CSC 453 Operating Systems

Lecture 5 : Process Scheduling

Concept of Multiprogramming

» Multiprogramming takes advantages of the
fact that processes will spend a great deal of
their time waiting for 1/O operations to
finish.

» While process#1 iswaiting for 1/0O, the
CPU will execute process #2.

CPU-I/O Burst Cycle

» A program running on a computer has main
different “ bursts” of activities: bursts of
CPU activity and bursts of Input/Output

activity.

» Sincethisiscyclicin nature, it iscalled the

CPU-1/O Burst Cycle.

A Process s aSeriesof CPU and I/O Bursts

Load

Store

Add «—
Store

Read from File

L CPU burst

Wait for 1/O

/O Burst

Store
Increment Index
Write To File

A

— CPU burst

Wait for 1/0 1/O Burst

Load

Store

Add

Write To File

— CPU burst

Process Spends Most Of Its Time
Waiting For 1/0O

110 110 110 110
I I I I I

CPU CPU CPU CPU CPU

Three Processes Executing Without
Multiprogramming

Three Processes Executing With
Multiprogramming

—t- - - —
- — - — = —H - —

- - —ll-- - —

Scheduling Criteria

Performance criteria - What do we want from our
scheduling agorithm?

Utilization - As near 100% CPU time as possible.
Throughput - Highest possible number of finished
processes per unit time.

Turnaround time - As low as possible for jobs
from start to finish.

Response time - For interactive systems, thisis
more important than turnaround time.

Waiting Time - minimize time in ready queue and
device queues.

Preemptive vs. Nonpreemptive
Scheduling

Preemptive scheduling - processes using the CPU
can be removed by the system.

Nonpreemptive scheduling - processes using the
CPU cannot be removed by the CPU.

Starvation - A situation that arises when a process
never getsto the CPU (or to perform an 1/O
operation, etc.)

Scheduling Algorithms

» Scheduling Algorithms include:
— First-Come-First-Served
— Shortest Job First
—Round Robin
—Priority
— Guaranteed
—Lottery
—Real-Time

First-Come-First-Served

* First-Come-First-Served Algorithm is the smplest
CPU scheduling.

» Whichever process requests the CPU first getsit
firg.

* Itisimplemented using a standard FIFO single
queue.

» Waiting time can be long and it depends heavily
on the order in which processes request CPU time:

An Example of First-Come-First-
Served

I magine three processes with the following burst
times:

Process Burst time (in msec)
= 24

Scenario #1 For FCFS Scheduling

0 24 28 31

Processing time= (24 + 28+ 31) /3 = 83/3=27.7 msec

Scenario #2 For FCFS Scheduling

0 3 7 31

Waitingtime=(3+7+31)/3 = 41/3=13.7 msec

Scenario #3 For FCFS Scheduling

31

Waitingtime=(3+27+31) /3 = 61/3=20.3 msec

Shortest Job First

» Most appropriately called Shortest Next CPU
Burst First because it bases the order upon an
approximation of how long what the next CPU
burst will be.

» This can be proven to be the optimal scheduling
algorithm with the shortest average processing
(and waliting) time.

» The SJF dgorithm can be preemptive or non-
preemptive, with the preemptive SJF algorithm
more properly being called shortest- remaining-
timefirst scheduling.

Gantt Chart for Shortest Job First

Example
0 3 7 31

Waitingtime=(3+7+31)/3 = 41/3=13.7 msec

CPU Burst Length

* Thered difficulty isthat we are trying to predict
how long the next CPU burst will be and this
cannot be done with any real accuracy for short-
term CPU scheduling.

* The next burst is usually predicted using the
exponential average of previousy CPU bursts:

t,.,=at +(l-a)t
t, = length of the nth CPU burst.
t,, = the past history of the CPU bursts.
O<=ac<=1

Predicting The Next CPU Burst
Length

» We can subgtitute for t,, and expand get the
exponential average:

tn+1 =a tn + (1—&) a tn-l t
+(layat,+ (l-a)*tat,

* More recent terms al have more weight than
earlier term in the calculation.

Priority Scheduling

* Priority scheduling involves a priority assigned to
each process, which is scheduled in accordance
with its priority.

» Processes with equal priority are scheduled on a
FCFS basis.

» A SJF dgorithm isa special case of apriority
scheduling agorithm with priority(p) being
proportional to 1/p.

Priority Levels

* Thereisno general agreement on whether O
is the highest or lowest priority (priority
numbers are assumed to be positive).

— UNIX uses 0 as the highest priority
— IBM’sMV S usesit as the default (lowest)
priority.

Setting Priorities

* Priorities can be set:

— internally (by some measurable quantity or
guantities such as time limits, memory
requirements, number of open files, 1/0 burst-
to-CPU burst ratio, etc.)

—or

— externally (by system policy, such as process
importance, type or availability of funds,
sponsoring department, etc.)

Starvation

e Starvation isamgor problem of priority
scheduling agorithms.

* On abusy system, alow-priority process may sit
for extremely long periods of time.

» A solution to the problem is aging, where we
increment the priority (make it ahigher priority)
for every 1-15 minutes of waiting.

