
1

Web Programming

Lecture 6 – Introduction to XML

Meta-markup Languages

• A markup language allows the user to identify

individual elements of a document, e.g., what

is a paragraph, a heading, or an unordered list.

• Used in combination with a style sheets, data

can be properly presented on a web page, a

slide show, or any other method that is

appropriate for the data.

2

Meta-markup Languages

• A meta-markup language is a little different; it

doesn't specify a document – it specifies a

language.

• SGML (Standard Generalized Markup

Language) and XML (eXtensible Markup

Language) are examples of meta-markup

languages.

SGML

• SGML was based on GML (Generalized Markup

Language), which was developed at IBM in the

1960s. SGML was developed in 1974.

• SGML was intended to allow for the sharing of

machine-readable documents.

• While it was used in the printing and publishing

industry, its complexity kept it from wider use.

• SGML was used as the basis for HTML.

3

XML

• HTML describes the layout of information but
conveys no information about its meaning. This
limits the ability to retrieve information from an
HTML document automatically.

• One solution to get around HTML's limitation is for
groups of users to define and use their own set of tags
and attribute and use a meta-markup language to
implement them.

• XML is a simpler language than SGML and therefore
more useful.

Using XML

• XML is not a replacement for XHTML. It is

intended to provide a way to label data in a

way that can be analyzed and manipulated

automatically.

• XML is normally used together with a style

sheet and an appropriate processor to produce

a suitable XHTML document based on the

XML file and the style sheet.

4

Syntax of XML

• XML has two levels of syntax:

– The general low-level syntax within the XML doucment.

– The higher-level syntax specified by DTD (Document Type

Definitions) or XML schemas.

• XML documents can contain:

– data elements of the document

– markup declarations (instructions to the XML parser)

– processing instructions (instructions for an application

process that will process the data).

Elements of XML

• All XML documents begin with an XML
declaration, which identifies the document as
XML, and provides the version number of the
XML standard being used and the encoding
standard:

<?xml version = "1.0" encoding = "utf-8"?>

• Comments in XML are the same as in
XHTML:

<!– This is a comment -->

5

Names in XML

• XML names are used to identify elements and

attributes.

– XML names must begin with a letter or an

underscore and can contain letter, underscores,

digits, hyphens and periods.

– XML names are case sensitive; e.g., Body, body

and BODY are three different names in XML.

– There are no limits to the length of XML names.

Basic Syntax Rules

• Every XML documents defines a root element
and that root element's tag must appear on the
first line of XML code.

• All other elements must be nested within that
element.

• For a XHTML document, the root tag is html.

• Every XML element must have a closing tag:

– <myTag> … </myTag>

– <myTag />

6

Sample XML Document

<?xml version = "1.0" encoding = "utf-8"?>

<ad>

<year> 1960 </year>

<make> Cessna <make>

<model> Centurian </model>

<color> Yellow with white trim </color>

<location>

<city> Gulfport </city>

<state> Mississippi </state>

</location>

</ad>

Another Sample XML Document

<?xml version = "1.0" encoding = "utf-8"?>

<bookstore>

<book category="CHILDREN">

<title>Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category="WEB">

<title>Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

</bookstore>

7

XML Attributes

• In XML, attributes can be used to provide
additional information about elements in an
XML document.

• Example:
<file type = "gif"> computer.gif </file>

• Attributes must be enclosed in quotation marks
(single or double)

<file type = 'gif'> computer.gif </file>

is also valid.

Attributes Or Nested Tags

• Is it better to add an additional attribute to an

element or to define a nested element?

• Sometimes there is no choice – an image can

only be an attribute (XML only handles text

data).

• Nested tags can be added to any existing tag to

describe its growing size and complexity –

attributes give no information about this.

8

A Tag With One Attribute

<!-- A tag with one attribute -->

<patient name = "Maggie Dee Magpie ">

.... ….

