
1

Advanced Web Design

Lecture 7 – Introduction to PHP

Origins and Uses of PHP

• PHP was developed by Rasmus Lerdorf of the
Apache Group to provide Lerdorf a way to track
visitors to his personal web site.

• Lerdorf originally named it Personal Home Page but
it currently is known as PHP Hypertext Preprocessor

• Within two years, PHP outgrew Lerdorf's ability to
manage its development. It remains open source.

• PHP is a server-side scripting language with good
tools for form handling and database access.

2

Overview of PHP

• PHP is a server-side XHTML-embedded
scripting language that is an alternative to MS
Active Server Pages and Java Server Pages.

• PHP is analogous to JavaScript in that it is
embedded in an XHTML document and its
interpreter is called when a browser encounters
a PHP script. It is indicated by the filename
extensions .php, .php3, and .phtml.

PHP's Modes of Operation

• PHP has two modes of operations:

– copy mode – when it encounters XHTML, it

simply copies it into the output file.

– interpret mode – when it encounters a PHP script,

it interprets it and places its output in the output

file.

• PHP is usually purely interpreted, although

there are newer implementations that use some

precompilation.

3

PHP and Data Types

• PHP uses dynamic typing; variables do not

have an intrinsic type. It is set every time they

take on a new value with the value's data type.

• PHP's arrays have characteristics of both

indexed arrays and associative arrays.

• PHP also has a large library of functions,

making it a flexible and powerful language for

server-side web programming.

General Syntactic Characteristics

• PHP scripts can be contained within the

(X)HTML document or can be in a separate

file and referenced by an (X)HMTL document.

– PHP code is embedded in an (X)HTML document
between <?php and ?> tag delimiters.

– PHP code appearing in a separate file can be

referenced by writing

<?php include("table2.inc"); ?>

4

PHP, Variables and Reserved Words

• ALL PHP variables begin with $, followed by a
underscore or letter and then more underscores,
letters or digits. PHP variable names are case-
sensitive.

• PHP reserved words are NOT case-sensitive.

• PHP comments can begin with # or // and run until
the end of the line or be enclosed in /* and */

• PHP statements are terminated with a semi-colon.

• Compound statements are enclosed in braces but
generally cannot be used to define locally scoped
variables other than for another entire function.

PHP's Reserved Words

and else global require virtual

break elseif if return xor

case extends include static while

class false list switch

continue for new this

default foreach not true

do function or var

5

Primitives, Operations, and

Expressions

• PHP has four scalar data types: Boolean,

integer, double and string.

• PHP has two compound data types: array and

object.

• PHP has two special types: resource and

NULL.

Variables

• Variables are not declared in PHP; they have a value

and type of NULL until they are assigned a value, in

which case, they take the type of the value.

• When an unbounded variable (without an assigned

value) is used, its value of NULL is coerced to a 0 or

an empty string, depending on its context.

• IsSet($myVariable) can be used to see if

$myVariable is unbounded (false) or assigned a

value (true).

6

Numeric Types

• PHP has one integer type, which corresponds
to C's long integer. It is usually 32 bits.

• PHP's double type corresponds to C's double

type.

– It can have a decimal point, exponent or both.

– These are valid doubles in PHP:

.345 345. 3.45E2 .34e-2

String Type

• PHP characters are single bytes (UNICODE is not
supported). A single character is a string of length 1.

• String literals can be enclosed in single quotes, in
which case everything inside them is taken literally,
including escape sequences such as \n.

• To have variable values and escape sequences used in
a string, enclose them in double quotes.

• Example, if $sum = 10.2
– 'The sum is $sum' is outputted exactly as written.

– "The sum is $sum" is ouputted as 'The sum is 10.2'

7

Boolean Type

• Boolean values are either TRUE or FALSE, both

of which are case insensitive.

• Integer values of 0 are interpreted as false;

others as true.

• Strings that are empty or contain "0" are false;

others are true.

• Doubles that are exactly 0.0 are false; others

are true.

Arithmetic Operators And Expressions

• PHP uses the usual operators (+, -, *, /, %, ++, --)

• If both operands are integer, +, - and * will produce

integer values. / will only produce an integer value if

the quotient is integer; otherwise it is coerced to

double.

• If either operand is double, the result is double.

• % expects integer operands and will coerce to integer

if necessary.

