
CSC 453 Operating Systems

Lecture 6 : Process Synchronization

Concurrent Processes : An Example
• Imagine that you have two concurrent processes that

manage a checking account:
– p1 handles deposits and other credits.
– p2 handles checks and other debits.

• They would both share the variable balance:
shared double balance;

• They both can reference balance:
– P1 contains:
balance = balance + deposit;

– P2 contains
balance = balance – check;

Race Conditions

• While it looks like these processes recalculate the
balance in a single step, this is NOT how it looks
on the machine language (or assembler) level:

Process P1

load R1, balance

load R2, amount

add R1, R2

store R1, balance

Process P2

load R1, balance

load R2, amount

sub R1, R2

store R1, balance

What you really have is a race condition

What Is a Race Condition?

• A race condition is a situation in which the
results of the operating system is
determined by the results of a race between
competing activities.

• A race condition is highly undesirable
because the result will be unpredictable and
the integrity of data may be compromised.

Critical Sections

• A critical section is a section of code where the process is
performing operations that must be atomic, i. e., where
the operations must be performed as a unit without
interruption.

• There are four required criteria in implementing critical
sections:
– No 2 processes can be inside a critical section at once
– No assumptions can be made about speed or number

of processors.
– No processes outside critical section can block another

process.
– No process should wait forever to enter a critical

section.

Using Locks
shared boolean lock = FALSE;
shared double balance;

Process 1
/* Acquire lock */
while (lock) ;
lock = TRUE;
/* Execute critical
section */
balance
= balance+deposit;

/* Release lock */
lock = FALSE;

Process 2
/* Acquire lock */
while (lock) ;
lock = TRUE;
/* Execute critical
section */
balance

= balance-check;
/* Release lock */
lock = FALSE;

Mutual Exclusion

• Mutual Exclusion means that when one
process has access to a critical section, all
other processes are barred from entering it.

• We saw earlier that that was one of the
required criteria for critical sections.

• How will we implement this?

Achieving Mutual Exclusion – First Try

… …

while (turn != 0)

; /* wait */

/* critical
section */

turn = 1;

… …

… …

while (turn != 1)

; /* wait */

/* critical
section */

turn = 0;

… …

int turn = 0;

Achieving Mutual Exclusion – 2nd Try

… …
while (flag[1])

; /* wait */
flag[0] = true;
/* critical

section */
flag[0] = false;
… …

enum boolean { false, true };

int flag[2] = { false, false};

… …
while (flag[0])

; /* wait */
flag[1] = true;
/* critical

section */
flag[1] = false;
… …

Achieving Mutual Exclusion – 3rd Try

… …
flag[0] = true;
while (flag[1])

; /* wait */
/* critical

section */
flag[0] = true;
… …

enum boolean { false, true };

int flag[2] = { false, false};

… …
flag[1] = true;
while (flag[0])

; /* wait */
/* critical

section */
flag[1] = true;
… …

Achieving Mutual Exclusion – 4th Try

… …
flag[0] = true;
while (flag[1]) {

flag[0] = false;
/* delay */
flag[0] = true;

}
/* critical

section */
flag[0] = true;
… …

… …
flag[1] = true;
while (flag[0]) {

flag[1] = false;
/* delay */
flag[1] = true;

}
/* critical

section */
flag[1] = true;
… …

Dekker’s Algorithm – Common
Declarations

boolean flag[2];
int turn;

Dekker’s Algorithm – Process 0
void p0(void)
{

flag[0] = true;
while (flag[1])

if (turn == 1) {
flag[0] = false;
while (turn == 1)

;
flag[0] = true;

}
/* critical section */
turn = 1;
flag[0] = false;
/* rest of process */

}

Dekker’s Algorithm – Process 1
void p1(void)
{

flag[1] = true;
while (flag[0])

if (turn == 0) {
flag[1] = false;
while (turn == 0)

;
flag[1] = true;

}
/* critical section */
turn = 0;
flag[1] = false;
/* rest of process */

}

Peterson’s Algorithm - Declarations

#include “prototypes.h”

