
1

Web Programming

Lecture 8 – Database Access Through

the Web

What is a database?

• A database is a collection of data organized to
allow relatively easy access for retrievals,
additions, modifications, and deletions.

• The most widely used type of databases is the
relational database, which was originally
proposed by E. F Codd in the late 1960s.

2

What is a relational database?

• A relational database is a collection of tables
of data.

– Each row represents an entity (person, place or
thing)

– Each column has a name and represents an
attribute (a property that an entity has).

– There is usually one column (or set of columns)
that uniquely identifies a particular row in the
table. This is called the primary key.

– The intersection of a row and column is usually
called a field.

Relational Model Concepts

3

Example – A Database Of Sports Cars

• We can set up a small database of Corvettes.

• Since each car can come with different

equipment and from different states, we may

choose to store this information in separate

tables.

Data Model of the Corvettes Database

Corvettes

Corvettes_Equipment

States

Equipment

4

Corvettes Table

Vette_id Body_Style Miles Year State

1 coupe 18.0 1997 4

2 hatchback 58.0 1996 7

3 convertible 13.5 2001 1

4 hatchback 19.0 1995 2

5 hatchback 25.0 1991 5

6 hardtop 15.0 2000 2

7 coupe 55.0 1979 10

8 convertible 17.0 1999 5

9 hardtop 17.0 2000 5

10 hatchback 50.0 1995 7

Equipment Table

Equip_id Equip

1 Automatic

2 4-speed

3 5-speed

4 6-speed

5 CD

6 Leather

5

States Table

State_id State

1 Alabama

2 Alaska

3 Arizona

4 Arkansas

5 California

6 Colorado

7 Connecticut

8 Delaware

9 Florida

10 Georgia

Corvettes_Equipment Table

Vette_id Equip Vette_id Equip

1 1 5 6

1 5 6 2

1 6 7 4

2 1 7 6

2 5 8 4

2 6 8 5

3 1 8 6

3 6 9 4

4 2 9 5

4 6 9 6

5 1 10 1

10 5

6

Normalization

• We want our database to be a clear

representation of the data, its relationships and

constraints

• We can identify relationship using a technique

called normalization.

• Normalization is a bottom-up technique where

we examine the relationship between attributes

and reconfigure the tables accordingly.

Purpose of Normalization

• Characteristics of a suitable set of relations

include:

– the minimal number of attributes necessary to

support the data requirements of the enterprise;

– attributes with a close logical relationship are

found in the same relation;

– minimal redundancy with each attribute

represented only once with the important exception

of attributes that form all or part of foreign keys.

7

Our Example

• The DreamHome Customer Rental Details

form holds details about property rented by a

given customer.

– To simplify things, we will assume that a renter

rents a given property once and only one property

at a time.

Our Original Table

CustNo Cname PropNo PAddr RntSt RntFnsh Rent OwnerNo OName

CR76 John

Kay

PG4

PG16

6 Lawrence

St, Elmont

5 Nova Dr,

East Meadow

7/1/10

9/1/06

8/31/06

9/1/08

700

900

CO40

CO93

Tina

Murphy

Tony

Shaw

CR56 Aline

Stewart

PG4

PG36

PG16

6 Lawrence

St, Elmont

2 Manor Rd

Scarsdale

5 Nova Dr,

East Meadow

9/1/02

8/1/04

8/1/06

6/10/04

12/1/05

9/1/10

700

750

900

CO40

CO93

CO93

Tina

Murphy

Tony

Shaw

Tony

Shaw

8

First Normal Form (1NF)

• Unnormalized – A table with one or more

repeating groups.

• First Normal Form (1NF) – A relation in

which the intersection of each row and column

contains one and only one value

Repeating Groups

• Any collection of attributes that repeat

provides a complication for a database, both in

terms of storing it (how many repeating groups

would you allow for) as well as querying them.

• It is necessary to recognize them so we can

eliminate them.