8

Predefined Functions in PHP

Function Parameter Type Returns

floor Double Largest integer ≤ parameter

ceil Double Smallest integer ≥ parameter

round Double Nearest integer

srand Integer Initializes a random number generator

with the parameter

rand Two numbers A pseudorandom number

firstParam < rand < secondParam

abs Number Absolute value of the parameter

min One or more numbers Smallest

max One or more numbers Largest

String Operators

• The only string operator is . (concatenation)

• Strings can be treated like arrays of characters,
e.g., $str = "apple" means that $str{3} is
"l"

• There are many string functions available:

• Example
$str = "Apples are good";

$sub = substr($str, 7, 1);

$sub has the value 'a'

9

Commonly Used PHP String Functions

Function Parameter

Type

Returns

strlen A string The # of characters in the string

strcmp 2 strings =0 if they're identical, <0 if string 1

precedes string 2; >0 if string 1 follows

string 2

strpos 2 strings The character position in the string 1 of the

first character in string 2 if string2 is

contained within string1; false if not

strstr A string and an

integer

A substring of the string starting from the

integer parameter. If a third parameter (an

integer is specified), it specifies the

substring's length.

Commonly Used PHP String Functions

(continued)

Function Parameter

Type

Returns

chop A string The parameter with all trailing white space

removed

trim A string The parameter with all white space removed

from both ends.

ltrim A string The parameter with white space removed

from the beginning

strtolower A string The parameter with all uppercase letters

converted to lower case

strtoupper A string The parameter with all lowercase letters

converted to upper case

10

Implicit Scalar Type Conversions

• Type conversions in PHP can be implicit (coercions),

where the context of the expressions determines what

data type is expected or required.

– There are also numeric-string conversions, where a

string with e or a period is converted to double and

those without it are converted to integer. If there is

not sign or digit, it fails and uses 0.

– Converting double to integer results in truncation.

Explicit Scalar Type Conversions

• Explicit type conversion can be done in 3 ways:

1. Casting involves putting the type name in parentheses:
$sum = 4.777;

(int) $sum produces 4

2. An explicit conversion can be done using the functions
intval, doubleval or strval

intval($sum) produces 4

3. The settype function can convert the first parameter to the

type indicated by the second parameter

settype($sum, "integer"); produces 4

11

gettype

• A program can determine the type of a variable

in two ways:

– using the gettype function which returns the type
as a string (which can also be "unknown")

– using one of the functions is_int, is_integer,

is_long (which test for integers), is_double,

is_real and is_float (which test for doubles),

is_bool and is_string.

Assignment Operators

• PHP includes the usual C-style assignment
operators such as += and -=.

12

Output

• Any output from a PHP script becomes part of the document
that the PHP processor is building. Output must be in the form
of an XHTML document.

• The print function is the easiest way to produce unformatted
output:

print "Apples are red
";

print "Kumquats aren't
";

• The print function expects string but it will take other
parameters:
print(47);

• Double-quoted strings have their variable names replaced by
their values:
print "The result is $result
";

printf

• PHP borrows the printf function from C, whose form
is

printf(controlString, param1,

param2, …);

• The control string is a template that includes
specifiers as to how the other parameters will be
printed:
%10s a character field of 10 characters

%6d an integer field of 6 character

%5.2f a float or double field of 5 characters and 2
decimal place

13

printf: An Example

$day = "Tuesday";

$high = 79;

printf("The high on %7s was %3d",

$day, $high);

date

• The date function can return the date is text format,

based on its parameters:

– l requests the day of the week

– F requests the month

– j requests the day of the month

– S gives us the appropriate suffix after the day of the month

– Y gives the year in 4-digit format (y gives the year in 2-

digit format)

14

today.php

<!?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/XHTML11/DTD/xhtml11.dtd">

<!-- today.php - A trivial example to illustrate a
PHP document -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head> <title> today.php </title>

</head>

<body>

<p>This is a test</p>

<p>

<?php

print

"Welcome to my home page

";

print "Today is: ";

print date("l, F jS Y");

print "
";

?>

</p>

</body>

</html>

15

Control Statements

• The control structures in PHP are very similar

to C/C++/Java.

• The control expression (or condition) can be

any type and is coerced to Boolean.

• The control statements include:

– if and if-else - switch

– while - do..while

– for - foreach

Relational Operators

• PHP has 8 relational operators:

– The usual 6 (==, !=, >, >=, <, <=)

– === (which is true if both operands have the same

value and type)

– !== (which is the opposite of ===)

16

Comparisons and Types

• If the operands do not have the same type, one

is coerced into the type of the other.

– If one operand is a number and the other a string,

the string is coerced and then compared to the

other. If the string cannot be coerced, the number

is coerced and then the comparison is done.

