
1

CSC 443 – Database

Management Systems

Lecture 3 –The Relational Data

Model

Data and Its Structure

• Data is actually stored as bits, but it is difficult
to work with data at this level.

• It is convenient to view data at different levels
of abstraction.

• Schema: Description of data at some
abstraction level. Each level has its own
schema.

• We will be concerned with three schemas:
physical, conceptual, and external.

2

Physical Data Level

• Physical schema describes details of how data is

stored: tracks, cylinders, indices etc.

• Early applications worked at this level – explicitly

dealt with details.

• Problem: Routines were hard-coded to deal with

physical representation.

– Changes to data structure difficult to make.

– Application code becomes complex since it must deal with

details.

– Rapid implementation of new features impossible.

Conceptual Data Level

• Hides details.

– In the relational model, the conceptual schema presents

data as a set of tables.

• DBMS maps from conceptual to physical schema

automatically.

• Physical schema can be changed without changing

application:

– DBMS would change mapping from conceptual to physical

transparently

– This property is referred to as physical data independence

3

Conceptual Data Level (con’t)

External Data Level

• In the relational model, the external schema also
presents data as a set of relations.

• An external schema specifies a view of the data in
terms of the conceptual level. It is tailored to the
needs of a particular category of users.

– Portions of stored data should not be seen by some users.
• Students should not see their files in full.

• Faculty should not see billing data.

– Information that can be derived from stored data might be
viewed as if it were stored.

• GPA not stored, but calculated when needed.

4

External Data Level (con’t)

• Application is written in terms of an external schema.

• A view is computed when accessed (not stored).

• Different external schemas can be provided to different

categories of users.

• Translation from external to conceptual done automatically by

DBMS at run time.

• Conceptual schema can be changed without changing

application:

– Mapping from external to conceptual must be changed.

• Referred to as conceptual data independence.

Levels of Abstraction

External

schemas

5

Data Model

• Schema: description of data at some level (e.g.,
tables, attributes, constraints, domains)

• Model: tools and language for describing:

– Conceptual and external schema
• Data definition language (DDL)

– Integrity constraints, domains (DDL)

– Operations on data
• Data manipulation language (DML)

– Directives that influence the physical schema (affects
performance, not semantics)
• Storage definition language (SDL)

Relational Model

• A particular way of structuring data (using

relations)

• Simple

• Mathematically based

– Expressions (≡ queries) can be analyzed by DBMS

– Queries are transformed to equivalent expressions

automatically (query optimization)

• Optimizers have limits (=> programmer needs to know

how queries are evaluated and optimized)

6

Relation Instance

• Relation is a set of tuples

– Tuple ordering immaterial

– No duplicates

– Cardinality of relation = number of tuples

• All tuples in a relation have the same structure;
constructed from the same set of attributes

– Attributes are named (ordering is immaterial)

– Value of an attribute is drawn from the attribute’s domain

• There is also a special value null (value unknown or undefined),
which belongs to no domain

– Arity of relation = number of attributes

Relation Instance (Example)

Id Name Address Status

7

Relation Schema

• Relation name

• Attribute names & domains

• Integrity constraints like

– The values of a particular attribute in all tuples are
unique

– The values of a particular attribute in all tuples are
greater than 0

• Default values

Relational Database

• Finite set of relations

• Each relation consists of a schema and an
instance

• Database schema = set of relation schemas
constraints among relations (inter-relational
constraints)

• Database instance = set of (corresponding)
relation instances

8

Database Schema (Example)

• Student (Id: INT, Name: STRING, Address: STRING,

Status: STRING)

• Professor (Id: INT, Name: STRING, DeptId: DEPTS)

• Course (DeptId: DEPTS, CrsName: STRING,

CrsCode: COURSES)

• Transcript (CrsCode: COURSES, StudId: INT,

Grade: GRADES, Semester: SEMESTERS)

• Department(DeptId: DEPTS, Name: STRING)

Integrity Constraints

• Part of schema

• Restriction on state (or of sequence of states) of data
base

• Enforced by DBMS

• Intra-relational - involve only one relation

– Part of relation schema

– e.g., all Ids are unique

• Inter-relational - involve several relations

– Part of relation schema or database schema

9

Constraint Checking

• Automatically checked by DBMS

• Protects database from errors

• Enforces enterprise rules

Kinds of Integrity Constraints

• Static – restricts legal states of database

– Syntactic (structural)

• e.g., all values in a column must be unique

– Semantic (involve meaning of attributes)

