CSC 453 Operating Systems

L ecture 6 : Process Synchronization

Concurrent Processes : An Example

» Imagine that you have two concurrent processes that
manage a checking account:

— p, handles deposits and other credits.
— p, handles checks and other debits.
» They would both share the variable balance:
shared doubl e bal ance;
» They both can reference balance:
— P1 contains:
bal ance = bal ance + deposit;
— P2 contains
bal ance = bal ance — check;




Race Conditions

* Whileit looks like these processes recalculate the
balance in asingle step, thisis NOT how it looks
on the machine language (or assembler) leve:

Process P, Process P,

| oad R1, bal ance | oad R1, bal ance
| oad R2, ampunt | oad R2, ampunt
add R1, R2 sub Rl, R2

store R1, bal ance store R1l, bal ance

What you redly have is arace condition

What |s a Race Condition?

A race condition isasituation in which the
results of the operating systemis
determined by the results of arace between
competing activities.

* A race condition is highly undesirable
because the result will be unpredictable and
the integrity of data may be compromised.




Critical Sections

* A critica section is asection of code where the processis
performing operations that must be atomic, i. e., where
the operations must be performed as a unit without

interruption.

*  Therearefour required criteriain implementing critical

sections:

— No 2 processes can be inside a critical section at once
— No assumptions can be made about speed or number

of processors.

— No processes outside critical section can block another

process.

— No process should wait forever to enter a critical

section.

Using Locks

shared bool ean | ock = FALSE;

shared doubl e bal ance;
Process 1 Process 2
/* Acquire | ock */ /* Acquire | ock */
while (lock) ; while (lock) ;
| ock = TRUE; | ock = TRUE;
/* Execute critical /* Execute critica
section */ section */
bal ance bal ance

= bal ance+deposit;
/* Rel ease | ock */
| ock = FALSE;

= bal ance- check;
/* Rel ease | ock */
| ock = FALSE;




Mutual Exclusion

* Mutual Exclusion means that when one
process has access to a critical section, all
other processes are barred from entering it.

» We saw earlier that that was one of the
required criteriafor critical sections.

* How will we implement this?

Achieving Mutual Exclusion — First Try

int turn = O;

while (turn !'= 0)
;o [* owait */

[* critical
section */

while (turn !'= 1)
;o [* wait */

/[* critical
section */




Achieving Mutual Exclusion—2™ Try

enum bool ean

{ false, true };

int flag[2] = { false, false};

while (flag[1])

o/ * owalt */
flag[0] = true;
/* critical

section */
flag[0] = fal se;

while (flag[O0])

o/ * owalt */
flag[1l] = true;
/* critical

section */

flag[1] = fal se;

Achieving Mutual Exclusion -3 Try

enum bool ean

{ false, true };

int flag[2] = { false, false};

flag[0] = true;
while (flag[1])
;o * owait ¥/
/* critical
section */
flag[0] = true;

flag[1l] = true;
while (flag[0])
o l* wait */
[* critical
section */
flag[1l] = true;




Achieving Mutual Exclusion — 4% Try

flag[0] = true;
while (flag[1]) {
flag[0] = false;
[* delay */
flag[0] = true;
}
/* critical
section */
flag[0] = true;

flag[1] = true;
while (flag[0]) {
flag[1l] = false;
[* delay */
flag[1l] = true;
}
/* critical
section */
flag[1l] = true;

Dekker’s Algorithm — Common
Declarations

bool ean

flag[?2];
I nt turn;




Dekker’s Algorithm — Process 0

voi d pO(void)

{
flag[0] = true
while (flag[1])
if (turn == 1) {
flag[0] = fal se;
while (turn == 1)
flag[0] = true;
}
/[* critical section */
turn = 1;
flag[0] = false;
/* rest of process */
}

Dekker’s Algorithm — Process 1

voi d pl(void)
{
flag[1l] = true;
while (flag[0])
if (turn == 0) {
flag[1] = false;
while (turn == 0)

flag[1l] = true
}
/[* critical section */
turn = 0;
flag[1l] = false;
/* rest of process */




