
CSC 453 Operating Systems

Lecture 4 : Processes

The Process Concept

• Originally, computers ran only one program at a 
time, which had total access to all of the 
computer’s resources.

• Modern systems run many programs concurrently, 
with the operating system running its own tasks to 
do its own work.

• The concept of the process allows us to 
compartmentalize everything being done on the 
computer.



What is a Process

Harvey Deitel offers several definitions of a  process:
• a program in execution
• an asynchronous activity
• the “animated spirit” of a procedure
• the “locus of control” of a procedure in execution
• that which is manifested by the existence of a process 

control block” in the operating system
• that entity to which processors are assigned
• the “dispatchable” unit 
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Restoring Processes
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Context Switch

• Context switch – saving the state of one 
process and loading the saved state of 
another process.

• Context switch times varies depending on 
the hardware, with typically times of 1 to 
1000 µsec.



Process Scheduling
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Long-term and Short-term 
Scheduling

• The long-term scheduler selects SPOOLed 
processes and loads them into memory.
– The long-term scheduler executes less frequently.
– The long-term scheduler controls the degree of 

multiprogramming.

• The short-term scheduler selects the next process 
which will have the active use of the CPU.
– The short-term scheduler executes quite frequently; 

therefore it must be quick .

CPU-Bound and I/O Bound 
Processes

• CPU-bound processes - Processes that 
spend more of their time doing 
computational work than input and output

• I/O-bound processes – Processes that spend 
more of their time doing input and output 
than computational work.



Medium-Term Scheduling
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Why Suspend A Process?

There are several reason for suspending a process:
• If a system is functioning poorly and may fail, then current 

processes may be suspended to be resumed after the 
problem is corrected.

• A user suspicious about the partial result of a process may 
suspend it (as opposed to aborting it) until ascertaining 
whether the process is functioning correctly.

• Some processes may be suspended to ease the load on a 
system until the load reaches normal levels.



Suspended and Active Processes
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Suspending A Process

• A process may suspend itself (a running process 
on a uniprocessor system would have to do this) or 
it can be suspended by another process.

• While one may argue that it is better to wait for 
I/O to be completed before suspending a blocked 
process, the process may never reach the ready 
state; therefore, suspending a blocked process may 
be the only option.



Creating A Process 

• Processes may be created by other 
processes with the parent process
partitioning off resources for the child 
process and passing it data.

• The child process may also obtain resources 
directly from the operating system.

• A hierarchy can be created as child 
processes create their own child processes.
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Tasks In Process Creation

Creating a process requires that the operating 
system:

• name the process
• insert it in the process table
• determine its initial priority
• create the process control block
• allocate its initial resources

Parent and Child Processes

• Once a child process is created:
– both parent and child may execute concurrently 

or
– the parent become inactive until the child 

process terminates.
• Different possibilities exist for the child’s core 

image:
– The child is a duplicate of the parent
– The child is a separate and distinct program



Process Creation in UNIX
A simplified version of the shell
while (TRUE) { /* repeat forever */

read_command(command, parameters);
/* read terminal input */

if (fork() != 0)
/* fork off child process */

/* Parent code */
waitpid(-1, &status, 0);

else
execve(command, parameters, 0);

/* execute command */
}

Process Termination

• Normally, a process terminates at the end of 
program execution by using the exit 
system call.
– All its resources are either freed or returned to 

the parent’s control.  Data may also be returned 
to the parent.

– A parent may also terminate a child process by 
using an abort system call.



Why Kill A Child Process?

A parent process might terminate a child 
process because:

• the child process used more resources than 
it is allowed.

• it is no longer needed.
• the parent process is terminating.  The 

process of processes killing their descendent 
processes is called cascading.

Cooperating Processes

• Cooperating Processes are processes that 
can affect or can be affected by other 
processes.

• Allowing processes to cooperate allows:
– information sharing
– computational speedup
– modularity
– convenience



Consumer-Producer Problem

• The consumer-producer problem is a classic 
example of how processes cooperative.

• Consumers consume information produced by the 
producers but must wait when there is nothing to 
consume.

• Producers produce information for the consume to 
consume but must wait when there is no place to 
put it.