</patient>

A Tag With One Nested Tag

<!-- A tag with one nested tag -->

<patient>

<name> Maggie Dee Magpie

</name>

.... ….

</patient>

9

An Extra Level Of Nested Tags

<!-- A tag with one nested tag, which
contains three nexted tags -->

<patient>

<name>

<first> Maggie </first>

<middle> Dee </middle>

<last> Magpie </last>

</name>

.... ….

</patient>

XML and Auxiliary Files

• An XML document often uses two auxiliary

files:

– One file specifies its tag set and structural syntactic

rules. This can be either a DTD or an XML

schema.

– One file contains a style sheet to describe how the

document’s content is to be printed and/or

displayed. This can be either a Cascading Style

Sheet or an XSLT Style Sheet.

10

XML Document Structure

• An XML document consists of one or more

entities that are logically related sets of data.

• The document entity describes the document

as a whole and is usually subdivided into other

entities.

• These other entities may (or may not) be

physically located in the same file.

• Entity names can be any length

Entity Names

• Entity names can be any length.

• They must begin with a letter, a dash or a
colon.

• The remaining characters can be letters, digits,
periods, dashes, underscores or colons.

• Adding an amersand before and asemi-colon
after a reference name turns it into a reference.

– &apple_image is a reference to the entity
apple_image.

11

Character Data Sections

• When a document requires several predefined entities

near each other, it becomes hard to read; therefore,

we can use a character data section.

• Character data sections are not parsed and appear in

an XML document as they are written.

• Character data sections cannot contain tags because

they are considered literal text they do not mark up

the document.

CDATA

• Their basic syntax is:

– <![CDATA [content]]>

• An example:
<![CDATA [The last word of the line is >>> here <<<]]>

• This is clearly superior to writing:
The last word of the line is > >
> here < < <

• If I wrote
<![CDATA [The form of the tag is < tag name <]]>

I would get:
The form of the tag is < tag name <

12

Document Type Definitions

• A document type definition (DTD) is a set of rules

specifying how a set of elements can appear in an

XML document as well as entity declarations.

• While XML documents do not require DTDs, it

allows the programmer to check an XML document

for validity.

• A DTD can be internal (placed inside the XML

document) or external (placed in a separate file that

the XML document references).

DTD Syntax

• A DTD is a sequence of declarations:

<!keyword … >

• There are 4 valid keywords:

– ELEMENT – used to define tags

– ATTLIST – used to define tag attributes

– ENTITY – used to define entities

– NOTATION – used to define data type notations

13

Declaring Elements

• Element declarations are a form that is similar

to BNF.

• Each element declaration specifies the

structure of one element, containing its names,

its constituents (if it has child elements) or the

data type of its parent (if it is a leaf).

Declaring Non-leaf Elements

• The general form of an element declaration if

there are child elements is:

<!ELEMENT ElementName (ChildElementList)>

• An example:
<!ELEMENT memo (from, to, date, re, body)>

14

Document Tree Structure

date

memo

from to re body

Child Element Specification Modifiers

Modifier Meaning

+ One or more occurrences

* Zero or more occurrences

? Zero or one occurrence

• Normally, an element specification indicate one

occurrence of an element.

• Using a modifier allows the programmer to have

multiple occurrences of an element.

15

Declaration With Element Modifiers

<!ELEMENT person (parent+, age, spouse?, sibling*>

indicates

• One or more parents

• Age

• Spouse (optional)

• Zero or more siblings

Declaring a Leaf

• The syntax for an element that does not have

child elements is:

<!ELEMENT element_name (#PCDATA)>

• An example

<!ELEMENT year (#PCDATA)>

16

Declaring Attributes

• Attributes of an element are specified

separately from the element declaration.