• e.g., cannot register for more than 18 credits

• Dynamic – limitation on sequences of database

states

• e.g., cannot raise salary by more than 5%

10

Key Constraint

• A key constraint is a sequence of attributes A1,…,An (n=1
possible) of a relation schema, S, with the following property:
– A relation instance s of S satisfies the key constraint iff at most one

row in s can contain a particular set of values, a1,…,an, for the attributes
A1,…,An

– Minimality: no subset of A1,…,An is a key constraint

• Key
– Set of attributes mentioned in a key constraint

• e.g., Id in Student,

• e.g., (StudId, CrsCode, Semester) in Transcript

– It is minimal: no subset of a key is a key

• (Id, Name) is not a key of Student

Key Constraint (cont’d)

• Superkey - set of attributes containing key

– (Id, Name) is a superkey of Student

• Every relation has a key

• Relation can have several keys:

– primary key: Id in Student (can’t be null)

– candidate key: (Name, Address) in Student

11

Foreign Key Constraint

• Referential integrity: Item named in one relation must refer to tuples that

describe that item in another

– Transcript (CrsCode) references Course(CrsCode)

– Professor(DeptId) references Department(DeptId)

• Attribute A1 is a foreign key of R1 referring to attribute A2 in R2, if

whenever there is a value v of A1, there is a tuple of R2 in which A2 has

value v, and A2 is a key of R2

– This is a special case of referential integrity: A2 must be a candidate key of R2

(e.g., CrsCode is a key of Course in the above)

– If no row exists in R2 => violation of referential integrity

– Not all rows of R2 need to be referenced: relationship is not symmetric (e.g.,

some course might not be taught)

– Value of a foreign key might not be specified (DeptId column of some

professor might be null)

Foreign Key Constraint (Example)

A2

v3

v5

v1

v6

v2

v7

v4

A1

v1

v2

v3

v4

null

v3

R1 R2
Foreign key

Candidate key

12

Foreign Key (cont’d)

• Names of the attrs A1 and A2 need not be the same.
– With tables:

ProfId attribute of Teaching references Id attribute of
Professor

• R1 and R2 need not be distinct.
– Employee(Id:INT, MgrId:INT, ….)

• Employee(MgrId) references Employee(Id)

– Every manager is also an employee and hence has a
unique row in Employee

Teaching(CrsCode: COURSES, Sem: SEMESTERS, ProfId: INT)

Professor(Id: INT, Name: STRING, DeptId: DEPTS)

Foreign Key (cont’d)

• Foreign key might consist of several columns

– (CrsCode, Semester) of Transcript references

(CrsCode, Semester) of Teaching

• R1(A1, …An) references R2(B1, …Bn)

– Ai and Bi must have same domains (although not

necessarily the same names)

– B1,…,Bn must be a candidate key of R2

13

Inclusion Dependency

• Referential integrity constraint that is not a
foreign key constraint

• Teaching(CrsCode, Semester) references
Transcript(CrsCode, Semester)

(no empty classes allowed)

• Target attributes do not form a candidate key in
Transcript (StudId missing)

• No simple enforcement mechanism for inclusion
dependencies in SQL (requires assertions -- later)

Structured Query Language (SQL)

• Language for describing database schema and

operations on tables

• Data Definition Language (DDL):

sublanguage of SQL for describing schema

14

Tables

• SQL entity that corresponds to a relation

• An element of the database schema

• SQL-92 is currently the most supported

standard but is now superseded by SQL:1999

and SQL:2003

• Database vendors generally deviate from the

standard, but eventually converge

Table Declaration

CREATE TABLE Student (

Id: INTEGER,

Name: CHAR(20),

Address: CHAR(50),

Status: CHAR(10)

)

101222333 John 10 Cedar St Freshman

234567890 Mary 22 Main St Sophomore

Id Name Address Status

Student

15

Primary/Candidate Keys

CREATE TABLE Course (

CrsCodeCHAR(6),

CrsName CHAR(20),

DeptIdCHAR(4),

DescrCHAR(100),

PRIMARY KEY (CrsCode),

UNIQUE (DeptId, CrsName) -- candidate key

)

Comments start

with 2 dashes

Null

• Problem: Not all information might be known when
row is inserted (e.g., Grade might be missing from
Transcript)

• A column might not be applicable for a particular row
(e.g., MaidenName if row describes a male)

• Solution: Use place holder – null

– Not a value of any domain (although called null value)

• Indicates the absence of a value

– Not allowed in certain situations

• Primary keys and columns constrained by NOT NULL

16

Default Value

-Value to be assigned if attribute value in a row

is not specified

CREATE TABLE Student (

Id INTEGER,

Name CHAR(20) NOT NULL,

Address CHAR(50),

Status CHAR(10) DEFAULT ‘freshman’,

PRIMARY KEY (Id))