• E.g.,
Repeating Group = (Property_no, Paddress, RentStart, RentFinish, Rent,

Owner_No, OName)

9

Our Table in 1NF

CustNo CName PropNo PAddr RntSt RntFnsh Rent OwnerN

o

OName

CR76 John

Kay

PG4 6 Lawrence

St, Elmont

7/1/10 8/31/06 700 CO40 Tina

Murphy

CR76 John

Kay

PG16 5 Nova Dr,

East Meadow

9/1/06 9/1/08 900 CO93 Tony

Shaw

CR56 Aline

Stewart

PG4 6 Lawrence

St, Elmont

9/1/02 6/10/04 700 CO40 Tina

Murphy

CR56 Aline

Stewart

PG36 2 Manor Rd

Scarsdale

1/1/04 12/1/05 750 CO93 Tony

Shaw

CR56 Aline

Stewart

PG16 5 Nova Dr,

East Meadow

8/1/06 9/1/08 900 CO93 Tony

Shaw

Candidate Keys

• A candidate key for a given table is

– unique (only one row has that value or

combination of values)

– irreducible (there is no subset of the candidate that

is unique).

• Our candidate keys are:

– (Customer_No, Property_No)

– (Customer_No, RentStart)

– (Property_No, RentStart)

10

The Customer_Rental Relation

Customer_Rental(Customer_No, Property_No,

Cname, Paddress, RentStart, RentFinish, Rent,

Owner_No, Oname)

Primary Key Fields

Functional Dependency

• If A and B are attributes of Relation R, B is

functionally dependent on A (A→B) if each value of

A is associated with one and only one value of B.

• B is fully functionally dependent on A if B is

functional dependent on A and not on a proper subset

of A.

• B is partially functionally dependent on A if there is

some attribute that can be removed from A and the

dependence still holds.

11

Listing All The Functional Dependencies

1. Cust_No, Prop_no → RentStart, RentFinish (Primary Key)

2. CustNo → Cname (Partial Dependency)

3. Prop_no → Paddress, Rent, Owner_No, Oname (Partial

Dependency)

4. Owner_No → Oname (Transitive Dependency)

5. CustNo, RentStart → PropNo, Paddress, RentFinish, Rent,

Owner_No, Oname (Candidate Key)

6. Prop_No, RentStart → CustNo, Cname, RentFinish

(Candidate Key)

Functional Dependencies in Graphical Form

CustNo PropNo CName PAddr
Rent

Start

Rent

Finish
Rent

Owner
No

OName

(Primary Key)

(Partial Dependency)

(Transitive Dependency)

(Partial Dependency)

(Candidate Key)

(Candidate Key)

12

Functional Dependency in Our Table

• We have three relations with the following functional

dependencies:

– CustNo, PropNo → RentStart, RentFinish

– CustNo → CustName

– PropNo → Paddress, Rent, OwnerName, Oname

• Therefore, we have:

– Customer(CustNo, Cname)

– Rental(CustNo, PropNo, RentStart, RentFinish)

– Property_Owner(PropNo, Paddress, Rent, OwnerNo,

OName)

Second Normal Form (2NF)

• A relation is in 2NF if it is in 1NF and every

non-primary key attribute is fully functionally

dependent on the primary key

13

Our Database in 2NF

CustNo CName

CR76 John Kay

CR56 Aline Stewart

Customer Relation

Our Database in 2NF

CustNo PropNo RentStart RentFinish

CR76 PG4 7/1/10 8/31/06

CR76 PG16 9/1/06 9/1/08

CR56 PG4 9/1/02 6/10/04

CR56 PG36 1/1/04 12/1/05

CR56 PG16 8/1/06 9/1/10

Rentals Relation

14

Our Database in 2NF

PropNo PAddr Rent OwnerNo OName

PG4 6 Lawrence St, Elmont 700 CO40 Tina

Murphy

PG16 5 Nova Dr, East

Meadow

900 CO93 Tony Shaw

PG4 6 Lawrence St, Elmont 700 CO40 Tina

Murphy

PG36 2 Manor Rd

Scarsdale

750 CO93 Tony Shaw

PG16 5 Nova Dr, East

Meadow

900 CO93 Tony Shaw

Property-Owner Relation

Transitive Dependency

• If A, B, and C are attributes of a relation R

such that if A→B and B→C, then C is

transitively dependent on A via B.

15

Third Normal Form

• A relation is in 3NF is if it is 2NF and there are

no non-primary-key attributes that are

transitively dependent on the primary key.