#define FALSE 0

#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* initially all
false */

Peterson’s Algorithm - Entering
void enter_region(int process)

/* process: who is entering 0 or 1) */

{

int other; /* # of other process */

other = 1 – process;
interested[process] = TRUE;

turn = other;

while (turn == other &&

interested[other])

;

}

Peterson’s Algorithm - Leaving

void leave_region(int process)

/* process: who is entering 0 or 1) */

{

/* Indicate departure from critical

section */
interested[process] = FALSE;

}

Disabling Interrupts

• Since the sequence of instructions in either process
can be interrupted, let’s disable interrupts so the
instructions of the critical section will proceed
without interruption:

• shared double balance;
Process 1
disableInterrupts();
balance

= balance + deposit;
enableInterrupts();

Process 2
disableInterrupts();
balance

= balance - check;
enableInterrupts();

Test and Set Lock

• Test and Set is a single machine instruction
introduced by IBM in its Series 360 computers.
– A single bit stored the value of the lock as 0 (free) or 1

(busy).
– If Process 0 tested the condition and found the lock

free, it would set it and continue, clearing the lock when
it leaves the critical section.

– If it finds the lock set, it is placed in a loop where it
continually tests the lock until it is cleared.

• This works well for a some number of processes
but can lead to starvation.

Implementing Test and Set Lock
enter_region:

tsl register, flag ; copy flag to register

; and set flag to 1

cmp register, #0 ; was flag zero?

jnz enter_region ; if nonzero, lock is set so loop

ret ; return to caller, enter critical
; section

leave_region:

mov flag, #0 ; store a 0 in flag

ret ; return to caller

Semaphores

• Edsger Dijkstra introduced the concept of the
semaphore in his landmark paper “Co-operating
Sequential Processes” as a mechanism for
coordinating processing that share resources
(including critical sections).

• A semaphore s is a non-negative integer variable
which is changed or tested exclusively by the
primitives P and V.

– V(s) : [s = s + 1]

– P(s): [while s == 0 { wait }; s = s – 1]

Semaphores and Critical Sections

• Because the P and V operations are indivisible,
they can be used to implement critical sections:
semaphore mutex = 1;

Process 0
… …
P(mutex)
/* critical

section */
V(mutex)
… …

Process 1
… …
P(mutex)
/* critical

section */
V(mutex)
… …

Implementing Semaphores

class semaphore {
public:

semaphore (int v);
void P();
void V();

private:
int value;

}

Implementing Semaphore Constructor

semaphore::semaphore (int v) {
//allocate space for the semaphore

object in the OS
value = v;

}

Implementing Semaphore P Operation

void semaphore::P()
{

disableInterrupts();
//Loop until value is positive
while (values == 0) {

enableInterrupts();
disableInterrupts();

}
--value;
enableInterrupts();

}

Implementing Semaphore V Operation

void semaphore::V()
{ disableInterrupts();

value++;
enableInterrupts();

}

Consumer-Producer Problem –
Semaphore Solution

semaphore mutex = 1, full = 0,

empty = N;

buftype buffer[N];

Consumer-Producer: Producer Process

producer()
{

buftype *next, *here;
while (TRUE) {

produceItem(next);
//Claim an empty buffer
P(empty);
// Manipulate the pool
P(mutex);

here = obtain(empty);
V(mutex);

Producer Process (continued)

copyBuffer(next, here);
//Manipulate the pool
P(Mutex);

release(here, fullPool);
V(mutex);
// Signal a full buffer
V(full);

}
}

Consumer-Producer: Consumer Process
consumer()
{

buftype *next, *here;
while (TRUE) {

// Claim a full buffer
P(full);
// Manipulate the pool
P(mutex);

here = obtain(full);
V(mutex);
copyBuffer(here, next);

Consumer Process (continued)

// Manipulate the pool
P(mutex);

release(here, emptyPool);
V(mutex);
// Signal an empty buffer
V(empty);
consumeItem(next);

}
}

Reader-Writer Problem

• A data object, such as a file, is to be shared by several
concurrent processes.
– If one of these processes are reading, then any of the

others can read, but they cannot write.
– If one of these processes are writing, then no others can

write OR read.
• There are two really problems:

– No reader should wait for other readers to finish simply
because a writer is waiting. (This may starve writers.)

