
1

Web Programming

Lecture 4 – JavaScript and HTML

Documents

The JavaScript Execution Environment

• Browsers display XHTML documents in a
window, which is an object in its own right.
JavaScript has a Window object that represents
the window displaying the document.

• All JavaScripts can see the various properties
of the Window object.

• Every Window has a Document object that
represents the display XHTML documents,
which has properties of its own.

2

Window Object

History Location

Document

Link Anchor

FormText

Radio

Check-
box

Text-
box

Password

Button

Submit Reset

Select

Options

The Document Object Model

• DOM (Document Object Model) is an API
(Application Programming Interface) that defines an
interface between HTML documents and application
program.

• It is an abstract model that applies to a variety of
programming language.

• Essentially, the various structures in an HTML
document that are marked up with tags are considered
objects, complete with properties and methods.

• The attributes of an HTML tag corresponds to a
property for the corresponding object.

3

A table in XHTML

<!DOCTYPE html>

<!-- table2.html

A simple table to demonstrate DOM trees

-->

<html lang = "en">

<head> <title> A simple document </title>

<meta charset = "utf-8" />

</head>

<body>

<table>

<tr>

<th> </th>

<td> Apple </td>

<td> Orange </td>

</tr>

<tr>

<th> Breakfast </th>

<td> 1 </td>

<td> 0 </td>

</tr>

</table>

</body>

</html>

4

DOM Structure of the Document

Document

<head> <body>

<title>

"A simple document"

<table>

<tr> <tr>

<th> <td>

Apple

<td>

Orange

<th>

Breakfast

<td>

0

<td>

1

DOM – An Example

• The following tag:

<input type = "text"

name = "address">

corresponds to an object, which has two

properties type (which is text) and name

(which is address).

5

Element Access in JavaScript

• Manipulating elements in an HTML document
requires that you have the address of the
corresponding object.

• This can be handled in several different ways,
depending on which version of DOM to which
you seek to conform.

• The address of a JavaScript object associated
with an HTML element is called its DOM
address.

Sample XHTML document

<html lang = "en">

<head> <title> Access to form elements </title>

<meta charset = "utf-8" />

</head>

<body>

<form name = "myForm" action = "">

<input type = "button" name = "turnItOn">

</form>

</body>

</html>

6

Getting the DOM Address

• We can use the forms and elements arrays:

var dom = document.forms[0].elements[0];

If another button were added before turnItOn, the address

could no longer be accessed this way.

• We can use the name given to the item (this requires that every

enclosing item (up to but not including body) must have a

name:

var dom = document.myForm.turnItOn;

The problem is that XHTML 1.1 does not allow forms to have

a name. This causes a validation problem.

getElementById

• A better way involves using getElementById:
var dom = document.getElementById("turnItOn");

• Since ids are useful for DOM addressing and
form processing frequently requires name, it is
not unusual for form elements to have both set
to the same value.

• Since buttons in a group of checkboxes often
share a name and a group of radio buttons will
share a name, this won't work in finding their
DOM addresses.

7

Checkboxes

<form id = "vehicleGroup">

<input type = "checkbox name = "vehicles"

value = "car" /> Car

<input type = "checkbox name = "vehicles"

value = "truck" /> Truck

<input type = "checkbox name = "vehicles"

value = "bike" /> Bike

</form>

… …

var numChecked = 0;

var dom = document.getElementById("vehicleGroup");

for (index = 0; index < dom.vehicles.length; index++)

if (dom.vehicles[index].checked)

numChecked++;

Events and Event Handling

• The DOM 0 event model is somewhat limited

in scope, but it is the only model supported by

all browsers that support JavaScript.

• The DOM 2 model is supported by the Firefox

version 2 (but not Internet Explorer, not even

version 7).

8

Basic Concepts of Event Handling

• An event is a notification that something specific has

happened, such as when a document finishes loading,

a button is pushed or contents of a textbox is

changed.

• An event handler is a script that is implicitly executed

in response to an event happening.

• Event-driven programming is when parts of the

programming are executed in an unpredictable

sequence in response to specific events.

Events in JavaScript

• Events are objects in JavaScript with case-sensitive names, all
of which are lower-case.

