CSC 453 Operating Systems

Lecture 4 : Processes

The Process Concept

* Originally, computers ran only one program at a
time, which had total accessto all of the
computer’ S resources.

* Modern systems run many programs concurrently,
with the operating system running its own tasks to
do its own work.

» The concept of the process alows usto
compartmentalize everything being done on the
computer.

What is a Process

Harvey Deitel offers several definitions of a process:

aprogram in execution

an asynchronous activity

the “animated spirit” of a procedure

the “locus of control” of a procedure in execution

that which is manifested by the existence of a process
control block” in the operating system

that entity to which processors are assigned
the “digpatchable” unit

Process States

terminated

/ » Asleep

Process Control Block

Pointer

Process State

Process Number

Program Counter

Registers

Memory Limits

Open Files List

Misc. Accounting and
Status Data

Process A

Process B

Operating
System

Switching Processes

v

A —>

\4

Save state Load state
in PCB, > lin PCBg

Interrupt or System Call

Restoring Processes

Process A > >
Process B > >
Operating
System Save state Load state
in PCBg > linPcB A
Interrupt or System Call

Context Switch

» Context switch — saving the state of one
process and loading the saved state of
another process.

» Context switch times varies depending on
the hardware, with typically times of 1 to
1000 nsec.

Process Scheduling

Job
New Process)——» Queue

Ready
Queue

timeout

Lv—

1/0 Device
Queue

exit

Ready
Queue

Disk A
Queue

Tape A
Queue

Scheduling Queues

PCB,

Front

Rear

Front

Rear

A
_
PCB,

PCB:

Front

Rear

__——
——

PCBg PCBc
- .
PCB.
- .

— -

L ong-term and Short-term
Scheduling

» Thelong-term scheduler selects SPOOL ed
processes and loads them into memory.
— The long-term scheduler executes less frequently.
— The long-term scheduler controls the degree of
multiprogramming.
» The short-term scheduler selects the next process
which will have the active use of the CPU.

— The short-term scheduler executes quite frequently;
therefore it must be quick .

CPU-Bound and I/O Bound
Processes

» CPU-bound processes - Processes that
spend more of their time doing
computational work than input and output

 |/O-bound processes — Processes that spend
more of their time doing input and output
than computational work.

Medium-Term Scheduling
swapped-out

‘ processes

—
| ready queue —’—’
@ " 1/O queues

Why Suspend A Process?

There are several reason for suspending a process:

» |f asystem isfunctioning poorly and may fail, then current
processes may be suspended to be resumed after the
problem is corrected.

» A user suspicious about the partial result of a process may
suspend it (as opposed to aborting it) until ascertaining
whether the process is functioning correctly.

» Some processes may be suspended to ease the load on a
system until the load reaches normal levels.

Suspended and Active Processes

Blocked

Suspended

/O Completion

Suspended [Resume

Suspended
TV o compleion

Suspended
Blocked

Suspending A Process

» A process may suspend itself (arunning process
on a uniprocessor system would have to do this) or
it can be suspended by another process.

* While one may argue that it is better to wait for
1/O to be completed before suspending a blocked
process, the process may never reach the ready
state; therefore, suspending a blocked process may
be the only option.

Creating A Process

» Processes may be created by other
processes with the parent process
partitioning off resources for the child
process and passing it data.

» The child process may also obtain resources
directly from the operating system.

» A hierarchy can be created as child
processes create their own child processes.

Hierarchy of Processes

Tasks In Process Creation

Creating a process requires that the operating
system:

* name the process

insert it in the process table
determineitsinitial priority
create the process control block
alocateitsinitial resources

Parent and Child Processes

* Once achild processis created:

— both parent and child may execute concurrently
or

— the parent become inactive until the child
process terminates.

 Different possibilities exist for the child’ s core
image:
— The child is a duplicate of the parent
— The child is a separate and distinct program

Process Creation in UNIX

A simplified version of the shell
whi l e (TRUE) { /* repeat forever */

read_conmand(command, paraneters);
/* read term nal input */

if (fork() '=0)
/* fork off child process */
/* Parent code */
wai tpid(-1, &status, 0);
el se
execve(command, paraneters, 0);
/* execute command */

Process Termination

* Normally, a process terminates at the end of
program execution by using theexi t

system call.

— All its resources are either freed or returned to
the parent’ s control. Data may also be returned
to the parent.

— A parent may also terminate a child process by
using an abort system call.

Why Kill A Child Process?

A parent process might terminate a child
process because:

« the child process used more resources than
itisallowed.

* itisnolonger needed.

* the parent processisterminating. The
process of processes killing their descendent
processesis called cascading.

Cooperating Processes

» Cooperating Processes are processes that
can affect or can be affected by other
[processes.

 Allowing processes to cooperate allows:
— information sharing
— computational speedup
— modularity
— convenience

Consumer-Producer Problem

» The consumer-producer problemisaclassic
example of how processes cooperative.

