
CSC 453 Operating Systems

Lecture 3: Operating-System
Structures

Operating System Components

• Operating systems are large and complex - the
only way to manage such a project is to divide it
into smaller subsystems.

• Operating systems have to provide:
- Process management - Disk Management
- Memory management - Networking
- File Management - Protection
- I/O Management - User Interface

• Not all operating systems have the same structure.

Process Management

• A process is a program in execution. Examples
include:
– Batch jobs
– Time-shared user programs
– System tasks (such as printer spoolers)

• If two users are each running the same program,
that is two separate processes.

• Processes need resources (such as CPU time,
memory, I/O devices) in order to run.

Process Management Activities

The operating system is responsible for:
– creating and deleting user and system processes
– suspending and resuming processes
– mechanisms for process synchronization
– mechanisms for process communication
– mechanisms for handling deadlocks

Memory Management

• All processes need memory to store the
instructions that comprise the program as well as
its data.

• To execute a program, the computer must be able
to translate its addresses into absolute addresses.

• When a process terminates, its memory must be
freed and reallocated.

• We assume that multiple processes will be in
memory concurrently.

Memory Management Activities

The operating system is responsible for:
– keeping track of the parts of memory in use and

by which process
– deciding which process will be loaded into

memory as it becomes available
– allocating and freeing memory as necessary

File Management

• Files are a logical organization of data.
• A file can be defined as a collection of related data

defined by its creator.
• The operating system maps files onto the various

input/output and secondary storage devices that
the computer system uses.

File Management Activities

The operating system is responsible for:
– creating and deleting files and directories
– supporting primitives for manipulating files and

directories
– mapping files onto I/O and storage devices
– backing up files onto non-volatile storage

devices.

I/O System Management

• The operating system protects the user from
having to deal with the idiosyncrasies of the
computer’s various I/O devices.

• The I/O subsystem includes:
– memory management for buffers cache and

spoolers.
– A general device driver interface
– Device-specific drivers

Secondary Storage Management

• Secondary storage is needed to hold all the
computer’s software and data because
– it can’t all fit in memory at the same time
– computer memory is volatile.

• The operating system is responsible for:
– free-space management
– storage allocation
– disk scheduling

Networking

• A distributed system has a collection of
processors that do not share memory,
peripheral devices or a clock.

• These processors need to communicate to
be able to coordinate their work.

• Network access, facilitated by the operating
system, allows the sharing of various
resources.

Protection System

• A multi-user, multitasking system must protect its
processes’ resources from the activities of other
processes. These resources include:

• memory
– files
– I/O devices

• Protection means providing a control mechanism
for the resources of a computer system

Command-Interpreter

• The command interpreter is the most visible
part of the operating system.

• Commands have traditionally been given
control card or command line. More
recently, command-line interpreters have
been replaced and supplemented by
graphical-user interfaces.

Services of the Operating System

• The operating system provides a range of
services for programs and their users,
including
– program execution
– I/O operations
– file-system manipulation
– communications
– error detection

Administrative Functions of the
Operating System

• There are also services that exist for the benefit of
system administration and not for user programs:
– resource allocation
– accounting
– protection

System Calls

• Systems calls are the way in which processes
request services from the operating system.
– These are generally written in assembly

language.
– Systems calls can also be written in some

higher-level languages, such C, BLISS, BCPL,
and PERL.

• Input/output statements in higher-level languages
are compiled into procedures that make extensive
use of system calls.

Process Control System Calls

• An operating system will include system calls for
– creating and terminating processes
– loading and executing processes
– ending and aborting processing
– getting and setting process attributes
– sending a signal or waiting for a signal

UNIX Program Execution
kernel

process A

process B

tcsh

process C

process D

MS-DOS Program Execution

Kernel

Command
Processor

Free
Memory

Kernel

Command
Processor

Free
Memory

Process

At Startup Running A Program

MS-DOS System With TSR

Kernel

Command
Processor

Free
Memory

Process

TSR

File Manipulation System Calls

• An operating system will include system calls for:
– opening and closing files
– read and writing files
– repositioning the file pointer
– getting and setting file attributes
– creating and deleting files

Device Management System
Calls

• An operating system will include system calls for:
– requesting and releasing devices
– reading, writing and repositioning the device