• Events are created by activities associated with specific
elements of XHTML, e.g., clicking a radio button.

• The process of connecting an event handler to an event is
called registration. Registration can be done by:

– Assigning tag attributes

– Assigning handler addresses to object properties.

• Write should not be used in an event handler because it is
asynchronous and thus what you write in the XHTML
document is unpredictable.

9

Events, Attributes and Tags

• The same attribute can appear in several

different tags.

• An XHTML element is said to get focus when

the user puts the mouse over it and left-clicks

or tabs over to the element.

• An element gets blurred when the user move

the cursor away and left-clicks or when (s)he

tabs away.

Registering an Event Handler

• There are a few ways of registering an event handler
in DOM 0:

– Assigning an event handler script to an event tag attribute:
<input type = "button" id = “myButton"

onclick = "alert(You clicked my button!’);" />

– Assigning an event to a function:

<input type = "button" id = "myButton"

onclick = "myButtonHandler();“ />

– Assigning to the associate event property on the button
object:

document.getElementById("myButton").onclick

= myButtonHandler;

10

Events, Attributes and Tags

Event Tag Attribute

blur onblur

change onchange

click onclick

dblclick ondblclcik

focus onfocus

keydown onkeydown

keypress onkeypress

keyup onkeyup

load onload

Events, Attributes and Tags (continue)

Event Tag Attribute

mousedown onmousedown

mousemove onmousemove

mouseout onmouseout

mouseover onmouseover

mouseup onmouseup

reset onreset

select onselect

submit onsubmit

unload onunload

11

Event Attributes and Their Tags

Attribute Tag Description
onblur <a> The link loses the input focus

<button> The button loses the input focus

<input> The input element loses the input focus

<textarea> The text area loses the input focus

<select> The selection element loses the input focus

onchange <input> The input element is changed & loses

input focus

<textarea> The text area is changed & loses input

focus

<select> The selection element is changed & loses

input focus

onclick <a> The user clicks on the link

<input> The input element is clicked

Attribute Tag Description

ondblclick Most elements The user double clicks the left mouse

button

onfocus <a> The link acquires the input focus

<input> The input element receives the input focus

<textarea> The text area receives the input focus

<select> The selection element receives input focus

onkeydown <body>,

form elements

A key is pressed down

onkeypress <body>,

form elements

A key is pressed down & released

onkeyup <body>,

form elements

A key is released

onload <body> The document is finished loading

onmousedown Most elements The user clicks the left mouse button

12

Attribute Tag Description

onmousemove Most elements The user moves the mouse cursor within

the element

onmouseout Most elements The mouse cursor is moved away from

being over the element

onmouseover Most elements The mouse cursor is moved over the

element

onmouseup Most elements The left mouse button is unclicked

onreset <form> The reset button is clicked

onselect <input> The mouse cursor is moved over the

element

<textarea> The text area is selected within the text

area

onsubmit <form> The submit button is pressed

onunload <body> The user exits the document

Handling Events from Body Elements

• The events most often created by body

elements are load and unload.

• The unload even is probably more useful than

the load event; we can use it to do some

cleanup before a document is unloaded.

13

load.html

<!DOCTYPE html>

<!-- load.html

An example to illustrate the load event

A document for load.js

-->

<html lang = "en">

<head>

<title> onLoad event handler </title>

<meta charset = "utf-8" />

<script type = "text/javascript"

src = "load.js" >

</script>

</head>

<body onload = "loadGreeting();">

<p />

</body>

</html>

load.js

// load.js

// An example to illustrate the load event

// The onload event handler

function loadGreeting() {

alert("You are visiting the home page of \n"

+ "Pete's Pickled Peppers\n"

+ "WELCOME!!!");

}

14

Handling Events from Button Elements

• Buttons provide a simple and effective way to

get input in a web document.

• The most commonly used event created by

button actions is click.

Plain Buttons

• A plain button represents a simple situation.

• Let's assume that we create the button:

<input type = "button"

name = "freeOffer"

id = "freeButton">

• We can register a handler for this button:

<input type = "button" name = "freeButton" id =
"freeButton" onclick = "freeButtonHandler();" />

• Or we can register it by writing:
document.getElementById("freeButton").onclick

= freeButtonHandler();

15

Radio Buttons

• Radio buttons handle a choice made from a set

of options.