Peterson’s Algorithm - Declarations

#i ncl ude “prototypes.h”
#define FALSE O
#define TRUE 1

#define N 2 /* nunmber of processes */

int turn; [* whose turn is it? */

int interested[N; /* initially all
fal se */

Peterson’s Algorithm - Entering

voi d enter_region(int process)
/* process: who is entering O or 1) */
{

int other; /* # of other process */

other = 1 — process;

i nterested| process] = TRUE

turn = other;

while (turn == other &&

I nterested[other])




Peterson’s Algorithm - Leaving

void | eave_region(int process)
/* process: who is entering O or 1) */
{
/* Indicate departure fromcritica
section */
i nterested[ process] = FALSE;

Disabling Interrupts

» Since the sequence of instructions in either process
can be interrupted, let’ s disable interrupts so the
instructions of the critical section will proceed
without interruption:

e shared doubl e bal ance;

Process 1 Process 2
di sabl el nterrupts(); di sabl el nterrupts();
bal ance bal ance
= bal ance + deposit; = bal ance - check
enabl el nterrupts(); enabl el nterrupts();




Test and Set Lock

» Test and Set is a single machine instruction
introduced by IBM in its Series 360 computers.
— A single bit stored the value of the lock as O (free) or 1
(busy).
— If Process 0 tested the condition and found the lock
free, it would set it and continue, clearing the lock when
it leaves the critical section.

— If it finds the lock set, it is placed in aloop where it
continually tests the lock until it is cleared.
» Thisworks well for a some number of processes
but can lead to starvation.

Implementing Test and Set Lock
enter_region:
tsl register, flag ; copy flag to register
;and set flagto 1
cmp  register, #0  ; wasflag zero?

jnz  enter_region ; if nonzero, lock is set so loop

ret : return to caller, enter critical
: section
leave region:
mov flag, #0 ; storeaOinflag

ret : return to caler




Semaphores

» Edsger Dijkstraintroduced the concept of the
semaphore in his landmark paper “ Co-operating
Sequential Processes” as a mechanism for
coordinating processing that share resources
(including critical sections).

* A semaphore sis a non-negative integer variable
which is changed or tested exclusively by the
primitivesPand V.

—V(9) :[s=s+1]
—P(s): [ whiles==0{ wait }; s=s-1]

Semaphores and Critical Sections

» Becausethe Pand V operations are indivisible,
they can be used to implement critical sections:
semaphore mutex = 1;

Process O Process 1

P( mut ex) P( mut ex)

/[* critical /[* critical
section */ section */

V( nmut ex) V( nmut ex)




|mplementing Semaphores

cl ass semaphore {
public:
semaphore (int v);
void P();
void V();
private:
int val ue;

}

| mplementing Semaphore Constructor

semaphore: : semaphore (int v) {
/lallocate space for the semaphore
object in the OS
val ue = v;




|mplementing Semaphore P Operation

voi d semaphore:: P()
{
di sabl el nterrupts();
/[l Loop until value is positive
while (values == 0) {
enabl el nterrupts();
di sabl el nterrupts();
}
- -val ue;
enabl el nterrupts();

|mplementing Semaphore V Operation

voi d semaphore:: V()

{ di sabl el nterrupts();
val ue++;
enabl el nterrupts();




Consumer-Producer Problem —
Semaphore Solution

semaphor e nut ex 1, full =0,

empty = N;
buftype buffer[ N ;

Consumer-Producer: Producer Process

pr oducer ()
{
buf t ype *next, *here;
whi | e ( TRUE) {
producel t em( next);
/1 aiman enpty buffer
P(enpty);
/1 Mani pul ate the pool
P( mut ex) ;
here = obtain(enpty);
V( mut ex) ;




Producer Process (continued)

copyBuf fer(next, here);
/I Mani pul at e t he pool

P( Mut ex) ;

rel ease(here, fullPool);
V( mut ex) ;
/1 Signal a full buffer
V(full);

Consumer-Producer: Consumer Process

consumner ()
{
buft ype *next, *here;
whi | e ( TRUE) {
/[l Caima full buffer

P(full);
/'l Mani pul ate t he pool
P( mut ex) ;

here = obtain(full);
V( mut ex) ;

copyBuffer(here, next);




Consumer Process (continued)

/'l Mani pul ate t he pool

P( mut ex) ;

rel ease(here, enptyPool);
V( mut ex) ;
/1 Signal an enpty buffer
V(enpty);

consunel t em next) ;

Reader-Writer Problem

» A dataobject, such as afile, isto be shared by severa
concurrent processes.

