
CSC 453 Operating Systems

Lecture 6 : Process Synchronization

Concurrent Processes : An Example
• Imagine that you have two concurrent processes that 

manage a checking account:
– p1 handles deposits and other credits.
– p2 handles checks and other debits.

• They would both share the variable balance:
shared double balance;

• They both can reference balance:
– P1 contains:
balance = balance + deposit;

– P2 contains
balance = balance – check;



Race Conditions

• While it looks like these processes recalculate the 
balance in a single step, this is NOT how it looks 
on the machine language (or assembler) level:

Process P1

load R1, balance

load R2, amount

add R1, R2

store R1, balance

Process P2

load R1, balance

load R2, amount

sub R1, R2

store R1, balance

What you really have is a race condition

What Is a Race Condition?

• A race condition is a situation in which the 
results of the operating system is 
determined by the results of a race between 
competing activities.

• A race condition is highly undesirable 
because the result will be unpredictable and 
the integrity of data may be compromised.



Critical Sections

• A critical section is a section of code where the process is 
performing operations that must be atomic, i. e., where 
the operations must be performed as a unit without 
interruption.

• There are four required criteria in implementing critical 
sections:
– No 2 processes can be inside a critical section at once
– No assumptions can be made about speed or number 

of processors.
– No processes outside critical section can block another 

process.
– No process should wait forever to enter a critical 

section.

Using Locks
shared boolean lock = FALSE;
shared double balance;

Process 1
/* Acquire lock */
while (lock) ;
lock = TRUE;
/* Execute critical 
section */
balance
= balance+deposit;

/* Release lock */
lock = FALSE;

Process 2
/* Acquire lock */
while (lock) ;
lock = TRUE;
/* Execute critical 
section */
balance 

= balance-check;
/* Release lock */
lock = FALSE;



Mutual Exclusion

• Mutual Exclusion means that when one 
process has access to a critical section, all 
other processes are barred from entering it.

• We saw earlier that that was one of the 
required criteria for critical sections.

• How will we implement this?

Achieving Mutual Exclusion – First Try

… …

while (turn != 0)

; /* wait */

/* critical 
section */

turn = 1;

… …

… …

while (turn != 1)

; /* wait */

/* critical 
section */

turn = 0;

… …

int turn = 0;



Achieving Mutual Exclusion – 2nd Try

… …
while (flag[1])

; /* wait */
flag[0] = true;
/* critical 

section */
flag[0] = false;
… …

enum boolean { false, true };

int flag[2] = { false, false};

… …
while (flag[0])

; /* wait */
flag[1] = true;
/* critical 

section */
flag[1] = false;
… …

Achieving Mutual Exclusion – 3rd Try

… …
flag[0] = true;
while (flag[1])

; /* wait */
/* critical 

section */
flag[0] = true;
… …

enum boolean { false, true };

int flag[2] = { false, false};

… …
flag[1] = true; 
while (flag[0])

; /* wait */
/* critical 

section */
flag[1] = true;
… …



Achieving Mutual Exclusion – 4th Try

… …
flag[0] = true;
while (flag[1]) {

flag[0] = false;
/* delay */
flag[0] = true;

}
/* critical 

section */
flag[0] = true;
… …

… …
flag[1] = true; 
while (flag[0])  {

flag[1] = false;
/* delay */
flag[1] = true;

}
/* critical 

section */
flag[1] = true;
… …

Dekker’s Algorithm – Common 
Declarations

boolean flag[2];
int turn;



Dekker’s Algorithm – Process 0
void p0(void)
{

flag[0] = true;
while (flag[1])

if (turn == 1) {
flag[0] = false;
while (turn == 1)

;
flag[0] = true;

}
/* critical section */
turn = 1;
flag[0] = false;
/* rest of process */

}

Dekker’s Algorithm – Process 1
void p1(void)
{

flag[1] = true;
while (flag[0])

if (turn == 0) {
flag[1] = false;
while (turn == 0)

;
flag[1] = true;

}
/* critical section */
turn = 0;
flag[1] = false;
/* rest of process */

}



Peterson’s Algorithm - Declarations

#include “prototypes.h”