• An attribute declaration must include:

– the attribute's name

– the element to which it belongs

– its type

Syntax for Attribute Declarations

• If the element has only one attribute it can be

declared:
<! ATTLIST ElmntName AttribName AttribType [DefltVal]>

• Multiple attributes can be declared separately or

in one declaration:
<! ATTLIST ElmntNm1 AttribNm1 AttribType1 DefltVal1

ElmntNm2 AttribNm2 AttribType2 DefltVal2

… …

ElmntNmN AttribNmN AttribTypeN1 DefltValN >

17

Possible Default Values

Value Meaning

A value The quoted value, which is used if none is

specified in an element

#FIXED value The quoted value, which every element will

have and which cannot be changed

#REQUIRED No default value is given; every instance of the

element must specify a value

#IMPLIED No default value is given (the browser chooses

the default value); the value may or may not be

specified in an element.

Declaring Attributes : An Example

• The declarations:
<! ATTLIST airplane places CDATA "4">

<! ATTLIST airplane engineType CDATA #REQUIRED>

<! ATTLIST airplane price CDATA #IMPLIED>

<! ATTLIST airplane manufactr CDATA #FIXED "Cessna">

• This is a valid XML element for this DTD:
<airplane places = "10" engineType = "jet">

</airplane>

18

Declaring Entities

• General entities can be referenced anywhere in
the content of an XML document.

• Parameter entities can only be referenced in
DTDs.

• Syntax:

<!ENTITY [%] entityName "entityValue">

• If the percent sign is included, it is a parameter
entity.

Referencing Entities

• An entity can be referenced in a declaration by

placing an ampersand before and a semi-colon

after the name:
<!ATTLIST airport airportName CDATA &jfk; >

19

External Text Entities

• An entity can be too long to be placed within

the DTD; they can be pages long.

• This can be handled by placing it in a different

file. These are called external text entities:

<!ENTITY entityName SYSTEM "fileLocation">

A Sample DTD

<?xml version = "1.0" encoding = "utf-8"?>

<!-- planes.dtd - a document type definition for

the planes.xml document, which

specifies a list of used airplanes

for sale -->

<!ELEMENT planes_for_sale (ad+)>

<!ELEMENT ad (year, make, model, color, description,

price?, seller, location)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT make (#PCDATA)>

<!ELEMENT model (#PCDATA)>

<!ELEMENT color (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT seller (#PCDATA)>

20

<!ELEMENT location (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ATTLIST seller phone CDATA #REQUIRED>

<!ATTLIST seller email CDATA #IMPLIED>

<!ENTITY c "Cessna">

<!ENTITY p "Piper">

<!ENTITY b "Beechcraft">

Internal DTDs

• DTDs can appear in the same file as the XML

document or in a file of their own.

• If the DTD is included in the XML file, it's

include in a DOCTYPE tag:
<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE planes [

All the declarations go here

]>

The XML document goes here

21

External DTDs

• If the DTD is in its own file, the XML document

contains a DOCTYPE tag identifying the DTD file
<!DOCTYPE XMLDocumentRootName SYSTEM "DTDFileName">

• In our case, it is
<!DOCTYPE planes_for_sale SYSTEM "planes.dtd">

planes.xml

<?xml version = "1.0" encoding = "utf-8"?>

<!-- planes.xml - A document that lists ads for

used airplanes -->

<!DOCTYPE planes_for_sales SYSTEM "planes.dtd">

<planes_for_sale>

<ad>

<year> 1977 </year>

<make> &c; </make>

<model> Skyhawk </model>

<color> Light blue and white </color>

<description> New paint, nearly new interior,

685 hours SMOH, full IFR King avionics

</description>

<price> 23,495 </price>

22

<seller phone = "555-222-3333"> Skyway Aircraft

</seller>

<location>

<city> Rapid City </city>

<state> South Dakota </state>

</location>

</ad>

<ad>

<year> 1965 </year>

<make> &p; </make>

<model> Cherokee </model>

<color> Gold </color>

<description> 240 hours SMOH, dual NAVCOMs,

DME, new Cleveland brakes, great shape

</description>

<price> 23, 495 </price>

<seller phone = "555-333-2222"

email = "jseller@www.axl.com">

John SellerSkyway Aircraft </seller>

<location>

<city> St. Joseph </city>

<state> Missouri </state>

</location>

</ad>

</planes_for_sale>

23

Disadvantages of DTDs

• Since DTDs use a syntax different from XML,

XML processors cannot analyze them.

