
CSC 453 Operating Systems

Lecture 5 : Process Scheduling

Concept of Multiprogramming

• Multiprogramming takes advantages of the 
fact that processes will spend a great deal of 
their time waiting for I/O operations to 
finish.

• While process #1 is waiting for I/O, the 
CPU will execute process #2.



CPU-I/O Burst Cycle

• A program running on a computer has main 
different “bursts” of activities: bursts of 
CPU activity and bursts of Input/Output 
activity.

• Since this is cyclic in nature, it is called the 
CPU-I/O Burst Cycle.
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Process Spends Most Of Its Time 
Waiting For I/O
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Three Processes Executing Without 
Multiprogramming



Three Processes Executing With 
Multiprogramming

Scheduling Criteria

• Performance criteria - What do we want from our 
scheduling algorithm?

• Utilization - As near 100% CPU time as possible.
• Throughput - Highest possible number of finished 

processes per unit time.
• Turnaround time - As low as possible for jobs 

from start to finish.
• Response time - For interactive systems, this is 

more important than turnaround time.
• Waiting Time - minimize time in ready queue and 

device queues. 



Preemptive vs. Nonpreemptive 
Scheduling

Preemptive scheduling - processes using the CPU 
can be removed by the system.

Nonpreemptive scheduling - processes using the 
CPU cannot be removed by the CPU.

Starvation - A situation that arises when a process 
never gets to the CPU (or to perform an I/O 
operation, etc.)

Scheduling Algorithms
• Scheduling Algorithms include:

– First-Come-First-Served
– Shortest Job First
– Round Robin
– Priority
– Guaranteed
– Lottery
– Real-Time



First-Come-First-Served

• First-Come-First-Served Algorithm is the simplest 
CPU scheduling.

• Whichever process requests the CPU first gets it 
first.

• It is implemented using a standard FIFO single 
queue.

• Waiting time can be long and it depends heavily 
on the order in which processes request CPU time:

An Example of First-Come-First-
Served

Imagine three processes with the following burst 
times:

Process Burst time (in msec)
P1 24
P2 3
P3 4



Scenario #1 For FCFS Scheduling

24 280 31

Processing  time = (24 + 28 + 31) / 3  =  83/3 = 27.7 msec 

P1 P3 P2

Scenario #2 For FCFS Scheduling

P1

0 3 7 31

Waiting time = (3 + 7 + 31) / 3  =  41/3 = 13.7 msec 

P3P2



Scenario #3 For FCFS Scheduling

P3

0 3 27 31

Waiting time = (3 + 27 + 31) / 3  =  61/3 = 20.3 msec 

P1P2

Shortest Job First

• Most appropriately called Shortest Next CPU 
Burst First because it bases the order upon an 
approximation of how long what the next CPU 
burst will be.

• This can be proven to be the optimal scheduling 
algorithm with the shortest average processing 
(and waiting) time.

• The SJF algorithm can be preemptive or non-
preemptive, with the preemptive SJF algorithm 
more properly being called shortest- remaining-
time-first scheduling.



Gantt Chart for Shortest Job First 
Example

P1

0 3 7 31

Waiting time = (3 + 7 + 31) / 3  =  41/3 = 13.7 msec 

P3P2

CPU Burst Length

• The real difficulty is that we are trying to predict 
how long the next CPU burst will be and this 
cannot be done with any real accuracy for short-
term CPU scheduling.

• The next burst is usually predicted using the 
exponential average of previously CPU bursts:

τn+1 = αtn + (1-α)τ
tn = length of the nth CPU burst.
τn = the past history of the CPU bursts.
0 <= α <= 1



Predicting The Next CPU Burst 
Length

• We can substitute for τn and expand get the 
exponential average:
τn+1 = α tn + (1-α) α tn-1 + ...

+ (1-α)j α tn-j  + ...(1-α)n+1 α τ0.

• More recent terms all have more weight than 
earlier term in the calculation.

Priority Scheduling

• Priority scheduling involves a priority assigned to 
each process, which is scheduled in accordance 
with its priority.

• Processes with equal priority are scheduled on a 
FCFS basis.

• A SJF algorithm is a special case of a priority 
scheduling algorithm with priority(p) being 
proportional to 1/p.



Priority Levels

• There is no general agreement on whether 0 
is the highest or lowest priority (priority 
numbers are assumed to be positive).  
– UNIX uses 0 as the highest priority
– IBM’s MVS uses it as the default (lowest) 

priority.

Setting Priorities

• Priorities can be set:
– internally (by some measurable quantity or 

quantities such as time limits, memory 
requirements, number of open files, I/O burst-
to-CPU burst ratio, etc.)

– or
– externally (by system policy, such as process 

importance, type or availability of funds, 
sponsoring department, etc.)



Starvation

• Starvation is a major problem of priority 
scheduling algorithms.

• On a busy system, a low-priority process may sit 
for extremely long periods of time.

