
CSC 453 Operating Systems

Lecture 4 : Processes

The Process Concept

• Originally, computers ran only one program at a
time, which had total access to all of the
computer’s resources.

• Modern systems run many programs concurrently,
with the operating system running its own tasks to
do its own work.

• The concept of the process allows us to
compartmentalize everything being done on the
computer.

What is a Process

Harvey Deitel offers several definitions of a process:
• a program in execution
• an asynchronous activity
• the “animated spirit” of a procedure
• the “locus of control” of a procedure in execution
• that which is manifested by the existence of a process

control block” in the operating system
• that entity to which processors are assigned
• the “dispatchable” unit

Process States

Running

Ready Blocked

Dispatch

Timeout

Wakeup

Block
Awake

Asleepnew

Admit

terminated
Exit

Process Control Block

Pointer

Process State

Process Number

Program Counter

Registers

Memory Limits

Open Files List

Misc. Accounting and
Status Data

Switching Processes

Process B

Process A

Operating
System Save state

in PCBA

Load state
in PCBB

Interrupt or System Call

Restoring Processes

Process B

Process A

Operating
System Save state

in PCBB

Load state
in PCBA

Interrupt or System Call

Context Switch

• Context switch – saving the state of one
process and loading the saved state of
another process.

• Context switch times varies depending on
the hardware, with typically times of 1 to
1000 µsec.

Process Scheduling

New Process
Job

Queue

Ready
Queue

CPU exit

I/O
I/O Device

Queue

timeout

Scheduling Queues

Ready
Queue

Disk A
Queue

Tape A
Queue

PCBA PCBB
PCBC

Front
Rear

Rear

Rear

Front

Front

PCBD PCBE

PCBF

Long-term and Short-term
Scheduling

• The long-term scheduler selects SPOOLed
processes and loads them into memory.
– The long-term scheduler executes less frequently.
– The long-term scheduler controls the degree of

multiprogramming.

• The short-term scheduler selects the next process
which will have the active use of the CPU.
– The short-term scheduler executes quite frequently;

therefore it must be quick .

CPU-Bound and I/O Bound
Processes

• CPU-bound processes - Processes that
spend more of their time doing
computational work than input and output

• I/O-bound processes – Processes that spend
more of their time doing input and output
than computational work.

Medium-Term Scheduling

I/O I/O queues

CPUready queue

swapped-out
processes

swap outswap in

Why Suspend A Process?

There are several reason for suspending a process:
• If a system is functioning poorly and may fail, then current

processes may be suspended to be resumed after the
problem is corrected.

• A user suspicious about the partial result of a process may
suspend it (as opposed to aborting it) until ascertaining
whether the process is functioning correctly.

• Some processes may be suspended to ease the load on a
system until the load reaches normal levels.

Suspended and Active Processes

Ready

Running

Blocked

Suspended
Ready

Suspended
Blocked

I/O Completion

Dispatch

Time
out

ResumeSuspended

I/O Completion

Resume

Suspended

Suspending A Process

• A process may suspend itself (a running process
on a uniprocessor system would have to do this) or
it can be suspended by another process.

• While one may argue that it is better to wait for
I/O to be completed before suspending a blocked
process, the process may never reach the ready
state; therefore, suspending a blocked process may
be the only option.

Creating A Process

• Processes may be created by other
processes with the parent process
partitioning off resources for the child
process and passing it data.

• The child process may also obtain resources
directly from the operating system.

• A hierarchy can be created as child
processes create their own child processes.

Hierarchy of Processes

A

B C D

E F G

H

I

Tasks In Process Creation

Creating a process requires that the operating
system:

• name the process
• insert it in the process table
• determine its initial priority
• create the process control block
• allocate its initial resources

Parent and Child Processes

• Once a child process is created:
– both parent and child may execute concurrently

or
– the parent become inactive until the child

process terminates.
• Different possibilities exist for the child’s core

image:
– The child is a duplicate of the parent
– The child is a separate and distinct program

Process Creation in UNIX
A simplified version of the shell
while (TRUE) { /* repeat forever */

read_command(command, parameters);
/* read terminal input */

if (fork() != 0)
/* fork off child process */

/* Parent code */
waitpid(-1, &status, 0);

else
execve(command, parameters, 0);

/* execute command */
}

Process Termination

• Normally, a process terminates at the end of
program execution by using the exit
system call.
– All its resources are either freed or returned to

the parent’s control. Data may also be returned
to the parent.

– A parent may also terminate a child process by
using an abort system call.

Why Kill A Child Process?

A parent process might terminate a child
process because:

• the child process used more resources than
it is allowed.

• it is no longer needed.
• the parent process is terminating. The

process of processes killing their descendent
processes is called cascading.

Cooperating Processes

• Cooperating Processes are processes that
can affect or can be affected by other
processes.