Scenario For Priority Scheduling

Process |Burst Time| Priority
= 10 3
P, 1 1
Ps 2 3
P, 1 4
P; 5 2

Gantt Chart For Priority Scheduling
Scenario

P5

01 6 16 18 19

Processing time=(1+6+ 16+ 18+ 19) /5=8 msec

Round Robin Scheduling

* Round-robin scheduling is designed for time-
sharing system.

* Itissmilar to the FCFS scheduling, but
preemptive is added to switch between processes.

* A time quantum istypicaly 10 to 100
milliseconds.

» Theready queue isimplemented in FIFO manner..

Round-Robin Scheduling and
Preemption

* |f aprocess needs less than atime quantum,
it releases the CPU voluntarily.

* |If aprocess needs more than atime
guantum, it is preempted from the CPU and
placed at the back of the ready queue.

Scenario For Round-Robin

Scheduling
Process Burst Time

P, 24

P, 3

Ps 3

Gantt Chart For Round Robin
Scheduling Scenario

0 4 7 10 14 18 22 26 30

Processing time= (30 + 7 + 10) / 3=15.7 msec

Time Quanta

* The performance of round robin scheduling is
extremely dependent upon the size of the time
quantum in use.

* If the time quantum is large (approaching infinity),
it approaches a FCFS agorithm.

* If thetimeis quantum is small, it appears (in
theory at least) that each user has his/her own
Processor.

Time Quanta and Context Switches

We need the time quantum to be large with respect
to the context-switch time (time it takes to switch
processes) because each of these can effectively
sow the processor.

‘ context
QuUantum - itches

10 0

Guaranteed Scheduling

If fairness is an important concern, and there are n users on
auniprocessor system, each user should be able to get 1/n
of the system’'stime.

To make good on this promise to provide each user with
1/n of the CPU time, we keep track of how much CPU
each user has gotten over atime frame and calculate the
ratio of actual CPU time to entitled CPU time.

A ratio of 0.5 means that a process should have gotten half
asmuch CPU time; aratio of 2.0 means that the process
has gotten twice as much as it should have gotten.

Such a scheduling agorithm runs the process with the
poorest ratio until it catches up to and passes its nearest
competitor.

L ottery Scheduling

Every processis given, in effect, tickets for a
lottery, where the prize is the next time dice (or
some other system resource).

Applied to CPU scheduling, there may be 50
lottery drawings each second, with each winner
getting 20 msec of CPU time.

Important processes can get extra CPU time by
being given extra “tickets” for the drawings.

Cooperating processes can exchange tickets if they
wish..

Higher priority

Multilevel Queue Scheduling

e T - - - - .

A

G0 R S o S

L I O N N A
3

L I I O

4
-»-+-

Multilevel Feedback Queues:
Shifting to Lower Priorities

— -
g - |
g
*E‘ g Priority —
2 £ 2 —
5| = |
@
S 3 Priority —
I - > 3 _|
Multilevel Feedback Queues:
Shifting to Higher Priorities
R Priority —
s | -
s
*E’ = Priority _
o GE) > 2 -
a8 4; |
o)
5| &£ . Priority —
T - 3 —
|

Multiple Processor Scheduling

Process scheduling on a multiprocessor
system is more complex.

It is easier to schedule homogeneous
multiprocessor systems than heterogeneous
systems.

Identical processors can do load sharing

with separate ready queues or a common
ready queue.

Symmetric vs. Asymmetric
Multiprocessing

In symmetric multiprocessing, all the
processors are considered peers and any one
of them can handle any sort of task.

In asymmetric multiprocessing, thereisa
hierarchy among the processors and one of
them may handle the task of scheduling
processes for the others.

What is Real-time Scheduling?

A real-time system is one in which time plays a
crucia role.
An example isa CD player which must read and

then trandate the bits into music within atight
time frame.

Real-time systems can be hard real time (where
absolute deadlines must aways be met) or soft

real time (where an occasional deadline can be
missed).

Real-time Scheduling

Real-time behavior is achieved by by dividing the program
into a number of processes, each of which have known
behavior.
Real-time systems react to events which can be periodic
(happening at regular intervals) or aperiodic (not
happening at regular intervals).
If there are m periodic events and event i occurs with a
period P, and requires C; seconds of CPU time, then the
load can only be handled if
SC/P <=1

[

Such a system is schedulable.

Algorithm Evaluation

There are several ways in which we can
evaluate the scheduling algorithms:

— Deterministic Modeling

— Queueing Models

— Simulation

Our goal isto seeif they help us meet the

performance criteria that were discussed
earlier.

Deterministic Modeling

We will assume a predetermined set of data.

Given that data, we will determine how the
scheduling algorithm will perform.
Deterministic Modeling is easy to
understand and implement but it only tells
us about the data sets that we use.

Simulations

» We use random numbersto give usalarge
set of data that should be representative of
real-life processing scenarios.

» The distributions can be defined either
empirically or mathematically (e.g., a
Poisson distribution).

» Such simulations can be expensive and
more informative.