– If both operands are strings and can be converted

to numbers, they are converted and then compared.
This can be avoided by using strcmp.

Boolean Operators

• There are 6 Boolean operators (in order of

precedence):
– !

– &&

– ||

– and

– or

– xor

17

if Statements

• The if statement in PHP is like that of C, although

there is also an elseif. An if statement can include

any number of elseif clauses. The condition can be

of any type but it is coerced to Boolean.

• Example
if ($day == “Saturday” || $day == “Sunday”)

$today = “weekend’;

else {

$today = “weekday”;

$work = true;

}

if Statements – An Example

if ($num > 0)

$pos_count++;

elseif ($num < 0)

$neg_count++;

else {

$zero_count++;

print “Another zero!
”;

}

18

switch Statements

• PHP’s switch statement is the same as in JavaScript.

• The control expression and case expressions can be

integer, double or string, with the case expressions

coerced into the type of the control expression.

• Break is necessary to avoid falling through to the next

case.

switch Statements – An Example

switch ($bordersize) {

case "0": print "<table>"; break;

case "1": print "<table border = "1">";

break;

case "4": print "<table border = "4">”;

break;

case "8": print "<table border = "8">”;

break;

default: print "Error – invalid value:",

"$bordersize
”;

}

19

Loop Statements

• PHP has while, for and do-while loops that
works exactly like those in JavaScript, as well
as a foreach statement.

• Example of while
$fact = 1;

$count = 1

while ($count < $n) {

$count++;

$fact *= $count;

}

do-while and for in PHP

$count = 1;

$sum = 0;

do {

$sum += $count;

$count++;

} while ($count <= 100);

for ($count = 1, $fact = 1; $count < $n){

$count++;

$fact *= $count;

}

20

Example: powers.php

<!DOCTYPE html PUBLIC "-//w3c//DTD/XHTML 1.1 //EN"

"http://www.w3/org/TR/xhtml11/DTD/xhtml11.dtd">

<!-- powers.php

An example to illustrate loops and arithmetic

-->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head> <title> powers.php </title>

</head>

<body>

<table border = "border">

<caption> Powers table </caption>

<tr>

<th> Number </th>

<th> Square Root </th>

<th> Square </th>

<th> Cube </th>

<th> Quad </th>

</tr>

<?php

for ($number = 1; $number <= 10; $number++) {

$root = sqrt($number);

$square = pow($number, 2);

$cube = pow($number, 3);

$quad = pow($number, 4);

print

("<tr align = 'center'> <td> $number </td>");

print

("<td> $root </td> <td> $square </td>");

print

("<td> $cube </td> <td> $quad </td> </tr>");

}

?>

</table>

</body>

21

Arrays

• Arrays in PHP are a cross between standard indexed

arrays appearing in both conventional programming

languages and hashes found in Perl, Python and

Ruby.

• Each element in the array consists of a key and value.

– If the array's logical structure is like indexed arrays, the

keys can happen to be simply non-negative integers in

ascending order.

– If the array's logical structure is like hashes, the keys are

string and their order is based on a system-designed

hashing function.

Array Creation By Assignment

• Arrays in PHP can be created by simply

assigning a value to an array element

– Example
$mylist[0] = 17; # if $mylist was a scalar

before, it's not an array

$yourlist[] = 5; # if the array is previously

undefined this is the 0th

element

$yourlist[1] = "Today is my birthday!";

$yourlist[] = 42 # stored in $mylist[2];

22

Array Creation By array Construct

• Arrays in PHP can be created by using the array()

construct
$list = array(17, 24, 45, 91); # indexed array

beginning at index 0

$list = array(1 =>17, 2 => 24, 3 => 45, 4 =>91);

indexed beginning at index 1

$list = array(); # empty array

$list = array("Joe" => 42, "Mary" => 42,

"Bif" => 17); # hashed array

$list = array("make" => "Cessna", "model" => C210,

"year" => 1960, 3 => "sold"); #mixed array

Accessing Array Elements

• Individual array elements can be accessed by
subscripting which is the key.

– Brackets are used for both a numeric and a string
key.