Common Code For Consumer 
and Producer

const int numbuffers = …;

typedef … item;

item buffer[numBuffers];

int in = 0, out = 0;

/* in and out have values 
in the range 0 to numbuffers-1 */



The Producer Process

item nextp;

do {

Produce an item in nextp;

… … …

while ((in +1) % numbuffers == Out)

;

buffer[in] = nextp;

in = (in + 1) % numbuffers

} while True;

The Consumer Process

item nextc;

do {

while (in == out)

;

nextc = buffer[out];

out = (out + 1) % numbuffers;

… … …

Consume the item in nextp;

} while True;



What are threads?

• Threads are lightweight processes which are their 
own thread of control but share an address space, 
allowing them to more easily coordinate their 
actions

Why Threads?

• Processes each have at least one thread of control, a series 
of instructions performed in synchronous fashion.

• Processes each have their own address space their own set 
of resources and require a mechanism provided by the 
operating system to communicate with each other or to 
share those resources.



Examples of Multithread Processes

• Examples of natural applications for threads:
– A file server process, which each thread scheduling a 

file server request.
– World Wide Web browsers.

Thread Structure

• Some systems fully support threads.
– Some of the process table entries belong to the 

individual threads.
– The operating system is fully cognizant of the use of 

multiple threads per process.
– In such a system, when a thread is blocked, the 

operating system decides which thread becomes active.
• Other systems manage threads solely within user space.  A 

thread being blocked chooses its successor as the active 
thread.



Threads and Operating Systems

• Operating systems using threads include 
Windows NT, Solaris, Mach and OS/2.

• UNIX is a one thread per process operating 
system.

Supporting Threads

• Some systems have threads supported by the 
kernel. In other systems, it is supported on the user 
level by library calls.
– It takes longer to switch kernel-supported threads.
– User- level support can cause the whole process to wait 

on account of one thread and can leads to unfair 
scheduling.

• Some operating systems, such as Solaris 2, 
support both mechanisms.



Example: Threads in Solaris 2
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Interprocess Communication

• An easy way to have processes cooperate is to 
have the operating system provide an interprocess 
communication (IPC) facility .

• The basic structure of a message system are the 
operations: send(message) and 
receive(message).

• These operations assume that we have the ability 
to open a communications channel between these 
processes.



Implementation Issues for Interprocess 
Communication

• In establishing a communications link between 
processes, we must consider several questions:
– How do we establish links?
– How many processes can share a link?
– How many links can processes share?
– What is the link’s capacity?
– How large can messages be?
– Is communication one-way or two-way?

Implementing A Link

• There are several ways to implement link:
– Direct or Indirect Communications
– Symmetric or Asymmetric Communications
– Automatic or Explicit Buffering
– Send by Copy or Send By Reference
– Fixed-Size or Variable-Sized Messages



Direct Communication

• In this case, we define our operations as:
– send(P, message)
– receive(Q, message)

• This automatically establishes exactly one 
link between exactly 2 processes.

• This link is most likely unidirectional but 
can be bidirectional.

Direct Communication and the Producer-
Consumer Problem

The producer process:

REPEAT

… … …

produce an item in nextp

… … …

send (consumer, nextp);

UNTIL False;

The consumer process:

REPEAT

receive(producer, nextc);

… … …

consume the item in nextp

… … …

UNTIL False;



Indirect Communication

• In this case, messages are sent and received via a 
mailbox (or port).

• We define our operations as
– send(BoxA, message)
– receive(BoxA, message)

• Links can now be established between more than 2 
processes.

• 2 processes can share more than one link.
• Links can be unidirectional or bidirectional.

Message Buffering

• Links may have the capacity to store 
message temporarily before they are 
received.  This depends on the link’s 
buffering capacity.

• The buffering capacity can be zero, 
bounded or unbounded, which determines 
whether the sender is delayed.



Exception Conditions

• A message system in a distributed environment 
must be able handled communications failures that 
may not result in the failure of the entire system.

• Such failures may involve:
– messages to or from a process that has 

terminated
– messages that are lost
– messages that are deliverable but are erroneous.

Example: Message Passing in Mach

• Mach was developed at Carnegie-Mellon 
University

• Communications, including system calls are made 
by message, which are sent to and received from 
ports.

• Although ports can be full, the sending thread has 
the choice of whether to wait, how long to wait or 
whether to cache the message.



Example: Message Passing in 
Windows NT

• Application programs communicate via a 
message passing facility called the Local 
Procedure Call facility (LPC), which uses 
indirect communication.

• NT uses message passing even for 
rudimentary functions such as graphics -
this tends to slow down the system.