• A solution to the problem is aging, where we 
increment the priority (make it a higher priority) 
for every 1-15 minutes of waiting.

Scenario For Priority Scheduling
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PriorityBurst TimeProcess



Gantt Chart For Priority Scheduling 
Scenario

0 1 6 16 18 19

Processing  time = (1 + 6 + 16 + 18 + 19) / 5 = 8 msec

P2 P5 P3 P4P1

Round Robin Scheduling

• Round-robin scheduling is designed for time-
sharing system.

• It is similar to the FCFS scheduling, but 
preemptive is added to switch between processes.

• A time quantum is typically 10 to 100 
milliseconds.

• The ready queue is implemented in FIFO manner..



Round-Robin Scheduling and 
Preemption

• If a process needs less than a time quantum, 
it releases the CPU voluntarily.

• If a process needs more than a time 
quantum, it is preempted from the CPU and 
placed at the back of the ready queue. 

Scenario For Round-Robin 
Scheduling
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Gantt Chart For Round Robin 
Scheduling Scenario 

0 1074 14 18 22 26 30

Processing time = (30 + 7 + 10) / 3 = 15.7 msec

P1 P1 P1 P1 P1 P1P2 P3

Time Quanta

• The performance of round robin scheduling is 
extremely dependent upon the size of the time 
quantum in use.

• If the time quantum is large (approaching infinity), 
it approaches a FCFS algorithm.

• If the time is quantum is small, it appears (in 
theory at least) that each user has his/her own 
processor.



Time Quanta and Context Switches

• We need the time quantum to be large with respect 
to the context-switch time (time it takes to switch 
processes) because each of these can effectively 
slow the processor.

quantum
context 
switches
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Guaranteed Scheduling
• If fairness is an important concern, and there are n users on 

a uniprocessor system, each user should be able to get 1/n 
of the system’s time.

• To make good on this promise to provide each user with 
1/n of the CPU time, we keep track of how much CPU 
each user has gotten over a time frame and calculate the 
ratio of actual CPU time to entitled CPU time.

• A ratio of 0.5 means that a process should have gotten  half 
as much CPU time;  a ratio of 2.0 means that the process 
has gotten twice as much as it should have gotten.

• Such a scheduling algorithm runs the process with the 
poorest ratio until it catches up to and passes its nearest 
competitor. 



Lottery Scheduling

• Every process is given, in effect, tickets for a 
lottery, where the prize is the next time slice (or 
some other system resource).

• Applied to CPU scheduling, there may be 50 
lottery drawings each second, with each winner 
getting 20 msec of CPU time.

• Important processes can get extra CPU time by 
being given extra “tickets” for the drawings.

• Cooperating processes can exchange tickets if they 
wish..

Multilevel Queue Scheduling
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Multilevel Feedback Queues: 
Shifting to Lower Priorities
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Multilevel Feedback Queues: 
Shifting to Higher Priorities
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Multiple Processor Scheduling

• Process scheduling on a multiprocessor 
system is more complex.

• It is easier to schedule homogeneous
multiprocessor systems than heterogeneous 
systems.

• Identical processors can do load sharing
with separate ready queues or a common 
ready queue.

Symmetric vs. Asymmetric 
Multiprocessing

• In symmetric multiprocessing, all the 
processors are considered peers and any one 
of them can handle any sort of task.

• In asymmetric multiprocessing, there is a 
hierarchy among the processors and one of 
them may handle the task of scheduling 
processes for the others.



What is Real-time Scheduling?

• A real-time system is one in which time plays a 
crucial role.

• An example is a CD player which must read and 
then translate the bits into music within a tight 
time frame.

• Real-time systems can be hard real time (where 
absolute deadlines must always be met) or soft 
real time (where an occasional deadline can be 
missed).

Real-time Scheduling

• Real-time behavior is achieved by by dividing the program 
into a number of processes, each of which have known 
behavior.

• Real-time systems react to events which can be periodic
(happening at regular intervals) or aperiodic (not 
happening at regular intervals).

• If there are m periodic events and event i occurs with a 
period Pi and requires Ci seconds of CPU time, then the 
load can only be handled if

Σ Ci/Pi <= 1
i

Such a system is schedulable.



Algorithm Evaluation

• There are several ways in which we can 
evaluate the scheduling algorithms:
– Deterministic Modeling
– Queueing Models
– Simulation

• Our goal is to see if they help us meet the 
performance criteria that were discussed 
earlier.

Deterministic Modeling

• We will assume a predetermined set of data.
• Given that data, we will determine how the 

scheduling algorithm will perform.
• Deterministic Modeling is easy to 

understand and implement but it only tells 
us about the data sets that we use.



Simulations

• We use random numbers to give us a large 
set of data that should be representative of 
real-life processing scenarios.

• The distributions can be defined either 
empirically or mathematically (e.g., a 
Poisson distribution).

• Such simulations can be expensive and 
more informative. 