$ages['Mary'] = 29;

• Multiple elements of an array can be assigned
to different variables using the list construct:
$trees = array("oak", "pine", "binary");

list($hardwood, $softwood,
$data_structure) = trees;

23

Functions for Dealing with Arrays

• An entire array or a single element can be deleted
using unset
$list = array(2, 4, 6, 8);

unset ($list[2]); # the list now has 3

members

• The keys and the values can be separately extracted
from the array using the functions array_keys and
array_values

$highs = array ("Mon" => 74, "Tue" => 70,

"Wed" => 67, "Thu" => 62, "Fri" => 65);

$days = array_keys($highs);

$temps = array_values($highs);

Dealing With Arrays:
array_key_exists

• The existence of an element in an array with a

specific key can be determined using

array_key_exists, which returns a Boolean:
$highs = array ("Mon" => 74, "Tue" => 70,

"Wed" => 67, "Thu" => 62, "Fri" => 65);

if (array_key_exists("Tue", $highs)) {

$tues_high = $high("Tue");

print

"The high on Tuesday was $tues_high
";

}

24

is_array, in_array, sizeof

• is_array returns true if its parameter is an
array.

• in_array gets 2 parameters: an expression
and an array. If the expression is a value in the
array, it returns true.

• sizeof returns the number of elements in an
array:
$list = array("Bob", "Fred", "Alan",
"Bozo");

$len = sizeof($list); # $len = 4

implode and explode

• Strings can be converted to arrays and vice versa using
explode and implode.

• explode allows a string to be separated into different array
elements.
$str = "April in Paris, Texas is nice";

$words = explode(" ", $str);

words contains "April", "in", "Paris", "Texas",
"is", "nice"

• implode allows the elements of an array to be joined into a
string.
$words = ("Are", "you", "lonesome", "tonight);

$str = implode(" ", $words);

The string is "Are you lonesome tonight"

25

Logical Internal Structure of Arrays

Key-Based

Access Functions
Hash

Function

Key Value Next

Key Value Next

Key Value Next

Current
Sequential

Access Functions

Sequential Access to Array Elements

• Every array has an internal pointer that references one element
of the array, which is initially pointing to the first element. It
can accessed using the current function.
$cities = array("Hoboken", "Chicago", "Moab",

"Atlantis");

$city = current($cities);

print("The first city is $city
";

produces The first city is Hoboken

• The next function moves the next pointer to the next element
in the array; if it is already pointing to the last element, it
returns false.
$city = current($cities);

print("$city
";

while($city = next($cities))

print("$city
");

26

Arrays and Loop Control

• each returns a 2-element array, consisting of the key

and "current" element's value.

– It only returns false if the current pointer has gone beyond

the end of the array.

– The keys of these values are "key" and "value"
$salaries = array("Mike" => 42500,

"Jerry" => 51250, "Fred" => 37900);

while ($employee = each ($salaries)) {

$name = $employee["key"];

$salary = $employee["value"];

print("The salary of $name is $salary
");

}

Arrays and Loop Control (continued)

• The function prev returns the value of the previous

element in the array.

• The function key returns the key of the current

element.

• array_push and array_pop allow the programmer to

implement a stack.
$num_items = array_push($list, $item1, $item2);

places them at the end

$item = array_pop($list); # false if empty

27

foreach

• foreach allows each element in the array to be processed.

• There are two forms:
foreach (array as scalar_var) loop body

foreach (array as key => value) loop body

• Example:
foreach ($list as $temp)

print ("$temp
");

• Example:
$lows = array("Mon" => 23, "Tue" => 18, "Wed" =>
27);

foreach ($lows as $day => $temp)

print

("The low temperature on $day was $temp
)";

Sorting Arrays

• sort sorts an array, replacing the keys with
numeric keys.

• asort sort arrays that correspond to Perl
hashes, preserving the key-value relationship.

• ksort sorts the array by key, not value ,
preserving the key-value relationship.

• rsort, arsort and krsort work like sort
asort and ksort repsectively, but sorting in
reverse order.

28

sorting.php

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11/dtd">

<!-- sorting.php - An example to illustrate several

of the sorting functions -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head> <title> Sorting </title>

</head>

<body>

<?php

$original = array("Fred" => 31, "Al" =>27,

"Gandalf" => "wizard",

"Betty" =>42, "Frodo" => "hobbit");

?>

<h4> Original Array </h4>

<?php

foreach ($original as $key => $value)

print ("[$key] => $value
");

$new = $original;

sort($new);

?>

<h4> Array sorted with sort </h4>

<?php

foreach ($new as $key => $value)

print ("[$key] => $value
");

$new = $original;

asort($new);

?>

29

<h4> Array sorted with asort </h4>

<?php

foreach ($new as $key => $value)

print ("[$key] => $value
");

$new = $original;

ksort($new);

?>

<h4> Array sorted with ksort </h4>

<?php

foreach ($new as $key => $value)

print ("[$key] => $value
");

?>

</body>

</html>

Functions

• The general form of a function is:
function name([parameters]) {

… …

}

• The parameters are optional.