Semantic Constraints in SQL

• Primary key and foreign key are examples of

structural constraints

• Semantic constraints

• Express the logic of the application at hand:

• e.g., number of registered students �

maximum enrollment

17

Semantic Constraints (cont’d)

• Used for application dependent conditions

• Example: limit attribute values

• Each row in table must satisfy condition

CREATE TABLE Transcript (

StudId INTEGER,

CrsCode CHAR(6),

Semester CHAR(6),

Grade CHAR(1),

CHECK (Grade IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’)),

CHECK (StudId > 0 AND StudId < 1000000000))

Semantic Constraints (cont’d)

• Example: relate values of attributes in

different columns

CREATE TABLE Employee (

Id INTEGER,

Name CHAR(20),

Salary INTEGER,

MngrSalary INTEGER,

CHECK (MngrSalary > Salary))

18

Constraints – Problems

• Problem 1: Empty table always satisfies all CHECK

constraints (an idiosyncrasy of the SQL standard)

– If Employee is empty, there are no rows on which to evaluate the

CHECK condition.

CREATE TABLE Employee (

Id INTEGER,

Name CHAR(20),

Salary INTEGER,

MngrSalary INTEGER,

CHECK (0 < (SELECT COUNT (*) FROM Employee)))

Constraints – Problems

• Problem 2: Inter-relational constraints should be
symmetric

– Why should constraint be in Employee an not Manager?

– What if Employee is empty?

CREATE TABLE Employee (

Id INTEGER,

Name CHAR(20),

Salary INTEGER,

MngrSalary INTEGER,

CHECK ((SELECT COUNT (*) FROMManager) <

(SELECT COUNT (*) FROM Employee)))

19

Assertion

• Element of schema (like table)

• Symmetrically specifies an inter-relational

constraint

• Applies to entire database (not just the

individual rows of a single table)

– hence it works even if Employee is empty

CREATE ASSERTION DontFireEveryone

CHECK (0 < SELECT COUNT (*) FROM Employee)

Assertion

CREATE ASSERTION KeepEmployeeSalariesDown

CHECK (NOT EXISTS(
SELECT * FROM Employee E

WHERE E.Salary > E.MngrSalary))

20

Assertions and Inclusion Dependency

CREATE ASSERTION NoEmptyCourses

CHECK (NOT EXISTS (

SELECT * FROM Teaching T

WHERE -- for each row T check

-- the following condition

NOT EXISTS (
SELECT * FROM Transcript R

WHERE T.CrsCode = R.CrsCode

AND T.Semester = R.Semester)

))Courses with no

students

Students in a

particular course

Domains

• Possible attribute values can be specified

– Using a CHECK constraint or

– Creating a new domain

• Domain can be used in several declarations

• Domain is a schema element

CREATE DOMAIN Grades CHAR (1)

CHECK (VALUE IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’))

CREATE TABLE Transcript (

….,

Grade: Grades,

…)

21

Foreign Key Constraint

CREATE TABLE Teaching (

ProfId INTEGER,

CrsCode CHAR (6),

Semester CHAR (6),

PRIMARY KEY (CrsCode, Semester),

FOREIGN KEY (CrsCode) REFERENCES Course,

FOREIGN KEY (ProfId) REFERENCES Professor (Id))

Foreign Key Constraint

x

CrsCode

y

x y

CrsCode ProfId

Id

Teaching

Course

Professor

22

Circularity in Foreign Key Constraint

y x

A1 A2 A3 B1 B2 B3

x yA B

candidate key: A1

foreign key: A3 references B(B1)

Problem 1: Creation of A requires existence of B and vice versa

Solution: CREATE TABLE A (……) -- no foreign key

CREATE TABLE B (……) -- include foreign key

ALTER TABLE A

ADD CONSTRAINT cons

FOREIGN KEY (A3) REFERENCES B (B1)

Circularity in Foreign Key Constraint (cont’d)

• Problem 2: Insertion of row in A requires prior

existence of row in B and vice versa

• Solution: use appropriate constraint checking mode:

– IMMEDIATE checking

– DEFERRED checking

23

Reactive Constraints

• Constraints enable DBMS to recognize a bad

state and reject the statement or transaction

that creates it

• More generally, it would be nice to have a

mechanism that allows a user to specify how to

react to a violation of a constraint

• SQL-92 provides a limited form of such a

reactive mechanism for foreign key violations

Handling Foreign Key Violations

• Insertion into A: Reject if no row exists in B

containing foreign key of inserted row

• Deletion from B:

– NO ACTION: Reject if row(s) in A references row to

be deleted (default response)

x

x

A B

?
Request to delete

row rejected

24

Handling Foreign Key Violations (cont’d)

• Deletion from B (cont’d):