— If one of these processes are reading, then any of the
others can read, but they cannot write.

— If one of these processes are writing, then no others can
write OR read.

* Therearetwo realy problems:

— No reader should wait for other readers to finish simply
because a writer is waiting. (This may starve writers.)

— If awriter iswaiting, no new readers should start
reading. (This may starve readers.)




The Writer Process

semaphore nutex, wt;

i nt readcount ;
voi d writer()
P(wrt)

The Reader Process

voi d reader (voi d)

{

P( mut ex)

readcount ++;

if (readcount == 1) P(wt);
V( mut ex) ;

P( mut ex)

- -readcount;

if (readcount == 0) V(wt);
V( mut ex) ;




Dining Philosopher Problem
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A Potential Solution For the Dining
Philosophers

semaphore chopsti ck[ 5];
voi d phil osopher(int i)
{
do {
P(chopstick[i]);
P(chopstick[ (i +1} %] ;
eat
V(chopstick[i]);
V(chopsti ck[ (i +1} 9%B] ;
t hi nk
} while (TRUE);




Solutionsto the Dining
Philosopher’ s Deadl ock

* Allow no more than 4 philosophers at the table.

*  Philosophers must pick up both chopsticks at
once.

*  Odd-numbered philosophers pick up left
chopstick first; even-numbered philosophers
pick up right chopstick first.

Monitors

« A monitor is ahigh-level synchronization
mechanism proposed by C. A. R. Hoare and
P. Brinch Hansen.

» Monitorsrely on condition variables and the
signal and wait operators.

» Mutual exclusion is automatic; by
definition, only one process can be activein
amonitor at any time.




Monitor Solution to the Consumer-
Producer Problem

MONI TOR Pr oducer Consuner ;
TYPE Condition =(NotFull, NotEnpty);
VAR Count : | nteger;
PROCEDURE Ent er ;

BEG N
| F Count = N THEN Wit (Not FulI)
Enter Item

COUNT : = Count + 1,
| F Count = 1 THEN Si gnal ( Not Enpt y)
END;, { Enter }

Consuming an Item : The Monitor
Solution

PROCEDURE Renove;
BEA N
| F Count = 0 THEN Wit ( Not Enpty)
Renove_|tem
COUNT : = Count - 1;
I F Count = N1 THEN Si gnal (Not Ful )
END, { Enter }
BEG N
Count := 0
END MONI TOR;




The Producer Process : The Monitor
Solution

PROCEDURE Pr oducer ;
BEG N
VWH LE True DO
BEG N
Produce Item
Pr oducer Consuner . Ent er
END; { Producer }

The Consumer Process : The Monitor
Solution

PROCEDURE Consuner ;
BEG N
VWH LE True DO
BEG N
Pr oducer Consuner . Renove
Consune_Iltem
END;, { Consuner }




Monitor Solution to the Dining
Philosopher Problem

MONI TOR Di ni ngPhi | osophers;
TYPE
Condi ti on=(Thi nki ng, Hungry, Eating);
Range = 0.. 4;
VAR St at e: ARRAY[ Range] OF Condition;
Sel f: ARRAY[ Range] OF Condi ti on;

Picking It Up: the Dining Philosophers

PROCEDURE Pi ckUp(i : Range);
BEG N
State[i] := Hungry;
Test (i);
|F State[i] <> Eating
THEN Sel f[i]. Wit
END, { PickUp }




Putting It Down : the Dining
Philosophers

PROCEDURE Put Down(i : Range);
BEG N
State[i] := Thinking;
Test ((i +4) MOD 5);
Test ((i+1) MOD 5);
END, { Put Down }

Testing : the Dining Philosophers

PROCEDURE Test (k : Range);
BEG N
IF (State[ (k+4) MOD 5) <> Eating)
AND ( St at e[ k] = Hungry) AND
State[ (k+1) MOD 5] <> Eati ng
THEN BEG N
State[ k] := Eating;
Sel f[ k] . Si gnal ;
END, { then }
END, { Test }




The Philosophers Process

BEG N
FORi :=0TO4
DO State[i] := Thinking

END, { Dini ngPhil osopher }