• A function can be placed anywhere in the document.

• Function overloading is not allowed.

• Functions can be nested but it is not a good idea.

• A return statement is only necessary when the
function is returning a value.

30

General Characteristics of a Function

• The main program passes actual parameters; the

function receives formal parameters.

• The number of actual and formal parameters do not

have to match.

– Excess formal parameters are unbounded.

– Excess actual parameters are ignored.

• Parameters are passed by value. If the function needs

to return more than one variable, a reference to the

variable can be passed.

Example: max_abs

function max_abs($first, $second) {

$first = abs($first);

$second = abs($second);

if ($first >= 4second)

return $first;

else

return $second;

}

31

Example: set_max

function set_max(&$max, $first, $second){

if ($first >= 4second)

$max = $first;

else

$max = $second;

}

Scope of Variables

• Variables defined in a function are local and are

visible only within the function in which they’re

used.

• Local variables and variables outside the function

with the same name do not interfere with each other.

• If it is necessary to use a variable external to the

function within the function, it can be declared as

global within the function.

32

Example of Local Variables

function summer($list) {

$sum = 0;

foreach ($list as $value)

$sum += $value;

}

$sum = 10;

$nums = array(2, 4, 6, 8);

$ans = summer($nums);

print

"The sum of the values in \$num is :$ans
 ";

print “The value of \$sum is still: $sum
 ";

Example of Global Variables

$big_sum = 0;

… …

function summer($list) {

global $big_sum;

$sum = 0;

foreach($lsit as $value)

$sum += $value;

$big_sum += $sum;

return $sum;

}

…

$ans1 = summer ($list1);

$ans2 = summer ($list2);

print

"The sum of all array elements is: $big_sum
";

33

The Lifetime of Variables

• To preserve information from earlier function calls, PHP

provides static variables whose lifetime begins with the

script’s execution and ends with the script’s termination.

• Local variables can be specified as static if they re declared
using the reserved static.

function do_it($param) {

static $count = 0;

$count++;

print

"do_it has been called $count times
"

}

Pattern Matching

• PHP supports Perl-style pattern matching.

• This include preg_match:

if (if preg_match("/^PHP/", $str)

print("\$str begins with PHP
";

else

print

("\$str does not being with PHP
"

34

word_table.php

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1 //EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<!-- word_table.php

Uses a function to split a given string of

text into its constituent words. It also

determines the frequency of occurrence of

each word. The words are separated by

whitespace or punctuation, possibly followed

by whitespace.

The punctuation can be a period, a comma, a

semicolon, a colon, an exclamation point, or

a question mark.

-->

<html xmlns="http://www.w3.org/1999/xhtml">

<head> <title> word_table.php </title>

</head>

<body>

<?php

// Function splitter

// Parameter: a string of text containing

// words and punctuation

// Returns: an array in which the unique words

// of the string are the keys and their

// frequencies are the values.

function splitter($str) {

// Create the empty word frequency array

$freq = array();

// split the paramneter string into words

$words = preg_split

("/[\.,;:!\?\s]\s*/", $str);

// Loop to count the words (either increment

// or initialize to 1)

35

foreach ($words as $word) {

$keys = array_keys($freq);

if (in_array($word, $keys))

$freq[$word]++;

else

$freq[$word] = 1;

}

return $freq;

}

// Main test driver

$str = "apples are good for you, or don't you

like apples? or maybe you like oranges

better than apples";

print $str;

//Call splitter

$tbl = splitter($str);

// Display the word and their frequencies

print "
 Word Frequency

";

$sorted_keys = array_keys($tbl);

sort($sorted_keys);

foreach ($sorted_keys as $word)

print "$word $tbl[$word]
";

?>

</body>

</html>

36

Form Handling

• After filling out a form and clicking the

Submit button, the contents of the form are

encoded and transmitted to the server.

• When PHP is used to process the data, it

implicitly decodes it.

• Although the PHP script that handles the form

data can be in the same HTML document, it

may be clearer to use a separate document.

Form Data and PHP

• PHP can be configured so that form data

values are directly available as implicit whose

names match the names of the corresponding

form elements. But this is a potential security

risk.

• The recommended method is to use the
implicit $_POST and $_GET for form values.

