
CSC 443 Fall 2011 Dr. R. M. Siegfried

Answers to Assignment #1

1.14. Consider the Database below:

If the name of the 'CS' (Computer Science) Department changes to 'CSSE' (Computer Science and Software

Engineering) Department and the corresponding prefix for the course number also changes, identify the columns in

the database that would need to be updated.

Can you restructure the columns in the COURSE, SECTION, and PREREQUISITE tables so that only one column

will need to be updated.

The Database

Student

Name Student_number Class Major

Smith 17 1 CS

Brown 8 2 CS

Course

Course_name Course_number Credit_hours Department

Introduction to Computer Science CS1310 4 CS

Data Structures CS3320 4 CS

Discrete Structures MATH2410 3 MATH

Database CS3380 3 CS

Section

Section_identifier Course_number Semester Year Instructor

85 MATH2410 Fall 07 King

92 CS1310 Fall 07 Anderson

102 CS3320 Spring 08 Knuth

112 MATH2410 Fall 08 Chang

119 CS1310 Fall 08 Anderson

135 CS3380 Fall 08 Stone

Grade_Report

Student_number Section_identifier Grade

17 112 B

17 119 C

8 85 A

8 92 A

8 102 B

8 135 A

Prerequisite

Course_number Prerequisite_number

CS3380 CS3220

CS3380 MATH2410

CS3380 CS1310

a. The following columns will need to be updated.
Table Column(s)
STUDENT Major
COURSE CourseNumber and Department
SECTION CourseNumber
PREREQUISITE CourseNumber and PrerequisiteNumber

b. You should split the following columns into two columns:
Table Column Split Columns
COURSE CourseNumber CourseDept and CourseNum
SECTION CourseNumber CourseDept and CourseNum
PREREQUISITE CourseNumber CourseDept and CourseNum
PREREQUISITE PrerequisiteNumber PreReqDept and PreReqNum

Note that in the COURSE table, the column CourseDept will not be needed after the above

change, since it is redundant with the Department column.

CSC 443 Fall 2011 Dr. R. M. Siegfried

Answers to Assignment #2

2.12 Think of different users for the database shown in Figure 1.2 (it was show in detail in Assignment

#1. What types of applications would each user need? To which user category would each

belong?

(a) Registration Office User: They can enter data that reflect the registration of students

in sections of courses, and later enter the grades of the students. Applications can

include:

• Register a student in a section of a course

• Check whether a student who is registered in a course has the appropriate prerequisite

• courses

• Drop a student from a section of a course

• Add a student to a section of a course

• Enter the student grades for a section

Application programmers can write a number of canned transactions for the registration

office end-users, providing them with either forms and menus, or with a parametric

interface.

(b) Admissions Office User: The main application is to enter newly accepted students into

the database. Can use the same type of interfaces as (a).

(c) Transcripts Office User: The main application is to print student transcripts.

Application programmers can write a canned transaction using a report generator utility

to print the transcript of a student in a prescribed format. The particular student can be

identified by name or social security number. Another application would be to generate

grade slips at the end of each semester for all students who have completed courses

during that semester. Again, this application could be programmed using a report

generator utility.

These are the answers in the instructor’s manual, but faculty and students would also need access

(as in CLASS). For that reasons, the answers the class provided would also be correct.

CSC 443 Fall 2011 Dr. R. M. Siegfried

Answers to Assignment #3

3.15. Consider the following relations for a database that keeps track of business trips of salespersons in a sales

office:

SALESPERSON(Ssn, Name, Start_year, Dept_no)

TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)

EXPENSE(Trip_id, Account#, Amount)

A trip can be charged to one or more accounts. Specify the foreign keys for this schema, stating any

assumption that you make.

The schema of this question has the following two foreign keys:

1. The attribute SSN of relation TRIP that references relation SALESPERSON, and

2. The attribute Trip_ID of relation EXPENSE that references relation TRIP.

In addition, the attributes Dept_No of relation SALESPERSON and Account# of relation

EXPENSE are probably also foreign keys referencing other relations of the database not
mentioned in the question.

3.16 Consider the following relations for a database that keeps track of student enrollment in courses and the

books adopted for each course:

STUDENT(Ssn, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(Ssn, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_isbn)

Specify the foreign keys for this schema, stating any assumptions that you make.