Functional Dependencies in 2NF

• Customer

– CustNo → Cname

• Rental

– CustNo, PropNo → RentStart, RentFinish

– PropNo, RentStart → CustNo, RentFinish

• PropertyOwner

– PropNo → Paddr, Rent, OwnerNo, OName

– OwnerNo → Oname (Oname is not f.d. on

PropNo)

16

Our 3NF Relations

We have 4 relations:

• Customer(CustNo, Cname)

• Rental(CustNo, PropNo, RentStart,

RentFinish)

• Property_For_Rent(PropNo, Paddress, Rent,

OwnerNo)

• Owner(OwnerNo, OName)

Our Database in 3NF

CustNo CName

CR76 John Kay

CR56 Aline Stewart

Customer Relation

17

Our Database in 3NF

CustNo PropNo RentStart RentFinish

CR76 PG4 7/1/10 8/31/06

CR76 PG16 9/1/06 9/1/08

CR56 PG4 9/1/02 6/10/04

CR56 PG36 1/1/04 12/1/05

CR56 PG16 8/1/06 9/1/10

Rentals Relation

Our Database in 3NF

PropNo PAddr Rent OwnerNo

PG4 6 Lawrence St, Elmont 700 CO40

PG16 5 Nova Dr, East Meadow 900 CO93

PG36 2 Manor Rd, Scarsdale 750 CO93

Property-for-Rent Relation

18

Our Database in 3NF

OwnerNo OName

CO40 Tina

Murphy

CO93 Tony Shaw

Owner Relation

Basic SQL

• SQL language

– Considered one of the major reasons for the

commercial success of relational databases

• SQL

– Structured Query Language

– Statements for data definitions, queries, and

updates (both Data Definition Language and Data

Manipulation Language)

19

Our Example

• The DreamHome Customer Rental Details

form holds details about property rented by a

given customer.

– To simplify things, we will assume that a renter

rents a given property once and only one property

at a time.

Our Original Table

CustNo Cname PropNo PAddr RntSt RntFnsh Rent OwnerNo OName

CR76 John

Kay

PG4

PG16

6 Lawrence

St, Elmont

5 Nova Dr,

East Meadow

7/1/10

9/1/06

8/31/06

9/1/08

700

900

CO40

CO93

Tina

Murphy

Tony

Shaw

CR56 Aline

Stewart

PG4

PG36

PG16

6 Lawrence

St, Elmont

2 Manor Rd

Scarsdale

5 Nova Dr,

East Meadow

9/1/02

8/1/04

8/1/06

6/10/04

12/1/05

9/1/10

700

750

900

CO40

CO93

CO93

Tina

Murphy

Tony

Shaw

Tony

Shaw

20

First Normal Form (1NF)

• Unnormalized – A table with one or more

repeating groups.

• First Normal Form (1NF) – A relation in

which the intersection of each row and column

contains one and only one value

Repeating Groups

• Any collection of attributes that repeat

provides a complication for a database, both in

terms of storing it (how many repeating groups

would you allow for) as well as querying them.

• It is necessary to recognize them so we can

eliminate them.

• E.g.,
Repeating Group = (Property_no, Paddress, RentStart, RentFinish, Rent,

Owner_No, OName)

21

Our Table in 1NF

CustNo CName PropNo PAddr RntSt RntFnsh Rent OwnerN

o

OName

CR76 John

Kay

PG4 6 Lawrence

St, Elmont

7/1/10 8/31/06 700 CO40 Tina

Murphy

CR76 John

Kay

PG16 5 Nova Dr,

East Meadow

9/1/06 9/1/08 900 CO93 Tony

Shaw

CR56 Aline

Stewart

PG4 6 Lawrence

St, Elmont

9/1/02 6/10/04 700 CO40 Tina

Murphy

CR56 Aline

Stewart

PG36 2 Manor Rd

Scarsdale

1/1/04 12/1/05 750 CO93 Tony

Shaw

CR56 Aline

Stewart

PG16 5 Nova Dr,

East Meadow

8/1/06 9/1/08 900 CO93 Tony

Shaw

Candidate Keys

• A candidate key for a given table is

– unique (only one row has that value or

combination of values)

– irreducible (there is no subset of the candidate that

is unique).