37

$_POST and $_GET

• $_POST and $_GET are arrays that have keys

matching the form element names and values

that were input by the client.

• E.g., if the form has a text box named

phone and the form method is POST, the

value of that element is available to the

PHP script as
$_POST["phone"]

popcorn3.html

<!DOCTYPE html>

<!-- popcorn3.html - This describes the popcorn

sales form -->

<html lang = "en">

<head>

<title> Popcorn Sales - for PHP handling

</title>

<meta charset = "utf-8" />

<style type = "text/css">

td, th, table {border: thin solid black;}

</style>

</head>

38

<body>

<form action = "http://localhost/popcorn3.php"

method = "post">

<h2> Welcome to Millenium Gymnastics Booster

Club Popcorn Sales </h2>

<table>

<!-- Text widgets for the customer's name and

address -->

<tr>

<td> Buyer's Name: </td>

<td> <input type = "text" name = "name"

size = "30" /> </td>

</tr>

<tr>

<td> Street Address: </td>

<td> <input type = "text" name = "street"

size = "30" /> </td>

</tr>

<tr>

<td> City, State, Zip </td>

<td> <input type = "text" name = "city"

size = "30" /> </td>

</tr>

</table>

<p />

39

<table>

<!-- First, the column headings -->

<tr>

<th> Product </th>

<th> Price </th>

<th> Quantity </th>

</tr>

<!-- Now, the table data entries -->

<tr>

<td> Unpopped Popcorn (1 lb.) </td>

<td> $3.00 </td>

<td>

<input type = "text" name = "unpop"

size = "3" /> </td>

</tr>

<tr>

<td> Caramel Popcorn (2 lb. cannister)

</td>

<td> $3.50 </td>

<td>

<input type = "text" name = "caramel"

size = "3" /> </td>

</tr>

<tr>

<td> Caramel Nut Popcorn (2 lb. cannister)

</td>

<td> $4.50 </td>

<td>

<input type = "text" name = "caramelnut"

size = "3" /> </td>

</tr>

40

<tr>

<td> Toffey Nut Popcorn (2 lb. cannister)

</td>

<td> $5.00 </td>

<td>

<input type = "text" name = "toffeynut"

size = "3" /> </td>

</tr>

</table>

<p />

<!-- The radio buttons for the payment method -->

<h3> Payment Method </h3>

<p>

<input type = "radio" name = "payment“

value = "visa" checked = "checked" />

Visa

<input type = "radio" name = "payment"

value = "mc" />

Master Card

<input type = "radio" name = "payment"

value = "discover" />

Discover

<input type = "radio" name = "payment"

value = "check" />

Check

<!-- the submit and reset buttons -->

<input type = "submit"

value = "Submit Order" />

<input type = "reset"

value = "Clear Order Form" />

41

</p>

</form>

</body>

</html>

Cookies

• A session is the time span during which a browser

interacts with a particular server, beginning when a

browser connects to the server and ends when the

browser is terminated or the server terminates the

session because of inactivity.

• HTTP does not have any method for storing

information about a given session that a subsequent

session might use.

– Shopping need to be able identify their specific clients

– Personalization – creating profiles of visitors to web sites.

42

Introduction to Cookies

• A cookie is a small object of information that

includes a name and a textual value. It is

created by software system on the server.

• Cookies are assigned a lifetime; at the end of

its lifetime, they are deleted from the

browser’s host machine.

• Cookies raise concerns about the client’s

privacy; browsers typically allow the user to

delete cookies.

PHP Support for Cookies

• A cookie is set using

setcookie(cookieName[,newValue]

[,expirationTime]);

• If a new value isn’t specified, setcookie undefines

the cookie.

• The default value for expiration time is 0; if specified,

it’s given as the seconds since January 1, 1970.

• Example

setcookie("voted", "true", time()+86400);

43

Session Tracking

• Sometimes information about a session is

needed only during the session.

• Rather than using cookies, session tracking

uses a single session array to store information

about the client’s previous requests during the

session.

• In PHP, a session ID is an internal value that

identifies the session.

session_start()

• The first call to session_start() makes

PHP aware that the script is interested in

session tracking.

• During subsequent call, the function retrieves

the $_SESSION array, which stores any

session variables and their values that wer

registered in previously executed scripts

during that session.

44

Session Tracking – A Example

session_start();

if (!IsSet($_SESSION["page_number"]))

$_SESSION["page_number"] = 1;

$page_num = $_SESSION["page_number"];

print("You have now visited $page_num pages
 ");

$_SESSION["page_num"]++;

