
1

CSC 443 – Database

Management Systems

Lecture 2 –Databases: The Big

Picture

Databases

• There are three different types of databases:

– Hierarchical databases

– Network databases

– Relational databases

• We are particularly interested in relational

databases

• In relational databases, data is stored in tables.

2

What Is A Table?

• A table is a set of rows (no duplicates)

• Each row describes a different entity

• Each column states a particular fact about each
entity

• Each column has an associated domain

• Domain of Status = {fresh, soph, junior, senior}

Id Name Address Status

1111 John 123 Main fresh

2222 Mary 321 Oak soph

1234 Bob 444 Pinesoph

9999 Joan 777 Grand senior

What Is A Relation?

• A relation is a mathematical entity

corresponding to a table

– row ~ tuple

– column ~ attribute

• Values in a tuple are related to each other

– John lives at 123 Main

• Relation R can be thought of as predicate R

– R(x,y,z) is true iff tuple (x,y,z) is in R

3

What Are Operations?

• Operations on relations are precisely defined

– Take relation(s) as argument, produce new relation as
result

– Unary (e.g., delete certain rows)

– Binary (e.g., union, Cartesian product)

• Corresponding operations defined on tables as
well

• Using mathematical properties, equivalence can
be decided

– Important for query optimization:

op1(T1,op2(T2)) = op3(op2(T1),T2)

Structured Query Language: SQL

• Language for manipulating tables

• Declarative – Statement specifies what needs to be
obtained, not how it is to be achieved (e.g., how to
access data, the order of operations)

• Due to declarativity of SQL, DBMS determines
evaluation strategy

– This greatly simplifies application programs

– But DBMS is not infallible: programmers should have an
idea of strategies used by DBMS so they can design better
tables, indices, statements, in such a way that DBMS can
evaluate statements efficiently

4

Structured Query Language (SQL)

• Language for constructing a new table from argument
table(s).

– FROM indicates source tables

– WHERE indicates which rows to retain
• It acts as a filter

– SELECT indicates which columns to extract from retained
rows

• Projection

• The result is a table.

SELECT <attribute list>

FROM <table list >

WHERE <condition>

Queries – An Example

SELECT Name
FROM Student
WHERE Id > 4999

Id Name Address Status

1234 John 123 Main fresh

5522 Mary 77 Pine senior

9876 Bill 83 Oak junior

Student

Name

Mary

Bill

Result

5

Queries – Some Examples

SELECT Id, Name FROM Student

SELECT Id, Name FROM Student

WHERE Status = ‘senior’

SELECT * FROM Student

WHERE Status = ‘senior’

SELECT COUNT(*) FROM Student

WHERE Status = ‘senior’

result is a table

with one column

and one row

Queries: A More Complex Example

• Goal: table in which each row names a senior

and gives a course taken and grade

• Combines information in two tables:

– Student: Id, Name, Address, Status

– Transcript: StudId, CrsCode, Semester, Grade

SELECT Name, CrsCode, Grade

FROM Student, Transcript

WHERE StudId = Id AND Status = ‘senior’

6

Join
a1 a2 a3

A 1 xxy

B 17 rst

b1 b2

3.2 17

4.8 17

FROM T1, T2

yields:

a1 a2 a3 b1 b2

A 1 xxy 3.2 17

A 1 xxy 4.8 17

B 17 rst 3.2 17

B 17 rst 4.8 17

WHERE a2 = b2

yields:

B 17 rst 3.2 17

B 17 rst 4.8 17

SELECT a1, b1

yields result:

B 3.2

B 4.8

T1 T2

SELECT a1, b1

FROM T1, T2

WHERE a2 = b2

Modifying Tables

UPDATE Student

SET Status = ‘soph’

WHERE Id = 111111111

INSERT INTO Student (Id, Name, Address, Status)

VALUES (999999999, ‘Bill’, ‘432 Pine’, ‘senior’)

DELETE FROM Student

WHERE Id = 111111111

7

Creating Tables

Constraint:

explained later

What are Transactions?

• Many enterprises use databases to store information
about their state

– E.g., balances of all depositors

• The occurrence of a real-world event that changes the
enterprise state requires the execution of a program
that changes the database state in a corresponding
way

– E.g., balance must be updated when you deposit

• A transaction is a program that accesses the database
in response to real-world events

8

Transactions

• Transactions are not just ordinary programs

• Additional requirements are placed on
transactions (and particularly their execution
environment) that go beyond the requirements
placed on ordinary programs.

– Atomicity

– Consistency

– Isolation

– Durability

ACID properties

Integrity Constraints

• Rules of the enterprise generally limit the occurrence
of certain real-world events.

– Student cannot register for a course if current number of
registrants = maximum allowed

• Correspondingly, allowable database states are
restricted.

– cur_reg <= max_reg

• These limitations are expressed as integrity
constraints, which are assertions that must be
satisfied by the database state.

9

Atomicity

• A real-world event either happens or does not
happen.
– Student either registers or does not register.

• Similarly, the system must ensure that either
the transaction runs to completion (commits)
or, if it does not complete, it has no effect at all
(aborts).
– This is not true of ordinary programs. A hardware

or software failure could leave files partially
updated.

Consistency

• Transaction designer must ensure that

IF the database is in a state that satisfies all integrity

constraints when execution of a transaction is

started

THEN when the transaction completes:

• All integrity constraints are once again satisfied

(constraints can be violated in intermediate states)

• New database state satisfies specifications of transaction

10

Isolation

• Deals with the execution of multiple transactions

concurrently.

• If the initial database state is consistent and

accurately reflects the real-world state, then the serial

(one after another) execution of a set of consistent

transactions preserves consistency.

• But serial execution is inadequate from a

performance perspective.

Durability

• The system must ensure that once a transaction

commits its effect on the database state is not

lost in spite of subsequent failures.

– Not true of ordinary systems. For example, a

media failure after a program terminates could

cause the file system to be restored to a state that

preceded the execution of the program.

11

Concurrent Transaction Execution

Isolation

12

Isolation

• The effect of concurrently executing a set of
transactions must be the same as if they had executed
serially in some order

– The execution is thus not serial, but serializable

• Serializable execution has better performance than
serial, but performance might still be inadequate.
Database systems offer several isolation levels with
different performance characteristics (but some
guarantee correctness only for certain kinds of
transactions – not in general)

ACID Properties

• The transaction monitor is responsible for ensuring
atomicity, durability, and (the requested level of)
isolation.

– Hence it provides the abstraction of failure-free,
non-concurrent environment, greatly simplifying the task of
the transaction designer.

• The transaction designer is responsible for ensuring
the consistency of each transaction, but doesn’t need
to worry about concurrency and system failures.