• Our candidate keys are:

– (Customer_No, Property_No)

– (Customer_No, RentStart)

– (Property_No, RentStart)

22

The Customer_Rental Relation

Customer_Rental(Customer_No, Property_No,

Cname, Paddress, RentStart, RentFinish, Rent,

Owner_No, Oname)

Primary Key Fields

Functional Dependency

• If A and B are attributes of Relation R, B is

functionally dependent on A (A→B) if each value of

A is associated with one and only one value of B.

• B is fully functionally dependent on A if B is

functional dependent on A and not on a proper subset

of A.

• B is partially functionally dependent on A if there is

some attribute that can be removed from A and the

dependence still holds.

23

Listing All The Functional Dependencies

1. Cust_No, Prop_no → RentStart, RentFinish (Primary Key)

2. CustNo → Cname (Partial Dependency)

3. Prop_no → Paddress, Rent, Owner_No, Oname (Partial

Dependency)

4. Owner_No → Oname (Transitive Dependency)

5. CustNo, RentStart → PropNo, Paddress, RentFinish, Rent,

Owner_No, Oname (Candidate Key)

6. Prop_No, RentStart → CustNo, Cname, RentFinish

(Candidate Key)

Functional Dependencies in Graphical Form

CustNo PropNo CName PAddr
Rent

Start

Rent

Finish
Rent

Owner
No

OName

(Primary Key)

(Partial Dependency)

(Transitive Dependency)

(Partial Dependency)

(Candidate Key)

(Candidate Key)

24

Functional Dependency in Our Table

• We have three relations with the following functional

dependencies:

– CustNo, PropNo → RentStart, RentFinish

– CustNo → CustName

– PropNo → Paddress, Rent, OwnerName, Oname

• Therefore, we have:

– Customer(CustNo, Cname)

– Rental(CustNo, PropNo, RentStart, RentFinish)

– Property_Owner(PropNo, Paddress, Rent, OwnerNo,

OName)

Second Normal Form (2NF)

• A relation is in 2NF if it is in 1NF and every

non-primary key attribute is fully functionally

dependent on the primary key

25

Our Database in 2NF

CustNo CName

CR76 John Kay

CR56 Aline Stewart

Customer Relation

Our Database in 2NF

CustNo PropNo RentStart RentFinish

CR76 PG4 7/1/10 8/31/06

CR76 PG16 9/1/06 9/1/08

CR56 PG4 9/1/02 6/10/04

CR56 PG36 1/1/04 12/1/05

CR56 PG16 8/1/06 9/1/10

Rentals Relation

26

Our Database in 2NF

PropNo PAddr Rent OwnerNo OName

PG4 6 Lawrence St, Elmont 700 CO40 Tina

Murphy

PG16 5 Nova Dr, East

Meadow

900 CO93 Tony Shaw

PG4 6 Lawrence St, Elmont 700 CO40 Tina

Murphy

PG36 2 Manor Rd

Scarsdale

750 CO93 Tony Shaw

PG16 5 Nova Dr, East

Meadow

900 CO93 Tony Shaw

Property-Owner Relation

Transitive Dependency

• If A, B, and C are attributes of a relation R

such that if A→B and B→C, then C is

transitively dependent on A via B.

27

Third Normal Form

• A relation is in 3NF is if it is 2NF and there are

no non-primary-key attributes that are

transitively dependent on the primary key.

Functional Dependencies in 2NF

• Customer

– CustNo → Cname

• Rental

– CustNo, PropNo → RentStart, RentFinish

– PropNo, RentStart → CustNo, RentFinish

• PropertyOwner

– PropNo → Paddr, Rent, OwnerNo, OName

– OwnerNo → Oname (Oname is not f.d. on

PropNo)

28

Our 3NF Relations

We have 4 relations:

• Customer(CustNo, Cname)

• Rental(CustNo, PropNo, RentStart,

RentFinish)

• Property_For_Rent(PropNo, Paddress, Rent,

OwnerNo)

• Owner(OwnerNo, OName)