The schema of this question has the following four foreign keys:

1. The attribute SSN of relation ENROLL that references relation STUDENT,

2. The attribute Course# in relation ENROLL that references relation COURSE,

3. The attribute Course# in relation BOOK_ADOPTION that references relation COURSE, and

4. The attribute Book_ISBN of relation BOOK_ADOPTION that references relation TEXT.

3.17 Consider the following relations for a database that keeps track of automobile sales in a car dealership

(OPTION refers to some optional equipment installed on an automobile):
CAR(Serial_no, Model, Manufacturer, Price)

OPTION(Serial_no, Option_name, Price)

SALE(Salesperson_id, Serial_no, Date, Sales_price)

SALESPERSON(Salesperson_id, Name, Phone)

First, specify the foreign keys for this schema, stating any assumptions that you make. Next, populate the

relations with a few sample tuples, and then given an example of an insertion in

the SALE and SALEPERSON relations that violate the referential integrity constraints and of another insertion

that does not.

The schema of this question has the following three foreign keys:

1. The attribute Serial_no of relation OPTION that references relation CAR

2. The attribute Salesperson_id of relation SALE that references relation SALESPERSON

3. The attribute Serial_no of relation SALE that references relation CAR

CSC 443 Fall 2011 Dr. R. M. Siegfried

Answers to Assignment #5

4.5 Consider the database shown in Figure (1.2, whose schema in shown in Figure 2.1 What are the referential

integrity constraint that should on the schema? Write the appropriate SQL DDL statement to define the

database.
STUDENT

Name Student_number Class Major

Smith 15 1 CS

Brown 8 2 CS

COURSE

Course_name Course_number Credit_hours Department

Intro to computer Science CS1310 4 CS

Data Structures CS3320 4 CS

Discrete Structures MATH2410 3 MATH

Database CS3380 3 CS

SECTION

Section_identifier Course_number Semester Year Instructor

85 MATH 2410 Fall 07 King

92 CS 1310 Fall 07 Anderson

102 CS 3320 Spring 08 Knuth

112 MATH 2410 Fall 08 Chang

119 CS 1310 Fall 08 Anderson

135 CS 3380 Fall 08 Stone

GRADE_REPORT

Student_number Section_identifier Grade

17 112 B

17 119 C

8 85 A

8 92 A

8 102 B

8 135 A

PREREQUISITE

Course_number Prerequisite_number

CS3380 CS3320

CS3380 MATH2410

CS3320 CS1310

Schemas
STUDENT

Name Student_number Class Major

COURSE

Course_name Course_number Credit_hours Department

PREREQUISITE

Course_number Prerequisite_number

SECTION

Section_identifier Course_number Semester Year Instructor

GRADE_REPORT

Student_number Section_identifier Grade

The following referential integrity constraints should hold (we use the notation:

R.(A1, ..., An) --> S.(B1, ..., Bn)

to represent a foreign key from the attributes A1, ..., An of R (the referencing relation)

to S (the referenced relation)):
PREREQUISITE.(CourseNumber) → COURSE.(CourseNumber)

PREREQUISITE.(PrerequisiteNumber) → COURSE.(CourseNumber)

SECTION.(CourseNumber) → COURSE.(CourseNumber)

GRADE_REPORT.(StudentNumber) → STUDENT.(StudentNumber)

GRADE_REPORT.(SectionIdentifier) → SECTION.(SectionIdentifier)

CREATE TABLE STUDENT

(Name VARCHAR(30) NOT NULL,

StudentNumber INTEGER NOT NULL,

Class CHAR NOT NULL,

Major CHAR(4),

PRIMARY KEY (StudentNumber));

CREATE TABLE COURSE

(CourseName VARCHAR(30) NOT NULL,

CourseNumber CHAR(8) NOT NULL,

CreditHours INTEGER,

Department CHAR(4),

PRIMARY KEY (CourseNumber),

UNIQUE (CourseName));

CREATE TABLE PREREQUISITE

(CourseNumber CHAR(8) NOT NULL,

PrerequisiteNumber CHAR(8) NOT NULL,

PRIMARY KEY (CourseNumber, PrerequisiteNumber),

FOREIGN KEY (CourseNumber) REFERENCES COURSE (CourseNumber),

FOREIGN KEY (PrerequisiteNumber) REFERENCES COURSE (CourseNumber));

CREATE TABLE SECTION

(SectionIdentifier INTEGER NOT NULL,

CourseNumber CHAR(8) NOT NULL,

Semester VARCHAR(6) NOT NULL,

Year CHAR(4) NOT NULL,

Instructor VARCHAR(15),

PRIMARY KEY (SectionIdentifier),

FOREIGN KEY (CourseNumber) REFERENCES COURSE (CourseNumber));

CREATE TABLE GRADE_REPORT

(StudentNumber INTEGER NOT NULL,

SectionIdentifier INTEGER NOT NULL,

Grade CHAR,

PRIMARY KEY (StudentNumber, SectionIdentifier),

FOREIGN KEY (StudentNumber) REFERENCES STUDENT (StudentNumber),

FOREIGN KEY (SectionIdentifier) REFERENCES SECTION (SectionIdentifier));