• In the following example, the calls to the event

handlers send the value of the pressed radio

button to the handler.

radioclick.html

<!DOCTYPE html>

<!-- radioClick.html

An example of the use of the click event with

radio buttons, registering the event handler by

assignment to the button attributes

-->

<html lang = "en">

<head>

<title> Illustrate messages for radio buttons

</title>

<meta charset = "utf-8">

<script type = "text/javascript" src =
"radio_click.js">

</script>

</head>

16

<body>

<h4> Cessna single-engine airplane

descriptions </h4>

<form id = "myForm" action ="handler">

<p>

<input type = "radio" name = "planeButton"

value = "152" onclick = "planeChoice(152)" />

Model 152

<input type = "radio" name = "planeButton"

value = "172" onclick = "planeChoice(172)" />

Model 172 (Skyhawk)

<input type = "radio" name = "planeButton"

value = "182" onclick = "planeChoice(182)" />

Model 182 (Skylane)

<input type = "radio" name = "planeButton"

value = "210" onclick = "planeChoice(210)" />

Model 210 (Centurian)

</p>

</form>

</body>

</html>

17

radio_click.js

// radio_click.js

// An example of the use of the click event with

// radio buttons attributes

// The event handler for a radio button collection

function planeChoice(plane) {

// Produce an alert message about the chosen

airplane

switch(plane) {

case 152:

alert("A small two-place airplane for"

+ " flight training");

break;

case 172:

alert("The smaller of two four-place "

+ " airplanes");

break;

case 182:

alert("The larger of two four-place"

+ " airplanes");

break;

case 210:

alert("A six-place high-performance"

+ " airplane");

break;

18

default:

alert("Error in JavaScript function"

+ " planeChoice");

break;

}

}

Registering an Event Hamdler by Assignment

• An event handler can be registered by assigning the
name of the handler to the event properties of the
radio button objects.

• Example:
document.getElementById

("myForm").elements[0].onclick

= planeChoice;

• This statement must follow both the handler function
and the XHTML form specifications so that
JavaScript has been able to see both.

19

radioclick2.html

<!-- radioClick2.html

A document for radio_clicks2.js

An example of the use of the click event with
radio buttons,

registering the event handler by assignment to
the button

attributes

-->

<html lang = "en">

<head>

<title> Illustrate messages for radio buttons
</title>

<meta charset = "utf-8">

<script type = "text/javascript"

src = "radio_clicks2.js">

</script>

</head>

<body>

<h4> Cessna single-engine airplane

descriptions </h4>

<form id = "myForm" action = "">

<p>

<label> <input type = "radio"

name = "planeButton"

value = "152" />

Model 152 </label>

<label> <input type = "radio"

name = "planeButton"

value = "172" />

Model 172 (Skyhawk) </label>

20

<label> <input type = "radio"

name = "planeButton"

value = "182" />

Model 182 (Skylane) </label>

<label> <input type = "radio"

name = "planeButton"

value = "210" />

Model 210 (Centurian) </label>

</p>

</form>

<script type = "text/javascript"

src = "radio_clicks2r.js">

</script>

</body>

</html>

radio_clicks2.js

// radioClicks2.html

// An example of the use of the click event with

// radio buttons, registering the event handler by

// assignment to the button attributes

// The event handler for a radio button

// collection

function planeChoice(plane) {

// Put the DOM address of the elements array

// in a local variable

var dom = document.getElementById("myForm");

21

// Determine which button was pressed

for (var index = 0;

index < dom.planeButton.length;

index++) {

if (dom.planeButton[index].checked) {

plane = dom.planeButton[index].value;

break;

}

}

// Produce an alert message about the chosen

// airplane

switch(plane) {

case "152":

alert("A small two-place airplane for"

+ " flight training");

break;

case "172":

alert("The smaller of two four-place "

+ "airplanes");

break;

case "182":

alert("The larger of two"

+" four-place airplanes");

break;

case "210":

alert("A six-place high-performance "

+ " airplane");

break;

22

default:

alert("Error in JavaScript function"

+ " planeChoice");

break;

}

}

radio_clicks2r.js

//radio_clicks2r.js

// the event registering code for radio_clicks2

var dom = document.getElementById("myForm");

dom.elements[0].onclick = planeChoice;

dom.elements[1].onclick = planeChoice;

dom.elements[2].onclick = planeChoice;

dom.elements[3].onclick = planeChoice;

23

Handling Events from Text Box and

Password Elements

• Text boxes and password boxes can create four

distinct events:

– blur

– focus

– change

– select

The Focus Event

• Focus occurs when a mouse hover over a given
element and the mouse pointer is clicked.