• Allowing processes to cooperate allows:
– information sharing
– computational speedup
– modularity
– convenience

Consumer-Producer Problem

• The consumer-producer problem is a classic
example of how processes cooperative.

• Consumers consume information produced by the
producers but must wait when there is nothing to
consume.

• Producers produce information for the consume to
consume but must wait when there is no place to
put it.

Common Code For Consumer
and Producer

const int numbuffers = …;

typedef … item;

item buffer[numBuffers];

int in = 0, out = 0;

/* in and out have values
in the range 0 to numbuffers-1 */

The Producer Process

item nextp;

do {

Produce an item in nextp;

… … …

while ((in +1) % numbuffers == Out)

;

buffer[in] = nextp;

in = (in + 1) % numbuffers

} while True;

The Consumer Process

item nextc;

do {

while (in == out)

;

nextc = buffer[out];

out = (out + 1) % numbuffers;

… … …

Consume the item in nextp;

} while True;

What are threads?

• Threads are lightweight processes which are their
own thread of control but share an address space,
allowing them to more easily coordinate their
actions

Why Threads?

• Processes each have at least one thread of control, a series
of instructions performed in synchronous fashion.

• Processes each have their own address space their own set
of resources and require a mechanism provided by the
operating system to communicate with each other or to
share those resources.

Examples of Multithread Processes

• Examples of natural applications for threads:
– A file server process, which each thread scheduling a

file server request.
– World Wide Web browsers.

Thread Structure

• Some systems fully support threads.
– Some of the process table entries belong to the

individual threads.
– The operating system is fully cognizant of the use of

multiple threads per process.
– In such a system, when a thread is blocked, the

operating system decides which thread becomes active.
• Other systems manage threads solely within user space. A

thread being blocked chooses its successor as the active
thread.

Threads and Operating Systems

• Operating systems using threads include
Windows NT, Solaris, Mach and OS/2.

• UNIX is a one thread per process operating
system.

Supporting Threads

• Some systems have threads supported by the
kernel. In other systems, it is supported on the user
level by library calls.
– It takes longer to switch kernel-supported threads.
– User- level support can cause the whole process to wait

on account of one thread and can leads to unfair
scheduling.

• Some operating systems, such as Solaris 2,
support both mechanisms.

Example: Threads in Solaris 2

Kernel

CPUs

Kernel
threads

Light-
weight

processes

User
threads

Tasks

Interprocess Communication

• An easy way to have processes cooperate is to
have the operating system provide an interprocess
communication (IPC) facility .

• The basic structure of a message system are the
operations: send(message) and
receive(message).

• These operations assume that we have the ability
to open a communications channel between these
processes.

Implementation Issues for Interprocess
Communication

• In establishing a communications link between
processes, we must consider several questions:
– How do we establish links?
– How many processes can share a link?
– How many links can processes share?
– What is the link’s capacity?
– How large can messages be?
– Is communication one-way or two-way?

Implementing A Link

• There are several ways to implement link:
– Direct or Indirect Communications
– Symmetric or Asymmetric Communications
– Automatic or Explicit Buffering
– Send by Copy or Send By Reference
– Fixed-Size or Variable-Sized Messages

Direct Communication

• In this case, we define our operations as:
– send(P, message)
– receive(Q, message)

• This automatically establishes exactly one
link between exactly 2 processes.

• This link is most likely unidirectional but
can be bidirectional.

Direct Communication and the Producer-
Consumer Problem

The producer process:

REPEAT

… … …

produce an item in nextp

… … …

send (consumer, nextp);

UNTIL False;

The consumer process:

REPEAT

receive(producer, nextc);

… … …

consume the item in nextp

… … …

UNTIL False;

Indirect Communication

• In this case, messages are sent and received via a
mailbox (or port).

• We define our operations as
– send(BoxA, message)
– receive(BoxA, message)

• Links can now be established between more than 2
processes.

• 2 processes can share more than one link.
• Links can be unidirectional or bidirectional.

Message Buffering

• Links may have the capacity to store
message temporarily before they are
received. This depends on the link’s
buffering capacity.

• The buffering capacity can be zero,
bounded or unbounded, which determines
whether the sender is delayed.

Exception Conditions

• A message system in a distributed environment
must be able handled communications failures that
may not result in the failure of the entire system.

• Such failures may involve:
– messages to or from a process that has

terminated
– messages that are lost
– messages that are deliverable but are erroneous.

Example: Message Passing in Mach

• Mach was developed at Carnegie-Mellon
University

• Communications, including system calls are made
by message, which are sent to and received from
ports.

• Although ports can be full, the sending thread has
the choice of whether to wait, how long to wait or
whether to cache the message.

Example: Message Passing in
Windows NT

• Application programs communicate via a
message passing facility called the Local
Procedure Call facility (LPC), which uses
indirect communication.

• NT uses message passing even for
rudimentary functions such as graphics -
this tends to slow down the system.