Our Database in 3NF

CustNo CName

CR76 John Kay

CR56 Aline Stewart

Customer Relation

29

Our Database in 3NF

CustNo PropNo RentStart RentFinish

CR76 PG4 7/1/10 8/31/06

CR76 PG16 9/1/06 9/1/08

CR56 PG4 9/1/02 6/10/04

CR56 PG36 1/1/04 12/1/05

CR56 PG16 8/1/06 9/1/10

Rentals Relation

Our Database in 3NF

PropNo PAddr Rent OwnerNo

PG4 6 Lawrence St, Elmont 700 CO40

PG16 5 Nova Dr, East Meadow 900 CO93

PG36 2 Manor Rd, Scarsdale 750 CO93

Property-for-Rent Relation

30

Our Database in 3NF

OwnerNo OName

CO40 Tina

Murphy

CO93 Tony Shaw

Owner Relation

SQL Data Definition and Data Types

• Terminology:

– Table, row, and column used for relational model

terms relation, tuple, and attribute

• CREATE statement

– Main SQL command for data definition

31

Schema and Catalog Concepts in SQL

• SQL schema - identified by a schema name

• Schema elements include tables and other

constructs

• Each statement in SQL ends with a semicolon

• CREATE SCHEMA statement

– CREATE SCHEMA Corvette;

The CREATE TABLE Command in SQL

• Specify a new relation

– Provide name

– Specify attributes and initial constraints

• Can optionally specify schema:

– CREATE TABLE CORVETTE.CORVETTES

...

or

– CREATE TABLE CORVETTES ...

32

Creating the Corvettes Table

mysql> create table Corvettes

-> (Vette_id int not null,

-> Body_style varchar(12) not null,

-> miles decimal(3, 1) not null,

-> year int not null,

-> state int not null);

Query OK, 0 rows affected (0.23 sec)

mysql> alter table Corvettes add primary

-> key(Vette_id);

Query OK, 0 rows affected (0.36 sec)

Records: 0 Duplicates: 0 Warnings: 0

Creating the Equipment and States Tables

mysql> create table Equipment

-> (Equip_id int not null,

-> Equip varchar(12) not null,

-> primary key(Equip_id));

Query OK, 0 rows affected (0.08 sec)

mysql> create table States

-> (State_id int not null,

-> State varchar(12) not null,

-> primary key(State_id));

Query OK, 0 rows affected (0.13 sec)

33

Creating the Corvettes_Equipment Table

mysql> create table Corvettes_Equipment

-> (Vette_id int not null,

-> Equip int not null,

-> primary key (Vette_id, Equip));

Query OK, 0 rows affected (0.16 sec)

mysql>

Load Data

mysql> load data local infile 'Equipment.txt' into

table Equipment;

Query OK, 6 rows affected (0.06 sec)

Records: 6 Deleted: 0 Skipped: 0 Warnings: 0

• The file must be located in the home directory of

mysql (which is in

C:\Program Files\MySQL\MySQL Server 5.5\bin

34

Populating the Corvettes Table

mysql> load data local infile 'Corvettes.txt' into

table Corvettes;

Query OK, 9 rows affected, 7 warnings (0.03 sec)

Records: 9 Deleted: 0 Skipped: 0 Warnings: 7

mysql> insert into Corvettes values (10,

'hatchback', 50.0, 1995, 7);

Query OK, 1 row affected (0.09 sec)

Populating the States and

Corvettes_Equipment Tables

mysql> load data local infile 'States.txt' into

table States;

Query OK, 10 rows affected (0.09 sec)

Records: 10 Deleted: 0 Skipped: 0 Warnings: 0

mysql> load data local infile

'Corvettes_Equipment.txt' into table Corvettes_Equ

ipment;

Query OK, 23 rows affected (0.09 sec)

Records: 23 Deleted: 0 Skipped: 0 Warnings: 0

35

The SELECT SQL Command

• Syntax:
SELECT ColumnNames FROM TableNames [WHERE

condition];

SELECT – Some Examples

mysql> select * from corvettes;

+----------+-------------+-------+------+-------+

| Vette_id | Body_style | miles | year | state |

+----------+-------------+-------+------+-------+

| 1 | coupe | 18.0 | 1997 | 4 |

| 2 | hatchback | 58.0 | 1996 | 7 |

| 3 | convertible | 13.5 | 2001 | 1 |

| … … | | | | |

| 7 | coupe | 55.0 | 1979 | 10 |

| 8 | convertible | 17.0 | 1999 | 5 |

| 9 | hardtop | 17.0 | 2000 | 5 |

| 10 | hatchback | 50.0 | 1995 | 7 |

+----------+-------------+-------+------+-------+

10 rows in set (0.00 sec)

