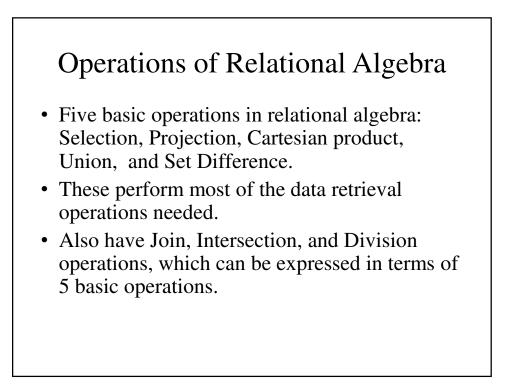
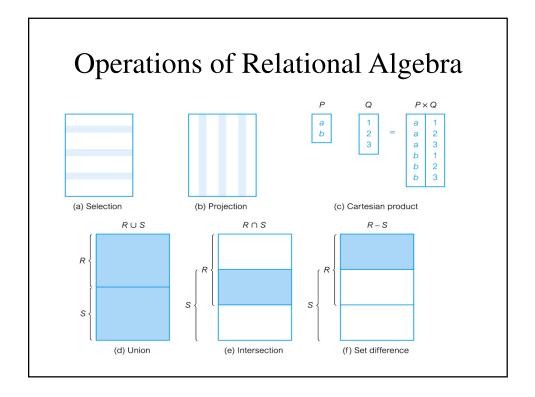
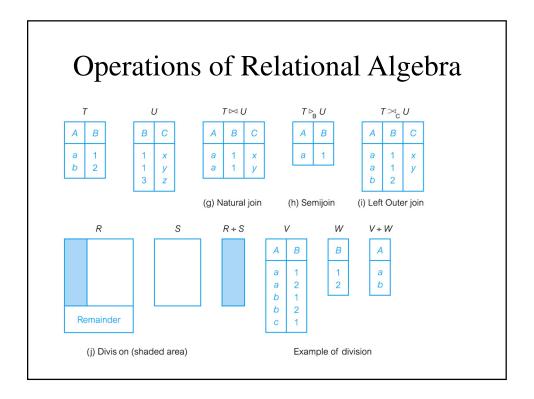
#### CSC 443 – Data Base Management Systems


Lecture 9 – Introduction to Relational Algebra


## What are Relational Algebra and Relational Calculus?


- Relational algebra and relational calculus are formal languages associated with the relational model.
  - Informally, relational algebra is a (high-level) procedural language and relational calculus a nonprocedural language.
  - However, formally both are equivalent to one another.
- A language that produces a relation that can be derived using relational calculus is <u>relationally</u> <u>complete</u>.

#### What is Relational Algebra?

- Relational algebra operations work on one or more relations to define another relation without changing the original relations.
- Both operands and results are relations, so output from one operation can become input to another operation.
- Allows expressions to be nested, just as in arithmetic. This property is called *closure*.







#### Selection (or Restriction)

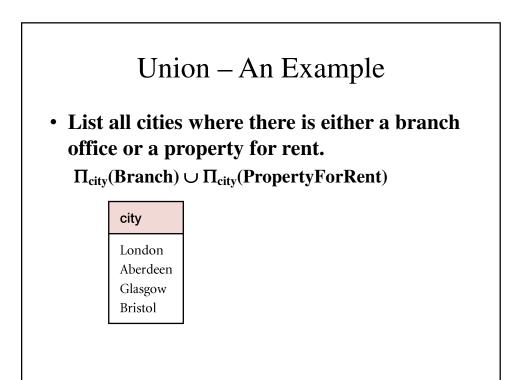
•  $\sigma_{\text{predicate}}(R)$ 

 Works on a single relation R and defines a relation that contains only those tuples (rows) of R that satisfy the specified condition (*predicate*).

# $\begin{array}{l} Selection-An\ Example\\ \bullet\ List\ all\ staff\ with\ a\ salary\ greater\ than\ \pounds10,000.\\ \sigma_{salary\ >\ 10000}\ (Staff) \end{array}$

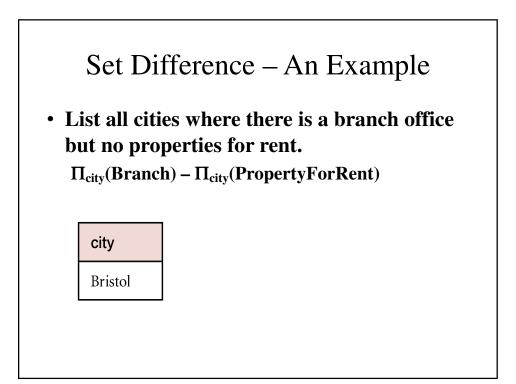
| staffNo | fName | IName | position   | sex | DOB        | salary | branchNo |
|---------|-------|-------|------------|-----|------------|--------|----------|
| SL21    | John  | White | Manager    | М   | 1-Oct-45   | 30000  | B005     |
| SG37    | Ann   | Beech | Assistant  | F   | 10-Nov-60  | 12000  | B003     |
| SG14    | David | Ford  | Supervisor | М   | 24- Mar-58 | 18000  | B003     |
| SG5     | Susan | Brand | Manager    | F   | 3-Jun-40   | 24000  | B003     |

#### Projection


•  $\Pi_{\text{col1},\ldots,\text{ coln}}(\mathbf{R})$ 

 Works on a single relation R and defines a relation that contains a vertical subset of R, extracting the values of specified attributes and eliminating duplicates.