• Blurring occurs when this focus is removed.

• This can be useful if there are fields on the
form that should not be changed.

• Example:

– A order pay where the client precalculates the
price and we wish not to allow the user to alter the
price being charged.

24

nochange.html

<!DOCTYPE html>

<!-- nochange.html

This document illustates using the focus event

to prevent the user from changing a text field

-->

<html lang = "en">

<head>

<title> The focus event </title>

<meta charset = "utf-8" />

<script type = "text/javascript"

src ="nochange.js">

</script>

</head>

<body>

<form action = "">

<h3> Coffee Order Form </h3>

<! -- A bordered table for item orders -->

<table border = "border" >

<! -- First the column headings -->

<tr>

<th> Product Name </th>

<th> Price </th>

<th> Quantity </th>

</tr>

<! -- Now, the table data entries -->

<tr>

<th> French Vanilla (1 lb.) </th>

<td> $3.49 </td>

25

<td> <input type = "text"

id = "french"

size = "2" /> </td>

</tr>

<tr>

<th> Hazelnut Cream (1 lb.) </th>

<td> $3.95 </td>

<td> <input type = "text"

id = "hazelnut"

size = "2" /> </td>

</tr>

<tr>

<th> Columbian (1 lb.) </th>

<td> $4.59 </td>

<td> <input type = "text"

id = "columbian"

size = "2" /> </td>

</tr>

</table>

<!-- button for precomputation of

the total cost -->

<p>

<input type = "button"

value = "Total Cost"

onclick = "computeCost();" />

<input type = "text" size = "5"

id = "cost" onfocus = "this.blur();" />

</p>

<!-- The submit and reset buttons -->

<p>

<input type = "submit"

value = "Submit Order" />

<input type = "reset"

value = "Clear Order Form" />

</p>

26

</form>

</body>

</html>

nochange.js

// This script illustrates using the focus event

// to prevent the user from changing a text field

// The event handler to compute the cost

function computeCost() {

var french

= document.getElementById("french").value;

var hazelnut

= document.getElementById("hazelnut").value;

var columbian

= document.getElementById("columbian").value;

27

// Compute the cost

document.getElementById("cost").value =

totalCost = french * 3.49 + hazelnut * 3.95

+ columbian * 4.59;

}

Validating Form Input

• Validating form input on the client side using
JavaScript results in a faster-responding server and
less Internet traffic.

• If incorrect data is entered, the JavaScript function
should:
– produce an alert message about the erroneous entry.

– put the relevant input element in focus. This is done by
writing:
document.getElementById("phone").focus();

– select the element, highlighting it. This is done by writing:
document.getElementById("phone").select();

28

Handling Invalid Input

• The handler should return false to tell the
browser not to perform any default actions.
This prevents bad data from being sent to the
server.

• Checking passwords involve making sure that
the original entry is made and that the second
entry matches it. It should be called if the
second entry blurs or if the submit button is
pressed.

pswdCheck.html

<!DOCTYPE html>

<!-- pswdChk.html

An example of input password checking, using

the submit event

-->

<html lang = "en">

<head>

<title> Illustrate password checking </title>

<meta charset = "utf-8" />

<script type = "text/javascript"

src = "pswdchk.js">

</script>

</head>

29

<body>

<h3> Password Input </h3>

<form id = "myForm" action = "">

<p>

<label> Your password

<input type = "password" id = "initial"

size = "10" />

</label>

<label> Verify password

<input type = "password" id = "second"

size = "10" />

</label>

<input type = "reset" name = "reset" />

<input type = "submit" name = "submit" />

</p>

</form>

<script type = "text/javascript"

src = "pswdchkr.js">

// Set submit button property to the event

// handler

document.getElementById("second").onblur

= chkPasswords;

document.getElementById("myForm").onsubmit

= chkPasswords;