36

mysql> select body_style from Corvettes;

+-------------+

| body_style |

+-------------+

| coupe |

| hatchback |

| convertible |

| hatchback |

| hatchback |

| hardtop |

| coupe |

| convertible |

| hardtop |

| hatchback |

+-------------+

10 rows in set (0.00 sec)

• mysql> select body_style from Corvettes where year

> 1994;

• +-------------+

• | body_style |

• +-------------+

• | coupe |

• | hatchback |

• | convertible |

• | hatchback |

• | hardtop |

• | convertible |

• | hardtop |

• | hatchback |

• +-------------+

• 8 rows in set (0.00 sec)

37

Joining – An Example

mysql> select Corvettes.Vette_id,

-> Corvettes.Body_Style, Corvettes.Miles,

-> Corvettes.Year, Corvettes.State,

-> Equipment.Equip

-> from Corvettes, Equipment,

-> Corvettes_Equipment

-> where Corvettes.Vette_id =

-> Corvettes_Equipment.Vette_id

-> and corvettes_equipment.Equip =

-> Equipment.Equip_id

-> and Equipment.Equip = 'CD';

+----------+-------------+-------+------+-------+-------+

| Vette_id | Body_Style | Miles | Year | State | Equip |

+----------+-------------+-------+------+-------+-------+

| 1 | coupe | 18.0 | 1997 | 4 | CD |

| 2 | hatchback | 58.0 | 1996 | 7 | CD |

| 8 | convertible | 17.0 | 1999 | 5 | CD |

| 9 | hardtop | 0.0 | 17 | 2000 | CD |

| 10 | hatchback | 50.0 | 1995 | 7 | CD |

+----------+-------------+-------+------+-------+-------+

5 rows in set (0.00 sec)

38

DELETE SQL Command

• Syntax:

DELETE FROM TableName

WHERE PrimaryKey = Value;

• Example
mysql> delete from corvettes where vette_id = 27;

Query OK, 0 rows affected (0.00 sec)

DROP SQL Command

• Syntax:
Drop (TABLE | DATABASE) [IF EXISTS] Name;

• Example
mysql> drop table if exists transmission;

Query OK, 0 rows affected, 1 warning (0.00

sec)

39

Normalization

• We want our database to be a clear

representation of the data, its relationships and

constraints

• We can identify relationship using a technique

called normalization.

• Normalization is a bottom-up technique where

we examine the relationship between attributes

and reconfigure the tables accordingly.

Our Example

• The DreamHome Customer Rental Details

form holds details about property rented by a

given customer.

– To simplify things, we will assume that a renter

rents a given property once and only one property

at a time.

40

Our Original Table

CustNo Cname PropNo PAddr RntSt RntFnsh Rent OwnerNo OName

CR76 John

Kay

PG4

PG16

6 Lawrence

St, Elmont

5 Nova Dr,

East Meadow

7/1/10

9/1/06

8/31/06

9/1/08

700

900

CO40

CO93

Tina

Murphy

Tony

Shaw

CR56 Aline

Stewart

PG4

PG36

PG16

6 Lawrence

St, Elmont

2 Manor Rd

Scarsdale

5 Nova Dr,

East Meadow

9/1/02

8/1/04

8/1/06

6/10/04

12/1/05

9/1/10

700

750

900

CO40

CO93

CO93

Tina

Murphy

Tony

Shaw

Tony

Shaw

First Normal Form (1NF)

• Unnormalized – A table with one or more

repeating groups.

• First Normal Form (1NF) – A relation in

which the intersection of each row and column

contains one and only one value

41

Repeating Groups

• Any collection of attributes that repeat

provides a complication for a database, both in

terms of storing it (how many repeating groups

would you allow for) as well as querying them.

• It is necessary to recognize them so we can

eliminate them.