#define FALSE 0

#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* initially all 
false */

Peterson’s Algorithm - Entering
void enter_region(int process)

/* process: who is entering 0 or 1) */

{

int  other; /* # of other process */

other = 1 – process; 
interested[process] = TRUE;

turn = other; 

while (turn == other && 

interested[other])

;

}



Peterson’s Algorithm - Leaving

void leave_region(int process)

/* process: who is entering 0 or 1) */

{

/* Indicate departure from critical

section */
interested[process] = FALSE;

}

Disabling Interrupts

• Since the sequence of instructions in either process 
can be interrupted, let’s disable interrupts so the 
instructions of the critical section will proceed 
without interruption:

• shared double balance;
Process 1
disableInterrupts();
balance

= balance + deposit;
enableInterrupts();

Process 2
disableInterrupts();
balance 

= balance - check;
enableInterrupts();



Test and Set Lock

• Test and Set is a single machine instruction 
introduced by IBM in its Series 360 computers.
– A single bit stored the value of the lock as 0 (free) or 1 

(busy).
– If Process 0 tested the condition and found the lock 

free, it would set it and continue, clearing the lock when 
it leaves the critical section.

– If it finds the lock set, it is placed in a loop where it 
continually tests the lock until it is cleared.

• This works well for a some number of processes 
but can lead to starvation.

Implementing Test and Set Lock
enter_region:

tsl register, flag ; copy flag to register 

; and set flag to 1

cmp register, #0 ; was flag zero?

jnz enter_region ; if nonzero, lock is set so loop

ret ; return to caller, enter  critical 
; section

leave_region:

mov flag, #0 ; store a 0 in flag

ret ; return to caller



Semaphores

• Edsger Dijkstra introduced the concept of the 
semaphore in his landmark paper “Co-operating 
Sequential Processes” as a mechanism for 
coordinating processing that share resources 
(including critical sections).

• A semaphore s is a non-negative integer variable 
which is changed or tested exclusively by the 
primitives P and V.

– V(s) : [s = s + 1]

– P(s): [ while s == 0 { wait }; s = s – 1]

Semaphores and Critical Sections

• Because the P and V operations are indivisible, 
they can be used to implement critical sections:
semaphore mutex = 1;

Process 0
… …
P(mutex)
/* critical 

section */
V(mutex)
… …

Process 1
… …
P(mutex)
/* critical 

section */
V(mutex)
… …



Implementing Semaphores

class semaphore {
public:

semaphore (int  v);
void P();
void V();

private:
int value;

}

Implementing Semaphore Constructor

semaphore::semaphore (int  v) {
//allocate space for the semaphore

object in the OS
value = v;

}



Implementing Semaphore P Operation

void semaphore::P()
{

disableInterrupts();
//Loop until value is positive
while (values == 0) {

enableInterrupts();
disableInterrupts();

}
--value;
enableInterrupts();

}

Implementing Semaphore V Operation

void semaphore::V()
{ disableInterrupts();

value++;
enableInterrupts();

}



Consumer-Producer Problem –
Semaphore Solution

semaphore mutex = 1, full = 0, 

empty = N;

buftype buffer[N];

Consumer-Producer: Producer Process

producer()
{

buftype *next, *here;
while (TRUE) {

produceItem(next);
//Claim an empty buffer
P(empty);
// Manipulate the pool
P(mutex);

here = obtain(empty);
V(mutex);



Producer Process (continued)

copyBuffer(next, here);
//Manipulate the pool
P(Mutex);

release(here, fullPool);
V(mutex);
// Signal a full buffer
V(full);

}
}

Consumer-Producer: Consumer Process
consumer()
{

buftype *next, *here;
while (TRUE) {

// Claim a full buffer
P(full);
// Manipulate the pool
P(mutex);

here = obtain(full);
V(mutex);
copyBuffer(here, next);



Consumer Process (continued)

// Manipulate the pool
P(mutex);

release(here, emptyPool);
V(mutex);
// Signal an empty buffer
V(empty);
consumeItem(next);

}
}

Reader-Writer Problem

• A data object, such as a file, is to be shared by several 
concurrent processes.
– If one of these processes are reading, then any of the 

others can read, but they cannot write.
– If one of these processes are writing, then no others can 

write OR read.
• There are two really problems:

– No reader should wait for other readers to finish simply 
because a writer is waiting. (This may starve writers.)

