
1

CSC 443 – Data Base

Management Systems

Lecture 9 – Introduction to Relational

Algebra

What are Relational Algebra and Relational

Calculus?
• Relational algebra and relational calculus are

formal languages associated with the relational
model.

– Informally, relational algebra is a (high-level)
procedural language and relational calculus a non-
procedural language.

– However, formally both are equivalent to one
another.

• A language that produces a relation that can be
derived using relational calculus is relationally
complete.

2

What is Relational Algebra?

• Relational algebra operations work on one or
more relations to define another relation
without changing the original relations.

• Both operands and results are relations, so
output from one operation can become input to
another operation.

• Allows expressions to be nested, just as in
arithmetic. This property is called closure.

Operations of Relational Algebra

• Five basic operations in relational algebra:
Selection, Projection, Cartesian product,
Union, and Set Difference.

• These perform most of the data retrieval
operations needed.

• Also have Join, Intersection, and Division
operations, which can be expressed in terms of
5 basic operations.

3

Operations of Relational Algebra

Operations of Relational Algebra

4

Selection (or Restriction)

• σpredicate (R)

– Works on a single relation R and defines a relation

that contains only those tuples (rows) of R that

satisfy the specified condition (predicate).

Selection – An Example

• List all staff with a salary greater than £10,000.

σsalary > 10000 (Staff)

5

Projection

• Πcol1, . . . , coln(R)

– Works on a single relation R and defines a relation

that contains a vertical subset of R, extracting the

values of specified attributes and eliminating

duplicates.

Projection – An Example

• Produce a list of salaries for all staff, showing

only staffNo, fName, lName, and salary

details.

ΠstaffNo, fName, lName, salary(Staff)

6

Union

• R ∪ S

– Union of two relations R and S defines a relation
that contains all the tuples of R, or S, or both R and
S, duplicate tuples being eliminated.

– R and S must be union-compatible.

• If R and S have I and J tuples, respectively,
union is obtained by concatenating them into
one relation with a maximum of (I + J) tuples.

Union – An Example

• List all cities where there is either a branch

office or a property for rent.

ΠΠΠΠcity(Branch) ∪∪∪∪ ΠΠΠΠcity(PropertyForRent)

7

Set Difference

• R – S

– Defines a relation consisting of the tuples that are

in relation R, but not in S.

– R and S must be union-compatible.

Set Difference – An Example

• List all cities where there is a branch office

but no properties for rent.

ΠΠΠΠcity(Branch) – ΠΠΠΠcity(PropertyForRent)

8

Intersection

• R ∩∩∩∩ S

– Defines a relation consisting of the set of all

tuples that are in both R and S.

– R and S must be union-compatible.

• Expressed using basic operations:

R ∩∩∩∩ S = R – (R – S)

Intersection – An Example

• List all cities where there is both a branch

office and at least one property for rent.

Πcity(Branch) ∩ Πcity(PropertyForRent)

9

Cartesian Product

• R X S

– Defines a relation that is the concatenation of

every tuple of relation R with every tuple of

relation S.

Cartesian Product – An Example

• List the names and comments of all clients who have

viewed a property for rent.

(ΠΠΠΠclientNo, fName, lName(Client)) X (ΠΠΠΠclientNo, propertyNo, comment

(Viewing))

10

Cartesian Product and Selection – An

Example
• Use selection operation to extract those tuples where

Client.clientNo = Viewing.clientNo.

σClient.clientNo = Viewing.clientNo((∏clientNo, fName, lName(Client)) Χ
(∏clientNo, propertyNo, comment(Viewing)))

• Cartesian product and Selection can be reduced to a single
operation called a Join.

Join Operations

• Join is a derivative of Cartesian product.

• Equivalent to performing a Selection, using
join predicate as selection formula, over
Cartesian product of the two operand relations.

• One of the most difficult operations to
implement efficiently in an RDBMS and one
reason why RDBMSs have intrinsic
performance problems.

11

Join Operations

• Various forms of join operation

– Theta join

– Equijoin (a particular type of Theta join)

– Natural join

– Outer join

– Semijoin

Theta join (θ-join)

• R F S

– Defines a relation that contains tuples satisfying

the predicate F from the Cartesian product of R

and S.

– The predicate F is of the form R.ai θ S.bi where θ

may be one of the comparison operators (<, ≤, >,

≥, =, ≠).

12

Theta join (θ-join)

• Can rewrite Theta join using basic Selection

and Cartesian product operations.
R FS = σF(R Χ S)

• Degree of a Theta join is sum of degrees of the
operand relations R and S. If predicate F
contains only equality (=), the term Equijoin is
used.

Equijoin – An Example

• List the names and comments of all clients

who have viewed a property for rent.

(ΠclientNo, fName, lName(Client)) Client.clientNo =

Viewing.clientNo (ΠclientNo, propertyNo, comment(Viewing))

13

Natural Join

• R S

– An Equijoin of the two relations R and S over all

common attributes x. One occurrence of each

common attribute is eliminated from the result.

Natural Join – An Example

• List the names and comments of all clients

who have viewed a property for rent.

(ΠclientNo, fName, lName(Client))

(ΠclientNo, propertyNo, comment(Viewing))

14

Outer Join

• To display rows in the result that do not have
matching values in the join column, use Outer
join.

• R S

– (Left) outer join is join in which tuples from R that
do not have matching values in common columns
of S are also included in result relation.

Outer Join – An Example

• Produce a status report on property viewings.

ΠpropertyNo, street, city(PropertyForRent)

Viewing

15

Semijoin

• R F S

– Defines a relation that contains the tuples of R that

participate in the join of R with S.

• Can rewrite Semijoin using Projection and

Join:

– R F S = ΠA(R F S)

Semijoin – An Example

• List complete details of all staff who work at

the branch in Glasgow.

Staff Staff.branchNo=Branch.branchNo(σcity=‘Glasgow’(Branch))

16

Division

• R ÷ S
– Defines a relation over the attributes C that consists of set

of tuples from R that match combination of every tuple in
S.

• Expressed using basic operations:

T1 ← ΠC(R)

T2 ← ΠC((S X T1) – R)

T ← T1 – T2

Division – An Example

• Identify all clients who have viewed all

properties with three rooms.

(ΠclientNo, propertyNo(Viewing)) ÷

(ΠpropertyNo(σrooms = 3 (PropertyForRent)))

