
CSC 453 Operating Systems

Lecture 2: Computer-System
Structures

A Modern Computer System

CPU

Memory
controller Memory

Printer
controller

Printer

Disk
controller

Disk

Tape
controller

Tape

“Booting” The Computer

• Before the computer can start running
application programs, it needs to load the
operating system. This process is called
“booting” the computer. The program that
boots the computer is called a bootstrap
program.

The Bootstrap Process

• Bootstrap process includes:
– Initializing registers, device controller, memory
– Loading the operating system kernel into

memory

• The operating system must start the
execution of the first process and wait for an
event to occur.

An Operating System Is “Event-Driven”

• Events include:
– The completion of a disk operation
– A tick of the system clock
– Request of an application program for services
– Division by zero
– A memory violation

• Each of these events requires a response from the
operating system.

• Each of these events generates an interrupt.

Interrupts and System Calls

• The computer’s hardware will trigger
interrupts at any time when they may need
service by the operating system.

• Application programs will trigger interrupts
by using a hardware instruction called a
system call, eg., int in Intel assembly
language.

Processing Interrupts

Processing an interrupt requires transferring control
to the appropriate service routine. This transfer
is usually performed in several steps:

1. The CPU stops what its doing.
2. It transfers control to the appropriate service

routine.
3. The service routine completes its work and the

application program regains control of the CPU.

The Interrupt Vector
Interrupt

vector

Interrupt
service
routines

The Details Of Handling Interrupts

• The interrupt handler must save the address of the
interrupted instruction.
– After the interrupt is processed, that job will continue

where it is interrupted.

• The interrupt handler must disabled other
interrupts while the interrupt is being processed.
– This avoids lost interrupts.
– This delays processing of other interrupts.

Disk Controllers

• Each device controller controls a particular type of
device.

• Each controller may have more than one attached
device.
– SCSI controllers can have up to 7 devices.

• A device controller maintains a memory buffer
and a set of special purpose registers.
– Buffer size depends on the device
– Register set varies from one controller type to another.

Starting An I/O Operation

• The CPU starts an I/O operation by loading the
device controller’s registers with the appropriate
values.

• The contents of these registers determines the
action that will be taken by the controller.

• If it indicates a read operation, the controller will
transfer data from the disk into its local buffer and
signal the CPU when it has finished.

Synchronous vs. Asynchronous
I/O

Once the I/O request is scheduled, there are
two things the operating system can do:

• Wait until the operation is over – then return
the CPU to the job that requested the
operation. This is synchronous I/O.

• Put that job on hold and work on something
else. This is asynchronous I/O.

Synchronous I/O

User
Process

Device
Driver

Interrupt
Handler

Data Transfer

time

User
Process

Device
Driver

Interrupt
Handler

Asynchronous I/O

User
Process

Device
Driver

Interrupt
Handler

Data Transfer

time

User
Process

Device
Driver

Interrupt
Handler

waiting

Direct Memory Access

• If the operating system had to be involved
in reading every byte of input, there would
be no time for running programs.

• To avoid delays, high-speed devices (such
as disk drives) can transfer an entire block
of data into memory buffers without the
CPU’s intervention. This is called direct
memory access.

Why External Storage?

• Memory is much more expensive.
• Computers never have enough memory to

store all its programs and data permanently.
• Memory is volatile.
• Disk and tape storage are much less

expensive and convenient for data and
programs that are not in constant use.

Memory-Mapped I/O

• To allow quick and more convenient access to I/O
devices with fast response time, some computers
set aside ranges of memory addresses for that are
mapped to the device registers. These device
registers can be accessed in the same manner as
regular memory.

• This is called memory-mapped I/O.
• The IBM PC uses this for the video display and

for serial and parallel ports.

Programmed I/O vs. Interrupt-Driven I/O

• If the computer is transmitting data through a port
one byte at a time, it must wait for the status bit in
the devices control register to change.

• If the CPU constantly checks the register waiting
for it to change, this is called polling and the CPU
is using programmed I/O.

• If the CPU works on other tasks while awaiting an
interrupt from the device’s control register, this is
called interrupt-driven I/O.

Storage Hierarchy

Registers

Cache

Main Memory

Electronic Disk

Magnetic Disk

Optical Disk

Magnetic Tape
Acce

ss S
peed

Cost
 Per B

it

Magnetic Disks

track

sector

cylinder

arm

Read-write
head

Magnetic Tapes

• Magnetic tape was an early form of
secondary storage.

• Accessing data stored on tape is much
slower than accessing data stored on disk.

• Tape drives are sequential access devices
while disk drives are direct-access devices.

• Tape is mainly used for archiving and
retrieving rarely-used data.

Caching

CPUMain Memory Cache

Coherency and Consistency

• Imagine reading a file so that you could update
one record. You have to:
1. read the record
2. change the value in memory
3. rewrite it on disk.

• Between steps 2 and 3, the value is different in
memory and on disk. We need to save this new
value of the record to ensure coherency..

The Need For Protection

• Early computers were used by one users at a time.
• As operating systems developed, certain functions

were assigned to the operating system.
• As operating systems started to use

multiprograming to run multiple jobs
concurrently, the operating systems needed to
protect user programs from potential errors in
other programs.

Dual-Mode Operation

• Computers need to differentiate between
user operations and systems operations.

• The mode bit indicates if the computer is
running in user mode or supervisor mode.

• The computer is booted in supervisor mode
and switches to user mode as it loads the
first user job.

Privileged Instructions

• Certain privileged instructions can be user
only in supervisor mode.

• These instructions restrict access to most
hardware devices to supervisor mode.

• This requires operating system to perform
input/output and other tasks.

What if There is No Dual Mode?

• The Intel 8088 processor was designed without a
mode bit.
– User programs can overwrite the operating system.
– Multiple programs can write to the same device at the

same time.

• This makes it virtually impossible to implement
multitasking operating systems and it allows the
creation of computer viruses.

• Intel corrected this shortcoming by providing dual
mode operation in all its processors since the 286.

Memory Protection

30A10

01A00

Fence or Base Register

Limit Register

Operating System

Active Job

Hardware Address Protection

CPU ≥ <
Address

Base
+ Limit

Memory

Base

Yes

No No

Yes

Addressing Error

CPU Protection

• What do we do if a program falls into an
infinite loop? A timer!!

• A fixed-rate clock ticks a predetermined
number of times per second. The operating
systems sets a counter to track clock ticks.

• A program is allowed to run for a fixed time
period before it must surrender the CPU.

Time Slices

• In interactive operating systems, each terminal is
allowed only a fixed amount of CPU time before
the CPU is given to another terminal. The fixed
time period is called a time slice.

• The operating system takes over the CPU at the
end of every time slice and performs
housekeeping chores before giving the CPU to the
next job.

I/O and System Calls

mov ah, 9 ; set the high end of ax to 9
mov dx, offset message

; move message’s offset to dx
int 21h ; call interrupt 21h

Go to
21h

Go to OS
Routine

Perform
I/O

Return
to User