– SET NULL: Set value of foreign key in

referencing row(s) in A to null

nullA
B

x

Row

deleted

Handling Foreign Key Violations (cont’d)

• Deletion from B (cont’d):

– SET DEFAULT: Set value of foreign key in

referencing row(s) in A to default value (y)

which must exist in B

yA B
y

x

Row

deleted

25

Handling Foreign Key Violations (cont’d)

• Deletion from B (cont’d):

– CASCADE: Delete referencing row(s) in A as

well

A B

x x

Handling Foreign Key Violations (cont’d)

• Update (change) foreign key in A: Reject if no row
exists in B containing new foreign key

• Update candidate key in B (to z) – same actions as with
deletion:

– NO ACTION: Reject if row(s) in A references row to be
updated (default response)

– SET NULL: Set value of foreign key to null

– SET DEFAULT: Set value of foreign key to default

– CASCADE: Propagate z to foreign key

z

z

A B

Cascading when

key in B changed

from x to z

26

Handling Foreign Key Violations (cont’d)

• The action taken to repair the violation of a
foreign key constraint in A may cause a
violation of a foreign key constraint in C

• The action specified in C controls how that
violation is handled;

• If the entire chain of violations cannot be resolved,
the initial deletion from B is rejected.

x

xy

y

C A B

Specifying Actions

CREATE TABLE Teaching (

ProfId INTEGER,

CrsCodeCHAR (6),

SemesterCHAR (6),

PRIMARY KEY (CrsCode, Semester),

FOREIGN KEY (ProfId) REFERENCES Professor (Id)

ON DELETE NO ACTION

ON UPDATE CASCADE,

FOREIGN KEY (CrsCode) REFERENCES Course (CrsCode)

ON DELETE SET NULL
ON UPDATE CASCADE)

27

Triggers

• A more general mechanism for handling

events

– Not in SQL-92, but is in SQL:1999

• Trigger is a schema element (like table,

assertion, …)

CREATE TRIGGER CrsChange

AFTER UPDATE OF CrsCode, SemesterON Transcript

WHEN (Grade IS NOT NULL)

ROLLBACK

Views

• Schema element

• Part of external schema

• A virtual table constructed from actual tables

on the fly

– Can be accessed in queries like any other table

– Not materialized, constructed when accessed

– Similar to a subroutine in ordinary programming

28

Views - Examples

CREATE VIEW CoursesTaken (StudId, CrsCode, Semester) AS

SELECT T.StudId, T.CrsCode, T.Semester

FROM Transcript T

CREATE VIEW CoursesITook (CrsCode, Semester, Grade) AS

SELECT T.CrsCode, T.Semester, T.Grade

FROM Transcript T

WHERE T.StudId = ‘123456789’

Part of external schema suitable for use in Bursar’s office:

Modifying the Schema

ALTER TABLE Student

ADD COLUMN Gpa INTEGER DEFAULT 0

ALTER TABLE Student

ADD CONSTRAINT GpaRange

CHECK (Gpa >= 0 AND Gpa <= 4)

ALTER TABLE Transcript

DROP CONSTRAINT Cons -- constraint names are useful

DROP TABLE Employee

DROP ASSERTION DontFireEveryone

29

Access Control

• Databases might contain sensitive information

• Access has to be limited:

– Users have to be identified – authentication

• Generally done with passwords

– Each user must be limited to modes of access appropriate

to that user - authorization

• SQL:92 provides tools for specifying an authorization

policy but does not support authentication (vendor

specific)

Controlling Authorization in SQL

GRANT access_list

ON table

TO user_list

access modes: SELECT, INSERT, DELETE, UPDATE, REFERENCES

GRANT UPDATE (Grade) ON Transcript TO prof_smith

– Only the Grade column can be updated by prof_smith

GRANT SELECT ON Transcript TO joe

– Individual columns cannot be specified for SELECT access (in the

SQL standard) – all columns of Transcript can be read

– But SELECT access control to individual columns can be simulated

through views (next)

User

name

30

Controlling Authorization in SQL

Using Views

GRANT SELECT ON CoursesTaken TO joe

– Thus views can be used to simulate access control to individual columns

of a table

GRANT access

ON view

TO user_list

Authorization Mode REFERENCES

• Foreign key constraint enforces relationship
between tables that can be exploited to
– Control access: can enable perpetrator prevent deletion

of rows

– Reveal information: successful insertion into
DontDissmissMe means a row with foreign key value
exists in Student

CREATE TABLE DontDismissMe (

Id INTEGER,

FOREIGN KEY (Id) REFERENCES Student

ON DELETE NO ACTION)

INSERT INTO DontDismissMe (‘111111111’)