• E.g.,
Repeating Group = (Property_no, Paddress, RentStart, RentFinish, Rent,

Owner_No, OName)

Our Table in 1NF

CustNo CName PropNo PAddr RntSt RntFnsh Rent OwnerN

o

OName

CR76 John

Kay

PG4 6 Lawrence

St, Elmont

7/1/10 8/31/06 700 CO40 Tina

Murphy

CR76 John

Kay

PG16 5 Nova Dr,

East Meadow

9/1/06 9/1/08 900 CO93 Tony

Shaw

CR56 Aline

Stewart

PG4 6 Lawrence

St, Elmont

9/1/02 6/10/04 700 CO40 Tina

Murphy

CR56 Aline

Stewart

PG36 2 Manor Rd

Scarsdale

1/1/04 12/1/05 750 CO93 Tony

Shaw

CR56 Aline

Stewart

PG16 5 Nova Dr,

East Meadow

8/1/06 9/1/08 900 CO93 Tony

Shaw

42

Candidate Keys

• A candidate key for a given table is

– unique (only one row has that value or

combination of values)

– irreducible (there is no subset of the candidate that

is unique).

• Our candidate keys are:

– (Customer_No, Property_No)

– (Customer_No, RentStart)

– (Property_No, RentStart)

The Customer_Rental Relation

Customer_Rental(Customer_No, Property_No,

Cname, Paddress, RentStart, RentFinish, Rent,

Owner_No, Oname)

Primary Key Fields

43

Functional Dependency

• If A and B are attributes of Relation R, B is

functionally dependent on A (A→B) if each value of

A is associated with one and only one value of B.

• B is fully functionally dependent on A if B is

functional dependent on A and not on a proper subset

of A.

• B is partially functionally dependent on A if there is

some attribute that can be removed from A and the

dependence still holds.

Listing All The Functional Dependencies

1. Cust_No, Prop_no → RentStart, RentFinish (Primary Key)

2. CustNo → Cname (Partial Dependency)

3. Prop_no → Paddress, Rent, Owner_No, Oname (Partial

Dependency)

4. Owner_No → Oname (Transitive Dependency)

5. CustNo, RentStart → PropNo, Paddress, RentFinish, Rent,

Owner_No, Oname (Candidate Key)

6. Prop_No, RentStart → CustNo, Cname, RentFinish

(Candidate Key)

44

Functional Dependencies in Graphical Form

CustNo PropNo CName PAddr
Rent

Start

Rent

Finish
Rent

Owner
No

OName

(Primary Key)

(Partial Dependency)

(Transitive Dependency)

(Partial Dependency)

(Candidate Key)

(Candidate Key)

Functional Dependency in Our Table

• We have three relations with the following functional

dependencies:

– CustNo, PropNo → RentStart, RentFinish

– CustNo → CustName

– PropNo → Paddress, Rent, OwnerName, Oname

• Therefore, we have:

– Customer(CustNo, Cname)

– Rental(CustNo, PropNo, RentStart, RentFinish)

– Property_Owner(PropNo, Paddress, Rent, OwnerNo,

OName)

45

Second Normal Form (2NF)

• A relation is in 2NF if it is in 1NF and every

non-primary key attribute is fully functionally

dependent on the primary key

Our Database in 2NF

CustNo CName

CR76 John Kay

CR56 Aline Stewart

Customer Relation

46

Our Database in 2NF

CustNo PropNo RentStart RentFinish

CR76 PG4 7/1/10 8/31/06

CR76 PG16 9/1/06 9/1/08

CR56 PG4 9/1/02 6/10/04

CR56 PG36 1/1/04 12/1/05

CR56 PG16 8/1/06 9/1/10

Rentals Relation

Our Database in 2NF

PropNo PAddr Rent OwnerNo OName

PG4 6 Lawrence St, Elmont 700 CO40 Tina

Murphy

PG16 5 Nova Dr, East

Meadow

900 CO93 Tony Shaw

PG4 6 Lawrence St, Elmont 700 CO40 Tina

Murphy

PG36 2 Manor Rd

Scarsdale

750 CO93 Tony Shaw

PG16 5 Nova Dr, East

Meadow

900 CO93 Tony Shaw

Property-Owner Relation

47

Transitive Dependency

• If A, B, and C are attributes of a relation R

such that if A→B and B→C, then C is

transitively dependent on A via B.