• These system calls will be analogous to those for
files

Information Maintenance System
Calls

• Information maintenance calls include
information such as:
– date and time
– number of current users
– current operating system version number
– amount of free disk space

Communications

• There are two common models for
communications:
– message-passing model
– shared memory model

Message-Passing Model

kernel

process A

process B

M
kernel

process A

process B

M

Shared Memory Model

kernel

process A

process B
shared memory

Communications System Calls

• An operating system will include system calls for:
– creating and deleting communication channels
– sending and receiving messages
– transferring status information
– attaching and detaching remote devices

System Programs

• Systems programs do some of the systems-
related work for users and serve as an
additional interface layer between the user
and the hardware.

What Do System Programs Do?

• System programs:
– perform file manipulation
– provide status information
– perform file modification
– support programming languages
– load and execute programs
– perform communications

System Structure

• Given the complexity of an operating system, a
structured approach is badly needed.

• There are five different ways in which the internal
structure of an operating system may be
structured:
– Simple Structure
– Monolithic Structure
– Layered Structure
– Virtual Machines
– Client-Server Model

Simple Structure

Application Program

Resident System Program

MS-DOS Device Drivers

ROM BIOS device drivers

Limited Structure

users

shells compilers & interpreters systems libraries

system-call interface to kernel

kernel interface to kernel

signals terminal
handling

character I/O
terminal drivers

file system
swapping block I/O
disk & tape drivers

CPU scheduling
page replacement
demand paging
virtual memory

terminal controllers
terminals

device controllers
disks and tapes

memory controllers
physical memory

What Are Monolithic Systems?

• Monolithic systems could be called “the big mess”,
because there is no real structure to the operating system’s
kernel. Each procedure has its own parameters and results,
but any procedure can call any other procedure.

• Such systems may actually have some structure, provided
by having the operating system place parameter is well-
defined areas such as registers or the stack, and then
executing a supervisor call or kernel call.

Monolithic Systems and Systems Calls

User Program 1

User Program 2
kerrnel call

1

2

Dispatch
Table

Service
procedure

3 4

Structure In Monolithic Systems

Main procedure

Service
procedure

Utility procedures

Layered Structure - THE

Processor allocation and multiprogramming0

Memory and drum management1

Operator - process communication2

Input/output management3

User programs4

The operator5

FunctionLayer

Virtual Machine

370 Bare Hardware

VM/370

CMS CMSCMS

System calls here
Trap here

I/O instructions here
Trap here

Virtual 370s

Operating System Structure: Client-
Server Model

...
Cli-
ent

Cli-
ent

Pro-
cess
Server

Term.
Server

File
Server

Mem.
Server

User
mode

Kernel
mode

kernel

Client process obtains
service by sending
request to server process

System Design Parameters

• Design will depend very much on hardware
and type of system desire:
– multi-user vs. single user
– batch vs. interactive
– distributive vs. standalone
– real-time vs. general purpose

Defining System Design Goals

• Requirements are divided into user goals and
systems goals.

• User goals usually include convenience, ease of
use, speed and reliability.

• System goals usually include being easy to design,
implement and maintain; flexibility; reliability and
efficiency.

• These are all too vague to be useful without
greater specificity.

Mechanisms vs. Policies

• Mechanisms determine how to do
something.
– Using a timer to provide CPU protection is an

example of a mechanism.

• Policies determines what will be done.
– The size of a time slice is an example of a

policy decision.

Mechanisms and Policies

• Separating mechanisms and policies gives the
design greater flexibility.
– General mechanisms are good in that changes in policy

do not require design changes.
– Microkernel operating systems use a set of basic

building-block to implement mechanisms that are
completely policy-free.

– The Apple MacIntosh has a tight connection between
mechanism and policy to give a look and feel that is
completely consistent within the system.

Implementation Languages

• Most operating systems are currently
implemented in higher-languages.

• Higher-level languages allows for faster,
more efficient and better-designed code that
is easier to port.

• Disadvantages purportedly include reduced
speed, greater storage requirements.

System Generation

• The operating system is typically distributed on tape
or disk and has to be configured for a particular
system.

• Configuration specifications include:
– Type of CPU(s)
– Amount of Memory
– Available Devices (Type and other

characteristics)
– Desired options (such as maximum number of

processes)