» Consumers consume information produced by the
producers but must wait when there is nothing to
consume.

* Producers produce information for the consume to
consume but must wait when there is no place to
put it.

Common Code For Consumer
and Producer

const int nunbuffers = .;
typedef ...item

item buffer[nunBuffers];
int in =0, out = 0

/* in and out have val ues
in the range 0 to nunbuffers-1 */

The Producer Process

i tem nextp;
do {

Produce an itemin nextp;

while ((in +1) % nunbuffers == Qut)
buffer[in] = nextp;
in = (in + 1) %nunbuffers

} while True;

The Consumer Process

item next c;

do {
while (in == out)
nextc = buffer[out];

out = (out + 1) % nunbuffers;

Consume the itemin nextp;
} while True;

What are threads?

» Threadsare lightweight processes which are their
own thread of control but share an address space,
allowing them to more easily coordinate their
actions

Why Threads?

* Processes each have at least one thread of control, a series
of instructions performed in synchronous fashion.

* Processes each have their own address space their own set
of resources and require a mechanism provided by the
operating system to communicate with each other or to
share those resources.

Examples of Multithread Processes

» Examples of natural applications for threads:

— A file server process, which each thread scheduling a
file server request.

— World Wide Web browsers.

Thread Structure

» Some systems fully support threads.
— Some of the process table entries belong to the
individual threads.
— The operating system is fully cognizant of the use of
multiple threads per process.
— In such a system, when athread is blocked, the
operating system decides which thread becomes active.

» Other systems manage threads solely within user space. A
thread being blocked chooses its successor as the active
thread.

Threads and Operating Systems

» Operating systems using threads include
Windows NT, Solaris, Mach and OS/2.

« UNIX isaone thread per process operating
system.

Supporting Threads

» Some systems have threads supported by the
kernel. In other systems, it is supported on the user
level by library calls.

— It takes longer to switch kernel-supported threads.

— User-level support can cause the whole process to wait
on account of one thread and can leads to unfair
scheduling.

» Some operating systems, such as Solaris 2,
support both mechanisms.

Example: Threads in Solaris 2
User //Taiks T

threads — e e :

YWY 11 AN

weight
N\ AN N\ NN N\ N\ N\ AN AN prOC
Kemel —— A7 (< CCC O 0«
threads
Kernel

CPUs ! . /4. . .
\k

| nterprocess Communication

» An easy way to have processes cooperate isto
have the operating system provide an interprocess
communication (1PC) facility .

» The basic structure of a message system are the
operations. send(message) and
recei ve(message).

» These operations assume that we have the ability

to open a communications channel between these
Processes.

|mplementation Issues for Interprocess
Communication

* In establishing a communications link between
processes, we must consider several questions:

— How do we establish links?

— How many processes can share alink?
— How many links can processes share?

— What is the link' s capacity?

— How large can messages be?

— |s communication one-way or two-way?

Implementing A Link

* There are several ways to implement link:
— Direct or Indirect Communications
— Symmetric or Asymmetric Communications
— Automaticor Explicit Buffering
— Send by Copy or Send By Reference
— Fixed-Size or Variable-Sized Messages

Direct Communication

 Inthis case, we define our operations as.
— send(P, message)
— receive(Q, message)

» Thisautomatically establishes exactly one
link between exactly 2 processes.

« Thislink ismost likely unidirectional but
can be bidirectional.

Direct Communication and the Producer-
Consumer Problem

The producer process: The consumer process:
REPEAT REPEAT

......... receive(producer, nextc);

send (consumer, nextp); | |
UNTIL False; UNTIL Fase;

| ndirect Communication

* Inthis case, messages are sent and received viaa
mailbox (or port).

» We define our operations as
— send(BoxA, message)
— receive(BoxA, message)

* Links can now be established between more than 2
ProCesses.

* 2 processes can share more than one link.

* Links can be unidirectional or bidirectional.

Message Buffering

» Links may have the capacity to store
message temporarily before they are
received. Thisdependson thelink’s
buffering capacity.

» The buffering capacity can be zero,
bounded or unbounded, which determines
whether the sender is delayed.

Exception Conditions

* A message system in a distributed environment
must be able handled communications failures that
may not result in the failure of the entire system.

 Such failures may involve:

— messages to or from a process that has
terminated

— messages that are lost
— messages that are deliverable but are erroneous.

Example: Message Passing in Mach

» Mach was developed at Carnegie-Médllon
University

» Communications, including system calls are made
by message, which are sent to and received from
ports.

* Although ports can be full, the sending thread has
the choice of whether to wait, how long to wait or
whether to cache the message.

Example: Message Passing in
Windows NT

« Application programs communicate viaa
message passing facility called the Local
Procedure Call facility (LPC), which uses
indirect communication.

* NT uses message passing even for

rudimentary functions such as graphics -
this tends to slow down the system.