Third Normal Form

• A relation is in 3NF is if it is 2NF and there are

no non-primary-key attributes that are

transitively dependent on the primary key.

48

Functional Dependencies in 2NF

• Customer

– CustNo → Cname

• Rental

– CustNo, PropNo → RentStart, RentFinish

– PropNo, RentStart → CustNo, RentFinish

• PropertyOwner

– PropNo → Paddr, Rent, OwnerNo, OName

– OwnerNo → Oname (Oname is not f.d. on

PropNo)

Our 3NF Relations

We have 4 relations:

• Customer(CustNo, Cname)

• Rental(CustNo, PropNo, RentStart,

RentFinish)

• Property_For_Rent(PropNo, Paddress, Rent,

OwnerNo)

• Owner(OwnerNo, OName)

49

Our Database in 3NF

CustNo CName

CR76 John Kay

CR56 Aline Stewart

Customer Relation

Our Database in 3NF

CustNo PropNo RentStart RentFinish

CR76 PG4 7/1/10 8/31/06

CR76 PG16 9/1/06 9/1/08

CR56 PG4 9/1/02 6/10/04

CR56 PG36 1/1/04 12/1/05

CR56 PG16 8/1/06 9/1/10

Rentals Relation

50

Our Database in 3NF

PropNo PAddr Rent OwnerNo

PG4 6 Lawrence St, Elmont 700 CO40

PG16 5 Nova Dr, East Meadow 900 CO93

PG36 2 Manor Rd, Scarsdale 750 CO93

Property-for-Rent Relation

Our Database in 3NF

OwnerNo OName

CO40 Tina

Murphy

CO93 Tony Shaw

Owner Relation

51

carsdata.html

<!-- carsdata.html

Uses a form to collect a query against the cars

database.

Calls the PHP script access_cars.php to perform

the given query and display the results

-->

<!DOCTYPE html>

<html lang="en">

<head>

<title> Access to the cars database </title>

<meta charset = "utf-8" />

</head>

</html>

<body>

<p>

Please enter your query:

<form action = "access_cars.php“

method = "post">

<textarea rows = "2" cols = "80“

name = "query">

</textarea>

<input type = "reset" value = "Reset" />

<input type = "submit"

value = "Submit request" />

</form>

</p>

</body>

</html>

52

access_cars.php

<!-- access_cars.php

A PHP script to access the cars database

through MySQL

-->

<!DOCTYPE html>

<html lang = "en">

<head>

<title>

Access the cars database with MySQL

</title>

<meta charset = "utf-8" />

</head>

<body>

<?php

// Connect to MySQL

$db = mysqli_connect("localhost",

"root", "", "cars");

if (mysqli_connect_errno()) {

print "Connect failed:: "

. mysqli_connect_error();

exit();

}

// Get the query and clean it up (delete leading

// and trailing whitespace and remove backslashes

// from magic_quotes_gpc)

53

$query = $_POST['query'];

trim($query);

$query = stripslashes($query);

// Display the query, after fixing html

// characters

$query_html = htmlspecialchars($query);

print "<p> The query is: " . $query_html

. "</p>";

// Execute the query

$result - mysqli_query($db, $query);

if (!$result) {

print "Error - the query could not be

executed" .

mysqli_error();

exit;

}

// Display the reulst in a table

print "<table> <caption> <h2> Query results

</h2> </caption>";

print "<tr align = 'center'>";

// Get the number of rows in the result

$num_rows = mysqli_num_rows($result);

54

// If there are rows in the result, put them in an

// HTML table

if ($num_rows > 0) {

$row = mysqli_fetch_assoc($result);

$num_fields = mysqli_num_fields($result);

}

// Produce the column labels

$keys = array_keys($rows);

for ($index = 0; $index , $num_fields;

$index++)

print ("<th>" . $keys[$index] . "</th>“);

print ("</tr>");

// Output the values of the fields in the rows

for ($row_num = 0; $row_num < $num_rows;

$row_num++) {

print "<tr>";

$row = mysqli_fetch_assoc($result);

}

}

else {

print "There were no such rows in the table
";

}

print "</table>";

?>

</body>

</html>