#### Projection – An Example • Produce a list of salaries for all staff, showing only staffNo, fName, lName, and salary details. $\Pi_{\text{staffNo, fName, lName, salary}}(\text{Staff})$ staffNo fName IName salary SL21 John White 30000 SG37 Ann Beech 12000 SG14 David Ford 18000 SA9 9000 Mary Howe SG5 Susan Brand 24000 SL41 9000 Julie Lee


### Union

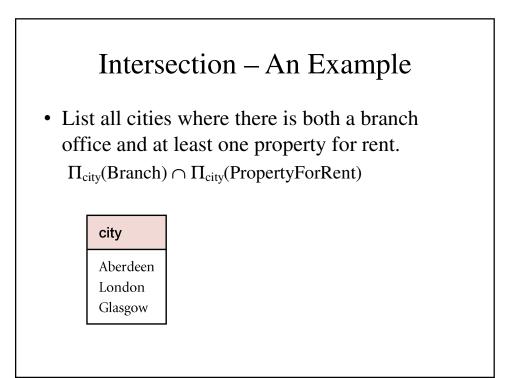
- $R \cup S$ 
  - Union of two relations R and S defines a relation that contains all the tuples of R, or S, or both R and S, duplicate tuples being eliminated.
  - R and S must be union-compatible.
- If R and S have *I* and *J* tuples, respectively, union is obtained by concatenating them into one relation with a maximum of (I + J) tuples.



#### Set Difference

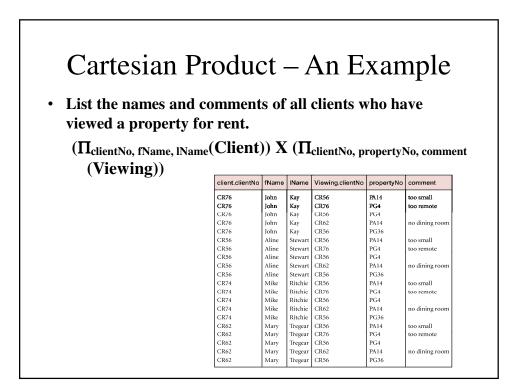
- R S
  - Defines a relation consisting of the tuples that are in relation R, but not in S.
  - R and S must be union-compatible.






•  $\mathbf{R} \cap \mathbf{S}$ 

- Defines a relation consisting of the set of all tuples that are in both R and S.


- R and S must be union-compatible.

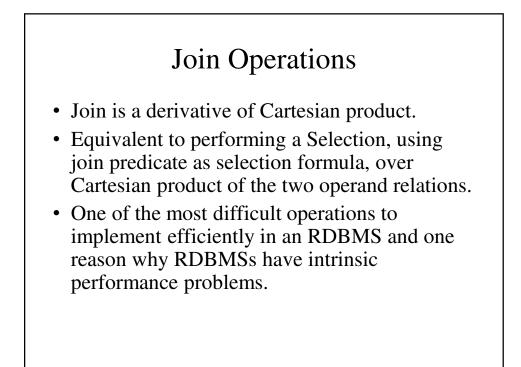
• Expressed using basic operations:  $R \cap S = R - (R - S)$ 



#### **Cartesian Product**

- R X S
  - Defines a relation that is the concatenation of every tuple of relation R with every tuple of relation S.




# Cartesian Product and Selection – An Example

• Use selection operation to extract those tuples where Client.clientNo = Viewing.clientNo.

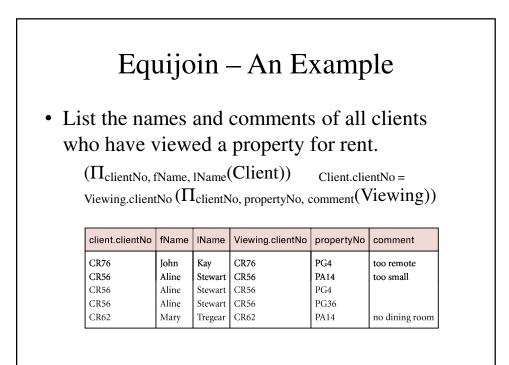
 $<sup>\</sup>sigma_{\mbox{Client.clientNo} = \mbox{Viewing.clientNo}((\prod_{\mbox{clientNo}, \mbox{fName, lName}}(\mbox{Client})) \ X \\ (\prod_{\mbox{clientNo}, \mbox{propertyNo}, \mbox{ comment}}(\mbox{Viewing})))$ 

| client.clientNo | fName | IName   | Viewing.clientNo | propertyNo | comment        |
|-----------------|-------|---------|------------------|------------|----------------|
| CR76            | John  | Kay     | CR76             | PG4        | too remote     |
| CR56            | Aline | Stewart | CR56             | PA14       | too small      |
| CR56            | Aline | Stewart | CR56             | PG4        |                |
| CR56            | Aline | Stewart | CR56             | PG36       |                |
| CR62            | Mary  | Tregear | CR62             | PA14       | no dining room |

• Cartesian product and Selection can be reduced to a single operation called a *Join*.