• DTDs do not allow restrictions in the form of

data that can appear in a tag.

– DTDs have only 10 data types, none of which are

numeric.

Displaying Raw XML Documents

• A browser will not know how to format an

XML.

• It will display both the data and the tags,

allowing subfields to be collapsed.

• It is important to be able to format XML data

using Cascading Stylesheets or XSLT.

24

Formatting XML Documents

• There are two ways to provide format
information to the browser for an XML
document:

– a Cascading Style Sheet (CSS) file

– Extensible Stylesheet Language Transformations
(XSLT)

• While not every browser supports XSLT, it has
more power than CSS over the document's
appearance.

Displaying XML Documents with CSS

• A CSS style sheet for XML has a list of element names, each
followed by the element's attributes (and their values)
delimited by braces.

• The only common style property that has not been discussed
before is display, which can be inline (the default) or
block. These determine if the element is to be displayed
inline or in a separate block.

• To establish a connection between the style sheet and the
XML file, add the following tag into the XML file:

<?xml-stylesheet type = "text/css"

href = "FileName.css">

25

planes.xml

<!-- planes.css - a style sheet for the

planes.xml document -->

ad { display: block; margin-top: 15px; color: blue;}

year, make, model { color: red; font-size: 16 pt;}

color {display: block; margin-left: 20px;

font-size: 12pt; }

description {display:block; margin-left: 20px;

font-size: 12pt;}

price { dislay: block; color: green;

margin-left: 10px; font-size: 12pt;}

seller { display: block; margin-left: 15px;

font-size: 14pt;}

location { display: block; margin-left: 40px;}

city { font-size: 12pt;}

state { font-size: 12pt;}

planes.xml

<?xml version = "1.0" encoding = "utf-8"?>

<!-- planes.xml - A document that lists ads for

used airplanes -->

<?xml-stylesheet type = "text/css" href =
"planes.css" ?>

<!DOCTYPE planes_for_sales SYSTEM "planes.dtd">

<planes_for_sale>

<ad>

<year> 1977 </year>

<make> &c; </make>

<model> Skyhawk </model>

<color> Light blue and white </color>

<description> New paint, nearly new interior,

685 hours SMOH, full IFR King
avionics

</description>

26

<seller phone = "555-333-2222"

email = "jseller@www.axl.com">

John Seller </seller>

<location>

<city> St. Joseph </city>

<state> Missouri </state>

</location>

</ad>

</planes_for_sale>

Namespaces

• An XML namespace is a collection of element

and attributes names used in XML documents.

• A namespace's name usually looks like a URI

(Uniform Resource Identifier).

• Using namespaces allows you to give tags

meaningful names that may conflict with tags

that appear in other documents (e.g., HTML

tags).

27

Why Use Namespaces?

• Markup for an XHTML table
<table>

<tr> <td>Apples</td>

<td>Bananas</td>

</tr>

</table>

• Markup for data regarding furniture:
<table>

<name>African Coffee Table</name>

<width>80</width>

<length>120</length>

</table>

Declaring a Namespace

• When we write:
<html xmlns="http://www.w3.org/1999/xhtml">

we are making the namespace defined at
www.w3.org/1999/xhtml the default for
the document.

• This tells the browser that the html document
that follows (until the </html> tag) uses the
tags located at that URI, where they are
defined.