– If a writer is waiting, no new readers should start
reading. (This may starve readers.)

The Writer Process

semaphore mutex, wrt;
int readcount;

void writer()
{

P(wrt)
… …
Do the writing
… …
V(wrt)

}

The Reader Process
void reader(void)
{

P(mutex)
readcount++;
if (readcount == 1) P(wrt);
V(mutex);
… …
Perform the reading
… …
P(mutex)
--readcount;
if (readcount == 0) V(wrt);
V(mutex);

}

Dining Philosopher Problem

A Potential Solution For the Dining
Philosophers

semaphore chopstick[5];
void philosopher(int i)
{

do {
P(chopstick[i]);
P(chopstick[(i+1}%5];
eat
V(chopstick[i]);
V(chopstick[(i+1}%5];
think

} while (TRUE);
}

Solutions to the Dining
Philosopher’s Deadlock

• Allow no more than 4 philosophers at the table.
• Philosophers must pick up both chopsticks at

once.
• Odd-numbered philosophers pick up left

chopstick first; even-numbered philosophers
pick up right chopstick first.

Monitors

• A monitor is a high-level synchronization
mechanism proposed by C. A. R. Hoare and
P. Brinch Hansen.

• Monitors rely on condition variables and the
signal and wait operators.

• Mutual exclusion is automatic; by
definition, only one process can be active in
a monitor at any time.

Monitor Solution to the Consumer-
Producer Problem

MONITOR ProducerConsumer;
TYPE Condition =(NotFull, NotEmpty);
VAR Count : Integer;
PROCEDURE Enter;
BEGIN
IF Count = N THEN Wait(NotFull)
Enter_Item;
COUNT := Count + 1;
IF Count = 1 THEN Signal(NotEmpty)

END; { Enter }

Consuming an Item : The Monitor
Solution

PROCEDURE Remove;
BEGIN
IF Count = 0 THEN Wait(NotEmpty)
Remove_Item;
COUNT := Count - 1;
IF Count = N-1 THEN Signal(NotFull)

END; { Enter }
BEGIN

Count := 0
END MONITOR;

The Producer Process : The Monitor
Solution

PROCEDURE Producer;
BEGIN
WHILE True DO
BEGIN
Produce_Item;
ProducerConsumer.Enter

END; { Producer }

The Consumer Process : The Monitor
Solution

PROCEDURE Consumer;
BEGIN
WHILE True DO
BEGIN
ProducerConsumer.Remove
Consume_Item;

END; { Consumer }

Monitor Solution to the Dining
Philosopher Problem

MONITOR DiningPhilosophers;
TYPE
Condition=(Thinking, Hungry, Eating);
Range = 0..4;
VAR State:ARRAY[Range] OF Condition;

Self:ARRAY[Range] OF Condition;

Picking It Up: the Dining Philosophers

PROCEDURE PickUp(i : Range);
BEGIN
State[i] := Hungry;
Test(i);
IF State[i] <> Eating
THEN Self[i].Wait

END; { PickUp }

Putting It Down : the Dining
Philosophers

PROCEDURE PutDown(i : Range);
BEGIN
State[i] := Thinking;
Test((i+4)MOD 5);
Test((i+1)MOD 5);

END; { PutDown }

Testing : the Dining Philosophers

PROCEDURE Test(k : Range);
BEGIN
IF (State[(k+4) MOD 5) <> Eating)

AND (State[k]= Hungry) AND
State[(k+1)MOD 5] <> Eating

THEN BEGIN
State[k] := Eating;
Self[k].Signal;

END; { then }
END; { Test }

The Philosophers Process

BEGIN
FOR i := 0 TO 4
DO State[i] := Thinking

END; { DiningPhilosopher }

