
CSC 453 Operating Systems

Lecture 5 : Process Scheduling

Concept of Multiprogramming

• Multiprogramming takes advantages of the
fact that processes will spend a great deal of
their time waiting for I/O operations to
finish.

• While process #1 is waiting for I/O, the
CPU will execute process #2.

CPU-I/O Burst Cycle

• A program running on a computer has main
different “bursts” of activities: bursts of
CPU activity and bursts of Input/Output
activity.

• Since this is cyclic in nature, it is called the
CPU-I/O Burst Cycle.

A Process Is a Series of CPU and I/O Bursts

CPU burst

CPU burst

CPU burst

I/O Burst

I/O BurstLoad
Store
Add
Store
Read from File

Wait for I/O

Store
Increment Index
Write To File

Wait for I/O

Load
Store
Add
Write To File
… … …

Process Spends Most Of Its Time
Waiting For I/O

CPU CPU CPU CPU CPU

I/O I/O I/O I/O

Three Processes Executing Without
Multiprogramming

Three Processes Executing With
Multiprogramming

Scheduling Criteria

• Performance criteria - What do we want from our
scheduling algorithm?

• Utilization - As near 100% CPU time as possible.
• Throughput - Highest possible number of finished

processes per unit time.
• Turnaround time - As low as possible for jobs

from start to finish.
• Response time - For interactive systems, this is

more important than turnaround time.
• Waiting Time - minimize time in ready queue and

device queues.

Preemptive vs. Nonpreemptive
Scheduling

Preemptive scheduling - processes using the CPU
can be removed by the system.

Nonpreemptive scheduling - processes using the
CPU cannot be removed by the CPU.

Starvation - A situation that arises when a process
never gets to the CPU (or to perform an I/O
operation, etc.)

Scheduling Algorithms
• Scheduling Algorithms include:

– First-Come-First-Served
– Shortest Job First
– Round Robin
– Priority
– Guaranteed
– Lottery
– Real-Time

First-Come-First-Served

• First-Come-First-Served Algorithm is the simplest
CPU scheduling.

• Whichever process requests the CPU first gets it
first.

• It is implemented using a standard FIFO single
queue.

• Waiting time can be long and it depends heavily
on the order in which processes request CPU time:

An Example of First-Come-First-
Served

Imagine three processes with the following burst
times:

Process Burst time (in msec)
P1 24
P2 3
P3 4

Scenario #1 For FCFS Scheduling

24 280 31

Processing time = (24 + 28 + 31) / 3 = 83/3 = 27.7 msec

P1 P3 P2

Scenario #2 For FCFS Scheduling

P1

0 3 7 31

Waiting time = (3 + 7 + 31) / 3 = 41/3 = 13.7 msec

P3P2

Scenario #3 For FCFS Scheduling

P3

0 3 27 31

Waiting time = (3 + 27 + 31) / 3 = 61/3 = 20.3 msec

P1P2

Shortest Job First

• Most appropriately called Shortest Next CPU
Burst First because it bases the order upon an
approximation of how long what the next CPU
burst will be.

• This can be proven to be the optimal scheduling
algorithm with the shortest average processing
(and waiting) time.

• The SJF algorithm can be preemptive or non-
preemptive, with the preemptive SJF algorithm
more properly being called shortest- remaining-
time-first scheduling.

Gantt Chart for Shortest Job First
Example

P1

0 3 7 31

Waiting time = (3 + 7 + 31) / 3 = 41/3 = 13.7 msec

P3P2

CPU Burst Length

• The real difficulty is that we are trying to predict
how long the next CPU burst will be and this
cannot be done with any real accuracy for short-
term CPU scheduling.

• The next burst is usually predicted using the
exponential average of previously CPU bursts:

τn+1 = αtn + (1-α)τ
tn = length of the nth CPU burst.
τn = the past history of the CPU bursts.
0 <= α <= 1

Predicting The Next CPU Burst
Length

• We can substitute for τn and expand get the
exponential average:
τn+1 = α tn + (1-α) α tn-1 + ...

+ (1-α)j α tn-j + ...(1-α)n+1 α τ0.

• More recent terms all have more weight than
earlier term in the calculation.

Priority Scheduling

• Priority scheduling involves a priority assigned to
each process, which is scheduled in accordance
with its priority.

• Processes with equal priority are scheduled on a
FCFS basis.

• A SJF algorithm is a special case of a priority
scheduling algorithm with priority(p) being
proportional to 1/p.

Priority Levels

• There is no general agreement on whether 0
is the highest or lowest priority (priority
numbers are assumed to be positive).
– UNIX uses 0 as the highest priority
– IBM’s MVS uses it as the default (lowest)

priority.

Setting Priorities

• Priorities can be set:
– internally (by some measurable quantity or

quantities such as time limits, memory
requirements, number of open files, I/O burst-
to-CPU burst ratio, etc.)

– or
– externally (by system policy, such as process

importance, type or availability of funds,
sponsoring department, etc.)

Starvation

• Starvation is a major problem of priority
scheduling algorithms.

• On a busy system, a low-priority process may sit
for extremely long periods of time.

• A solution to the problem is aging, where we
increment the priority (make it a higher priority)
for every 1-15 minutes of waiting.