28

Declaring a Namespace With A Prefix

• To use multiple namespaces in the same document,

we need to use an optional prefix:
<birds

xmlns:bd="http://www.audobon.org/names/species">

• An element can have more than one namespace

declared, but then all but one MUST have prefixes if

more than one defines the same identifier:
<birds

xmlns:html="http://www.w3.org/1999/xhtml"

xmlns:bd="http://www.audobon.org/names/species">

Using Namespaces

<states

xmlns = "http://www.states-info.org/states"

xmlns:cap

= "http://www.states-info.org/state-capitals">

<state>

<name> South Dakota </name>

<population> 754844 </population>

<capital>

<cap:name> Pierre </cap:name>

<cap:population> 12429 </cap:population>

</capital>

<!-- more states -->

</state>

29

XSLT Style Sheets

• XSLT is one of three different XSLs (eXtensible

Stylesheet Languages) that can be used to transform

XML documents into other forms, including XHTML

documents.

• XSLT can be used to move, modify, sort XML

elements and even to convert them into attrtibutes.

• Since XLST files are XML documents themselves,

they can be validate using DTDs or transformed using

XSLT stylesheets.

Overview of XSLT

• XSLT is a functional programming language, similar

in some ways to LISP or Scheme.

• XSLT has functions, parameters, names to which

values can be bound, selection constructs and

conditional expressions capable of multiple selection.

• The XSLT processors takes an XSLT as its program,

an XML document as input and produces an XSL

files as output that can be saved or displayed in the

browser.

30

An XSLT Document

• An XSLT document consists of one or more

templates, using XPath (a related language) to

describe element/attribute patterns in the XML input

document.

• Each template has an associated section of XSLt

code, which is executed when there is a match.

• The XSLT processor searches the XML document for

template matches and is usually a "template-driven

model."

XSLT Processing

XSLT

Document

XML

Document

XSL

Document
XSLT

Processor

31

XSL Transformations for Presentation

• This discussion of XSLt will be limited to
basic formatting.

• We will assume that we are processing an
XML document with an associated XSLT style
sheet to produce an XHTML document.

• For an XML document to serve as data for an
XSLT document, it must contain a processing
instruction:
<?x-stylesheet type = "text/xsl"

href="XSLName" ?>

Original people.xml

<?xml version = "1.0"?>

<people>

<person born = "1912" died = "1954">

<name>

<first_name> Alan </first_name>

<last_name> Turing </last_name>

</name>

<profession> computer scientist </profession>

<profession> mathematician </profession>

<profession> cryptographer </profession>

</person>

32

<person born = "1918" died = "1988">

<name>

<first_name> Richard </first_name>

<middle_initial> P </middle_initial>

<last_name> Feynman </last_name>

</name>

<profession> physicist </profession>

<hobby> Playing the bongoes </hobby>

</person>

</people>

The XSLT Style Sheet

• An XSLT style sheet is an XML document whose

root tag is stylesheet. This tag must define the

namespaces:
<xsl:stylesheet

xmlns:xsl = http://w3.org/1999/XSL/Format />

33

person.xsl

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="person">

A person

</xsl:template>

</xsl:stylesheet>

Rewriting person.xml to Read the

Stylesheet

<?xml version="1.0"?>

<?xml-stylesheet type="application/xml"

href="people.xsl"?>

<people>

<person born = "1912" died = "1954">

… …

</person>

<person born = "1918" died = "1988">

… …

</person>

</people>

34

person.xml As Displayed

A person A person

value-of

• Generally, what you want as output is closely

related to the text that is in the XML document

that provides your input.

• xsl:value-of calculates the string value of

an Xpath expression and inserts it into the

output.

– The value of an element is the text that it contains

after removing the tags and resolving the entity

and cahracter references.

35

Using value-of

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="person">

<xsl:value-of select = "name" />

</xsl:template>

</xsl:stylesheet>

Using value-of: An Example

Alan Turing Richard Feynman

36

Using apply-templates

• By default, an XSLT processor reads the input

XML document from top to bottom, doing a

preorder traversal of the document from the

root.

• xsl:apply-templates allows the user to

make the processing explicit, changing it if one

wishes.

