to completion, even if it needed its maximum

allocation. After de-allocating its 3 A’s and 2 C’s, we would have 5 A’s, 3 B’s and

2 C’s available.

With this, we could run P3 through completion. Then we could free its resources,

which would give us 7 A’s, 4B’s and 3 C’s. With this we could easily complete P4,

P0 and P2. Thus, this request can be made without placing the system in an unsafe

state.

Banker’s Algorithm Example – Can We

Grant P4’s Request?

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

0 2 03 2 23 0 2P1

2 3 07 4 37 5 30 1 0P0

Avail

A B C

Need

A B C

Max

A B C

Alloc

A B C

P4 requests

(3, 3, 0)

It is more

than the

available

resources

If P4 were to request 3 A’s and 3 B’s, we would be unable to fulfill the request

because we do not have the resources available - we are short 1 A.

Banker’s Algorithm Example – Can We

Grant P0’s Request?

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

0 2 03 2 23 0 2P1

2 3 07 4 37 5 30 1 0P0

Avail

A B C

Need

A B C

Max

A B C

Alloc

A B C

P0 requests

(0, 2, 0)

It is less

than the

available

resources

Let’s see what happens if P0 requests 2 B’s. It’s less than the available resources,

But does it place us in an unsafe state?

Banker’s Algorithm Example –

Recalculating P0’s Allocation

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

0 2 03 2 23 0 2P1

2 0 07 1 37 5 30 3 0P0

Work

A B C

Need

A B C

Max

A B C

Alloc

A B C Adding to

P0’s

allocation

Let’s add the 2 B’s to P0’s allocation and recalculate its need and what would be

available.

Banker’s Algorithm Example –

Recalculating P0’s Allocation

4 3 14 3 30 0 2P4

0 1 12 2 22 1 1P3

6 0 09 0 23 0 2P2

0 2 03 2 23 0 2P1

2 0 07 1 37 5 30 3 0P0

Avail

A B C

Need

A B C

Max

A B C

Alloc

A B C There is

not enough

left for

anyone’s

need;

it is not

safe

The problem is that 2 A’s and 0 B’s or C’s leave us unable to meet any possible

requests by other processes. This request won’t be granted because it places us in

an unsafe state.

13

Deadlock Detection

• If a system does not provide for deadlock

avoidance or prevention, then it must

provide:

– an algorithm for deadlock detection

– an algorithm for deadlock recovery

Some systems don’t avoid or prevent deadlock. What they do is detect it and

recover from it. That means that such systems need an algorithm for each of these

two tasks.

Detecting Deadlock With Single-Instances of

Each Resource

P5

P4

P2 P3P1

R2 R5

R1 R3 R4

In the case of single-instance resource, we can use a graphical approach. Let’s take

another look at our resource allocation graph. What we will do is simplify this by

redrawing the request edges that currently run from process to resource. Instead,

let’s have them point directly to the process holding the requested resource.

Detecting Deadlock Corresponding Wait-For

Graph

P5

P4

P2 P3P1

This is what the graph looks like after the redrawing the request edges. Now we

know at a single glance that P4 is waiting for a resource that P1 is holding; which

resource is not important. Similarly P1 is waiting for a resource that P2 is holding

and P2 is waiting for a resource that P4 is holding. It is fairly straightforward to

write a program that can detect whether there is a circuit like this in such a graph.

Detecting Deadlock With Multiple-Instances

of Each Resource

Let Work and Finish be vector of length m and n respectively.

Initialize Work := Available

FOR I := 1 To n

IF Allocation <> 0 THEN Finish[i] := False;

ELSE Finish[i] := True;

WHILE there exists an I such that

(Finish[i] = False) AND (Requesti <= Work) DO

BEGIN

IF such an I exists

THEN BEGIN

Work := Work + Allocationi;

Finish[i] := True

END; { then }

END; { while }

IF Finish[i] = False then the system is in a deadlock state and Process Pi is
deadlocked.

This is similar to the Banker’s Algorithm that we looked at before. We assume that

certain resources have been allocated and that others have been requested.

We’ll look to see if there are any requests that we can fulfill. If that’s the case,

these processes can run through completion and then their resources can be re-

allocated to other processes.

We continue this until there are no more cases like this. If we haven’t finished all

our processes, there is a deadlock which includes this process.

Detecting No Deadlock – An

Example

0 0 20 0 2P4

1 0 02 1 1P3

0 0 03 0 3P2

2 0 22 0 0P1

0 0 00 0 00 1 0P0

Avail

A B C

Request

A B C

Alloc

A B C

Request2 ≤ Work

Let’s look at an example. In this system, we have no remaining resources but there

are processes with outstanding requests. Since P2 doesn’t need anything else, it can

run through completion and we can reassign its resources.

Detecting No Deadlock – After

Finishing P2

0 0 20 0 2P4

1 0 02 1 1P3

0 0 00 0 0P2

2 0 22 0 0P1

3 0 30 0 00 1 0P0

Avail

A B C

Request

A B C

Alloc

A B C

Request0 ≤ Work

We now have 3 A’s and 3 C’s available, but since P0 doesn’t even need this, it can

run through completion and we can reassign its resources.