– If a writer is waiting, no new readers should start 
reading. (This may starve readers.)



The Writer Process

semaphore mutex, wrt;
int readcount;

void writer()
{

P(wrt)
… …
Do the writing
… …
V(wrt)

}

The Reader Process
void reader(void)
{

P(mutex)
readcount++;
if (readcount == 1) P(wrt);
V(mutex);
… …
Perform the reading
… …
P(mutex)
--readcount;
if (readcount == 0) V(wrt);
V(mutex);

}



Dining Philosopher Problem

A Potential Solution For the Dining 
Philosophers

semaphore chopstick[5];
void philosopher(int i)
{

do {
P(chopstick[i]);
P(chopstick[(i+1}%5];
eat
V(chopstick[i]);
V(chopstick[(i+1}%5];
think

} while (TRUE);
}



Solutions to the Dining 
Philosopher’s Deadlock

• Allow no more than 4 philosophers at the table.
• Philosophers must pick up both chopsticks at 

once.
• Odd-numbered philosophers pick up left 

chopstick first; even-numbered philosophers 
pick up right chopstick first.

Monitors

• A monitor is a high-level synchronization 
mechanism proposed by C. A. R. Hoare and 
P. Brinch Hansen.

• Monitors rely on condition variables and the 
signal and wait operators.

• Mutual exclusion is automatic; by 
definition, only one process can be active in 
a monitor at any time.



Monitor Solution to the Consumer-
Producer Problem

MONITOR ProducerConsumer;
TYPE Condition =(NotFull, NotEmpty);
VAR Count : Integer;
PROCEDURE Enter;
BEGIN
IF Count = N  THEN Wait(NotFull)
Enter_Item;
COUNT := Count + 1;
IF Count = 1 THEN Signal(NotEmpty)

END;  { Enter }

Consuming an Item : The Monitor 
Solution

PROCEDURE Remove;
BEGIN
IF Count = 0  THEN Wait(NotEmpty)
Remove_Item;
COUNT := Count - 1;
IF Count = N-1 THEN Signal(NotFull)

END;  { Enter }
BEGIN

Count := 0
END MONITOR;



The Producer Process : The Monitor 
Solution

PROCEDURE Producer;
BEGIN
WHILE True DO
BEGIN
Produce_Item;
ProducerConsumer.Enter

END;  { Producer }

The Consumer Process : The Monitor 
Solution

PROCEDURE Consumer;
BEGIN
WHILE True DO
BEGIN
ProducerConsumer.Remove
Consume_Item;

END;  { Consumer }



Monitor Solution to the Dining 
Philosopher Problem

MONITOR DiningPhilosophers;
TYPE
Condition=(Thinking, Hungry, Eating);
Range = 0..4;   
VAR  State:ARRAY[Range] OF Condition;

Self:ARRAY[Range] OF Condition;

Picking It Up:  the Dining Philosophers

PROCEDURE PickUp(i : Range);
BEGIN
State[i] := Hungry;
Test(i);
IF State[i] <> Eating
THEN Self[i].Wait

END;  { PickUp }



Putting It Down : the Dining 
Philosophers

PROCEDURE PutDown(i : Range);
BEGIN
State[i] := Thinking;
Test((i+4)MOD 5);
Test((i+1)MOD 5);

END;  { PutDown }

Testing : the Dining Philosophers

PROCEDURE Test(k : Range);
BEGIN
IF (State[(k+4) MOD 5) <> Eating)

AND (State[k]= Hungry) AND
State[(k+1)MOD 5] <> Eating

THEN BEGIN
State[k] := Eating;
Self[k].Signal;

END;  { then }
END;  { Test }



The Philosophers Process

BEGIN
FOR i := 0 TO 4
DO State[i] := Thinking

END;  { DiningPhilosopher }