Why Use apply-templates

• Using in our earlier example

<xsl:template match="name">

<xsl:value-of select="first_name" />

<xsl:value-of select="last_name" />

</xsl:template>

</xsl:stylesheet>

would still result middle initials, hobbies and professional

being outputted.

• We can limit the output to first and last name by writing:

<xsl:template match="person">

<xsl:apply-templates select="name" />

</xsl:template>

37

people.xsl With apply-templates

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="people">

<html lang = "en">

<head>

<title> Famous Scientists</title>

<meta charset = "utf-8" />

</head>

<body>

<h1> Famous People </h1>

<table border = "1">

<xsl:apply-templates />

</table>

</body>

</html>

</xsl:template>

<xsl:template match="person">

<tr> <td>

<xsl:apply-templates select="name" />

</td> <td>

<xsl:value-of select = "profession" />

</td> </tr>

</xsl:template>

38

<xsl:template match="name">

<xsl:value-of select = "first_name" />

<xsl:value-of select = "last_name" />

</xsl:template>

</xsl:stylesheet>

The Output

Alan Turing computer scientist

Richard Feynman physicist

39

Famous Scientists

Alan Turing computer scientist

Richard Feynman physicist

xsl:for-each

• The <xsl:for-each> element allows you to

do looping in XSLT.

• The XSL <xsl:for-each> element can be

used to select every XML element of a

specified node-set.

40

mycds.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<?xml-stylesheet type="application/xml" href=“mycds.xsl"?>

<catalog>

<cd>

<title>Empire Burlesque</title>

<artist>Bob Dylan</artist>

<country>USA</country>

<company>Columbia</company>

<price>10.90</price>

<year>1985</year>

</cd>

<cd>

<title>Hide your heart</title>

<artist>Bonnie Tyler</artist>

<country>UK</country>

<company>CBS Records</company>

<price>9.90</price>

<year>1988</year>

</cd>

<cd>

<title>Greatest Hits</title>

<artist>Dolly Parton</artist>

<country>USA</country>

<company>RCA</company>

<price>9.90</price>

<year>1982</year>

</cd>

<cd>

<title>Still got the blues</title>

<artist>Gary Moore</artist>

<country>UK</country>

<company>Virgin records</company>

<price>10.20</price>

<year>1990</year>

</cd>

</catalog>

41

mycds.xsl

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

<h2>My CD Collection</h2>

<table border="1">

<tr bgcolor="#9acd32">

<th>Title</th>

<th>Artist</th>

</tr>

<xsl:for-each select="catalog/cd">

<tr>

<td><xsl:value-of select="title" /></td>

<td><xsl:value-of select="artist" /></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

42

Using for-each

XML Documents and Their Nodes

• There are seven different types of nodes that XML

documents can have. These include:

– Root nodes

– Element nodes

– Attribute nodes

• There are built-in template rules for these different

types of nodes.

• For attribute nodes, matching an attribute type will

lead to outputting the value of the attribute, not its

name

43

people.xsl Checking Attributes

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="people">

<html>

<body>

<dl>

<xsl:apply-templates />

</dl>

</body>

</html>

</xsl:template>

<xsl:template match="person">

<dt> <xsl:apply-templates select="name" /> </dt>

<dd>

Born: <xsl:apply-templates select="@born" />

Died: <xsl:apply-templates select="@died" />

 </dd>

</xsl:template>

</xsl:stylesheet>

44

<price> 23,495 </price>

<seller phone = "555-222-3333"> Skyway Aircraft
</seller>

<location>

<city> Rapid City </city>

<state> South Dakota </state>

</location>

</ad>

<ad>

<year> 1965 </year>

<make> &p; </make>

<model> Cherokee </model>

<color> Gold </color>

<description> 240 hours SMOH, dual NAVCOMs,

DME, new Cleveland brakes, great shape

</description>

<price> 23,495 </price>