</script>

</body>

</html>

30

Checking the Forms of a Name and Telephone

Number

• A name should be in a standard format; in this case it's
LastName, FirstName, MiddleInitial. The pattern
/^[A-Z][a-z]+, ?[A-Z][a-z]+, ?[A-Z]\.?$/

ensures that it is a last name beginning with a capital letter, a
comma and optional space, a first name beginning with a
capital letter, a comma and optional space, a capital letter and
an optional period.

• The anchors ^ and $ ensure that there is no other text in the
box.

• Similarly, the phone number is checked with the pattern

/^d{3}-\d{3}-\d{4}$/

which ensure that there are 3, 3, and 4 digits separated by
dashed with nothing else in the box.

validator.html

<!DOCTYPE html>

<!-- validator.html

An example of input validation using the change

and submit events

-->

<html lang = "en">

<head>

<title> Illustrate form input validation
</title>

<meta charset = "utf-8">

<script type = "text/javascript" src =
"validator.js">

</script>

</head>

31

<body>

<h3> Customer Information </h3>

<form action = "">

<p>

<label>

<input type = "text" id = "custName"

onchange = "chkName();" />

Name (last name, first name,

middle initial)

</label>

<label>

<input type = "text" id = "phone" />

Phone number (ddd-ddd-dddd)

</label>

<input type = "reset" id = "reset" />

<input type = "submit" id = "submit" />

</p>

</form>

<script type = "text/javascript"

src = "validatorr.js">

</script>

</body>

</html>

32

validator.js

// validator.js

// An example of input validation using the change

// and submit events.

// The event handler for the name text box

function chkName() {

var myName = document.getElementById("custName");

// Test the format of the input name

// Allow the spaces after the commas to be
optional

// Allow the period after the initial to be
optional

var pos = myName.value.search(

/^[A-Z][a-z]+, ?[A-Z][a-z]+, ?[A-
Z]\.?$/);

if (pos !=0) {

alert("The name you entered (" + myName.value +

") is not in the correct form. \n" +

"The correct form is: " +

"last-name, first-name, middle \n" +

"Please go back and fix your name");

myName.focus();

myName.select();

return false;

}

else

return true;

}

33

// The event handler function for the phone number

// text box

function chkPhone() {

var myPhone = document.getElementById("phone");

// Test the format of the input phone number

var pos = myPhone.value.search

(/^\d{3}-\d{3}-\d{4}$/);

if (pos != 0) {

alert("The phone number you enter ("

+ myPhone.value

+ ") is not in the correct form. \n"

+ "The correct form is: ddd-ddd-dddd \n"

+ "Please go back and fix your phone "

+ "number");

myPhone.focus();

myPhone.select();

return false;

}

else

return true;

}

34

validatorr.js

// validatorr.js

// Register the event handlers for validator.html

// Set form element object properties to their

// corresponding event handler functions

document.getElementById("custName").onchange

= chkName;

document.getElementById("phone").onchange = chkPhone;

The DOM 2 Event model

• The DOM 2 event model does not include the
features of the DOM 1 event model. But
without IE supporting it, there has not yet been
a rush to move to it.

• The DOM 2 model is a model with a modular
interface.

• One of its modules is Events, which has
several submodules including HTMLEvents
and MouseEvents.

35

HTMLEvents and MouseEvents

Module Event Interface Event Types

HTMLEvents Event abort, blur, change, error,

focus, load, reset, resize,

scroll, select, submit,

unload

MouseEvents MouseEvent click, mousedown,

mousemove, mouseout,

mouseover, mouseup

Event Propagation

• An event object is create at a node in the document
tree; the node is called the target node.

• Event creation causes a three-phase process:
– Capturing phase – The even starts at the document's root

node and propagates to the target node. Any registered
handlers are checked to determine if they are enabled. Any
enabled handler is executed.

– The registered handler for the event is executed.

– Bubbling phase – as the event bubbles back up the tree, any
registered handlers are executed.