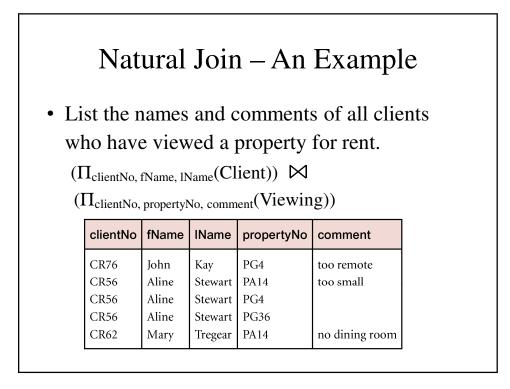
#### Join Operations


- Various forms of join operation
  - Theta join
  - Equijoin (a particular type of Theta join)
  - Natural join
  - Outer join
  - Semijoin

#### Theta join ( $\theta$ -join)

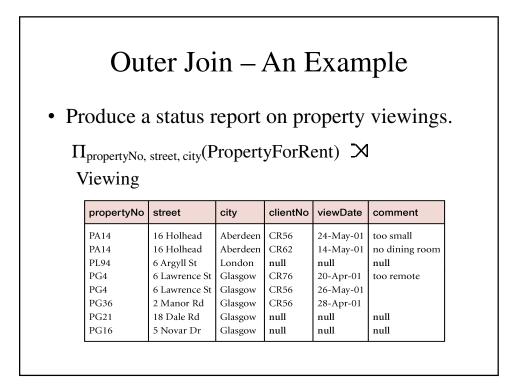
- $R \bowtie_F S$ 
  - Defines a relation that contains tuples satisfying the predicate F from the Cartesian product of R and S.
  - The predicate F is of the form R.a<sub>i</sub> θ S.b<sub>i</sub> where θ may be one of the comparison operators (<, ≤, >, ≥, =, ≠).

## Theta join ( $\theta$ -join)


- Can rewrite Theta join using basic Selection and Cartesian product operations.  $R\bowtie_F S = \sigma_F(R \mid X \mid S)$
- Degree of a Theta join is sum of degrees of the operand relations R and S. If predicate F contains only equality (=), the term Equijoin is used.



#### Natural Join

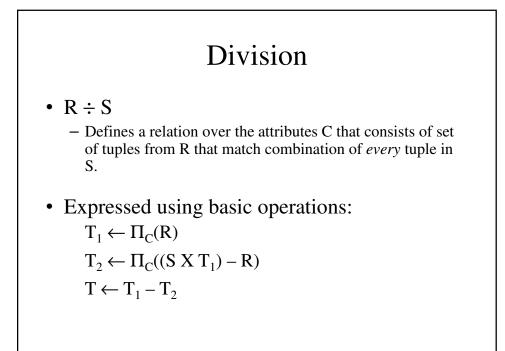

• R 🖂 S

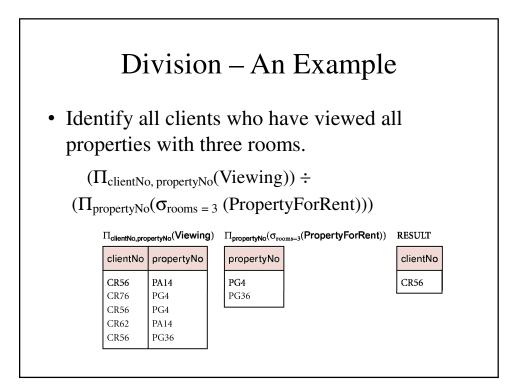
 An Equijoin of the two relations R and S over all common attributes *x*. One occurrence of each common attribute is eliminated from the result.



#### Outer Join

- To display rows in the result that do not have matching values in the join column, use Outer join.
- R 🏼 S
  - (Left) outer join is join in which tuples from R that do not have matching values in common columns of S are also included in result relation.





### Semijoin

- $R \triangleright_F S$ 
  - Defines a relation that contains the tuples of R that participate in the join of R with S.
- Can rewrite Semijoin using Projection and Join:

 $-R \triangleright_F S = \Pi_A(R \Join_F S)$ 

#### Semijoin – An Example • List complete details of all staff who work at the branch in Glasgow. $Staff \triangleright_{Staff.branchNo=Branch.branchNo}(\sigma_{city=`Glasgow'}(Branch))$ staffNo fName IName sex DOB position salary branchNo SG37 Beech F 10-Nov-60 B003 Ann Assistant 12000 SG14 David Ford Supervisor 24- Mar-58 18000 B003 Μ SG5 Susan Brand Manager F 3-Jun-40 24000 B003