Detecting No Deadlock – After

Finishing P2

0 0 20 0 2P4

1 0 02 1 1P3

0 0 00 0 0P2

2 0 22 0 0P1

3 1 30 0 00 0 0P0

Avail

A B C

Request

A B C

Alloc

A B C

Request3 ≤ Work

We now have 3 A’s, 1 B and 3 C’s. This is more than enough to meet P3’s request

and it can run through completion. We can reallocate its resources.

Detecting No Deadlock – After

Finishing P3

0 0 20 0 2P4

0 0 00 0 0P3

0 0 00 0 0P2

2 0 22 0 0P1

5 2 40 0 00 0 0P0

Avail

A B C

Request

A B C

Alloc

A B C

Request1 ≤ Work

We now have 5 A’s, 2 B’s and 4 C’s. This is more than enough to meet P1’s request

and it can run through completion. We can reallocate its resources.

Detecting No Deadlock – After

Finishing P3

0 0 20 0 2P4

0 0 00 0 0P3

0 0 00 0 0P2

0 0 00 0 0P1

7 2 40 0 00 0 0P0

Avail

A B C

Request

A B C

Alloc

A B C

Request4 ≤ Work

We now have 7 A’s, 2 B and 4 C’s. This is more than enough to meet P3’s request

and it can run through completion. We can reallocate its resources.

Detecting No Deadlock – After

Finishing P4

0 0 20 0 2P4

0 0 00 0 0P3

0 0 00 0 0P2

0 0 00 0 0P1

7 2 40 0 00 0 0P0

Avail

A B C

Request

A B C

Alloc

A B C

Not

deadlocked

Our

algorithm

found

the sequence

<P0 , P2 , P3 ,

P1 , P4>

This is clearly NOT a deadlock because there is a sequence of processes that can be

completed - that sequence is<P0 , P2 , P3 ,P1 , P4>

Detecting Deadlock – An Example

0 0 20 0 2P4

1 0 02 1 1P3

0 0 13 0 3P2

2 0 22 0 0P1

0 0 00 0 00 1 0P0

Avail

A B C

Request

A B C

Alloc

A B C

Request0 ≤ Work

Let’s look at this system with one change - let P2 request a single instance of

Resource C. Since the only Process that can run to completion is P0, let’s assume

that it does and we can re-allocate its resources.

Detecting Deadlock – An Example

0 0 20 0 2P4

1 0 02 1 1P3

0 0 13 0 3P2

2 0 22 0 0P1

0 1 00 0 00 0 0P0

Avail

A B C

Request

A B C

Alloc

A B C The system is in

a state of

deadlock – there

are no other

processes whose

request we can

fill

We now have available a single instance of B - no A’s, no C’s. This is not enough

to meet the demands of any of the other processes. Therefore, there is a deadlock

between P1, P2, P3, and P4.

14

Recovery From Deadlock

• Once we detect deadlock, we have two

alternatives for breaking it:

– Terminating one of the deadlocked processes

– Preempting the resources that belong to one of

the deadlocked processes.

Detecting a deadlock is important, but it is even more important that we recover

from it. We have two options for breaking a deadlock: we can terminate one or

more of the processes in the deadlock or we can take back enough resources so that

one of the deadlock processes can proceed to completion.

15

Process Termination

• If the operating system recovers from deadlock by

terminating processes, there are two approaches

that it can take:

– Terminate all the deadlocked processes

– Terminate deadlock processes until the deadlock is

broken.

• If we use the second option, we have to determine

the process whose termination incurs the

minimum cost.

Terminating a process is not something that we really wish to do, but it’s better to

terminate a process than to leave several processes unfinished in a deadlock. Here,

too, we have some alternatives: we can terminate all the processes in the deadlock

or just enough to break the deadlock.

Obviously, terminating them all seems fair on one level, but at the same time it

seem like overkill. We would prefer to kill only a few. Here what determines the

processes that are terminated and the ones allowed to run is whatever constitutes the

lowest cost. Such factors include:

Process priority

•How far the process has progressed and how far from completion it is?

•The resources that it has used

•The resources that it needs

•How many processes need to be terminated?

•Is it batch or interactive?

16

Resource Preemption

• Preemption involves taking resources away from a
process for which they are allocated and giving
them to other processes until the deadlock is
broken.

• There are three issues that must be addresses:

– Selecting a victim – which resources do we take from
which processes?

– Rollback – we need to roll the processes that lose their
resources back to some safe state

– Starvation – how do we avoid these processes being
staved?

Preemption would seem to be preferable because it allows all the deadlocked

processes to eventually run to completion. This also has a few issues that must be

resolved:

Which resource or resources do we preempt from which process or processes?

•When we restore the process that has had its resources preempted, where do we

pick up execution? In other words, how far do we roll back?

•How do we make sure that the process doesn’t starve? We have to make sure that

it can eventually reclaim the necessary resources.

17

Combined Approach

• Some researchers argue that using only
prevention, avoidance or detection alone is
not enough to handle the whole range of
resource-allocation problems.

• An approach that combines these
approaches will work best.

– We could partition our resources into classes
that are ordered in an hierarchical fashion, with
each class subject to resource ordering.

Some researchers feel that the none of these three approaches work best on their

own, that we really need an approach that combines elements of prevention,

avoidance and detection/recovery. One possibility is to divide our resource into a

set of classes, in which each class of resources is subject to resource ordering. This

should allow us to avoid deadlock or minimize its impact.