Scenario For Priority Scheduling

25P5

41P4

32P3

11P2

310P1

PriorityBurst TimeProcess

Gantt Chart For Priority Scheduling
Scenario

0 1 6 16 18 19

Processing time = (1 + 6 + 16 + 18 + 19) / 5 = 8 msec

P2 P5 P3 P4P1

Round Robin Scheduling

• Round-robin scheduling is designed for time-
sharing system.

• It is similar to the FCFS scheduling, but
preemptive is added to switch between processes.

• A time quantum is typically 10 to 100
milliseconds.

• The ready queue is implemented in FIFO manner..

Round-Robin Scheduling and
Preemption

• If a process needs less than a time quantum,
it releases the CPU voluntarily.

• If a process needs more than a time
quantum, it is preempted from the CPU and
placed at the back of the ready queue.

Scenario For Round-Robin
Scheduling

3P3

3P2

24P1

Burst TimeProcess

Gantt Chart For Round Robin
Scheduling Scenario

0 1074 14 18 22 26 30

Processing time = (30 + 7 + 10) / 3 = 15.7 msec

P1 P1 P1 P1 P1 P1P2 P3

Time Quanta

• The performance of round robin scheduling is
extremely dependent upon the size of the time
quantum in use.

• If the time quantum is large (approaching infinity),
it approaches a FCFS algorithm.

• If the time is quantum is small, it appears (in
theory at least) that each user has his/her own
processor.

Time Quanta and Context Switches

• We need the time quantum to be large with respect
to the context-switch time (time it takes to switch
processes) because each of these can effectively
slow the processor.

quantum
context
switches

10 0

6 1

1 9

Guaranteed Scheduling
• If fairness is an important concern, and there are n users on

a uniprocessor system, each user should be able to get 1/n
of the system’s time.

• To make good on this promise to provide each user with
1/n of the CPU time, we keep track of how much CPU
each user has gotten over a time frame and calculate the
ratio of actual CPU time to entitled CPU time.

• A ratio of 0.5 means that a process should have gotten half
as much CPU time; a ratio of 2.0 means that the process
has gotten twice as much as it should have gotten.

• Such a scheduling algorithm runs the process with the
poorest ratio until it catches up to and passes its nearest
competitor.

Lottery Scheduling

• Every process is given, in effect, tickets for a
lottery, where the prize is the next time slice (or
some other system resource).

• Applied to CPU scheduling, there may be 50
lottery drawings each second, with each winner
getting 20 msec of CPU time.

• Important processes can get extra CPU time by
being given extra “tickets” for the drawings.

• Cooperating processes can exchange tickets if they
wish..

Multilevel Queue Scheduling
Priority

1

Priority
2

Priority
3

Priority
4

Priority
5

H
ig

he
r p

ri
or

ity

Multilevel Feedback Queues:
Shifting to Lower Priorities

Priority
1

Priority
2

Priority
3

Priority
4

H
ig

he
r p

ri
or

ity

Lo
ng

er
 ti

m
e

qu
an

ta

Multilevel Feedback Queues:
Shifting to Higher Priorities

Priority
1

Priority
2

Priority
3

Priority
4

H
ig

he
r p

ri
or

ity

Lo
ng

er
 ti

m
e

qu
an

ta

Multiple Processor Scheduling

• Process scheduling on a multiprocessor
system is more complex.

• It is easier to schedule homogeneous
multiprocessor systems than heterogeneous
systems.

• Identical processors can do load sharing
with separate ready queues or a common
ready queue.

Symmetric vs. Asymmetric
Multiprocessing

• In symmetric multiprocessing, all the
processors are considered peers and any one
of them can handle any sort of task.

• In asymmetric multiprocessing, there is a
hierarchy among the processors and one of
them may handle the task of scheduling
processes for the others.

What is Real-time Scheduling?

• A real-time system is one in which time plays a
crucial role.

• An example is a CD player which must read and
then translate the bits into music within a tight
time frame.

• Real-time systems can be hard real time (where
absolute deadlines must always be met) or soft
real time (where an occasional deadline can be
missed).

Real-time Scheduling

• Real-time behavior is achieved by by dividing the program
into a number of processes, each of which have known
behavior.

• Real-time systems react to events which can be periodic
(happening at regular intervals) or aperiodic (not
happening at regular intervals).

• If there are m periodic events and event i occurs with a
period Pi and requires Ci seconds of CPU time, then the
load can only be handled if

Σ Ci/Pi <= 1
i

Such a system is schedulable.

Algorithm Evaluation

• There are several ways in which we can
evaluate the scheduling algorithms:
– Deterministic Modeling
– Queueing Models
– Simulation

• Our goal is to see if they help us meet the
performance criteria that were discussed
earlier.

Deterministic Modeling

• We will assume a predetermined set of data.
• Given that data, we will determine how the

scheduling algorithm will perform.
• Deterministic Modeling is easy to

understand and implement but it only tells
us about the data sets that we use.

Simulations

• We use random numbers to give us a large
set of data that should be representative of
real-life processing scenarios.

• The distributions can be defined either
empirically or mathematically (e.g., a
Poisson distribution).

• Such simulations can be expensive and
more informative.