• Any handler can be stopped from further propagation
using the stopPropagation() method.

36

Event Handler Registration

• Event handler registration is handled in DOM

2 model by the AddEventListener method.

• The call:

document.custName.addEventListener("change",

chkName, false);

is of the text element name of the event handler function

is the handler enabled

during the capturing phase?

An Example of the DOM 2 Event Model –
validator2.html

<!DOCTYPE html>

<!-- validator2.html

A document for validator2.js

Creates text boxes for a name and a phone

number

Note: This document does nto work in IE6

An example of input validation using the change

and submit events

-->

<html lang = "en">

<head>

<title> Illustrate form input validation with

DOM 2 </title>

<meta charset = "utf-8" />

37

<!-- Script to define the event handlers -->

<script type = "text/javascript"

src = "validator2.js">

</script>

</head>

<body>

<h3> Customer Information </h3>

<form action = "">

<p>

<label>

<input type = "text" id = "custName" />

Name (last name, first name, middle initial)

</label>

<label>

<input type = "text" id = "phone" />

Phone number (ddd-ddd-dddd)

</label>

<input type = "reset" />

<input type = "submit"

id = "submitButton" />

</p>

</form>

<!-- Script for registering event handlers -->

<script type = "text/javascript" src =
"validator2r.js">

</script>

</body>

</html>

38

validator2.js

// validator2.js

// An example of input validation using the change
and

// submit events, using the DOM 2 event model

// NOte: This document does not work with IE6

//***//

// The event handler for the name text box

function chkName(event) {

// Get the target node of the event

var myName = event.currentTarget;

// Test the format of the input name

// Allow the spaces after the commas to be optional

// Allow the period after the initial to be

// optional

var pos = myName.value.search(

/^[A-Z][a-z]+, ?[A-Z][a-z]+,
?[A-Z]\.?$/);

if (pos !=0) {

alert("The name you entered (" + myName.value +

") is not in the correct form. \n" +

"The correct form is: " +

"last-name, first-name, middle \n" +

"Please go back and fix your name");

// myName.focus();

// myName.select();

}

}

39

// The event handler function for the phone number

// text box

function chkPhone(event) {

var myPhone = event.currentTarget;

// Test the format of the input phone number

var pos = myPhone.value.search

(/^\d{3}-\d{3}-\d{4}$/);

if (pos != 0) {

alert("The phone number you enter ("

+ myPhone.value +

") is not in the correct form. \n"

+ "The correct form is: ddd-ddd-dddd \n"

+ "Please go back and fix your phone "

+ "number");

}

}

validator2r.js

// validator2r.js

// The last part of validator2. Registers the

// event handlers

// Note: This script does not work with IE6

// Get the DOM addresses of the elements and
register

// the event handlers

var customerNode

= document.getElementById("custName");

var phoneNode

= document.getElementById("phone");

customerNode.addEventListener("change",

chkName, false);

phoneNode.addEventListener("change",

chkPhone, false);

40

The navigator Object

• The navigator object allows the script to

determine the viewing browser and to call the

appropriate handler for that browser

The canvas Element

• The canvas element crates a rectangle into

which can be drawn bit-mapped graphics using

JavaScript.

• The canvas element has three optional

attributes:

– height (non-negative integer, default = 150)

– width (non-negative integer, default = 300)

– id

41

The canvas Element – An Example

<canvas id = "myCanvas" height = "200"

width = "400">

Your browser does not support the canvas element

</canvas>

• The text in the element is display if the

browser does not support the element.

navigate.html

<!DOCTYPE html>

<!-- navigator.html

A document for navigator.js

Call the event handler on load

-->

<html lang = "en">

<head>

<title> navigate.html </title>

<meta charset = "utf-8" />

<!-- Script to define the event handlers -->

<script type = "text/javascript“

src = "navigate.js">

</script>

</head>

<body onload = "navProperties()">

</body>

</html>

42

navigate.js

// navigate.js

// An example of using the navigator object

// The event handler function to display the

// browser name and its version number

function navProperties() {

alert("The browser is: " + navigator.appName

+ "\n" + "The version number is :" +

navigator.appVersion + "\n");

}

