
1

Web Programming

Lecture 3 – JavaScript Basics

Origins

• JavaScript was originally developed by

Netscape as "LiveScript."

• In 1995, Sun and Netscape worked on it and its

name became "JavaScript."

• It became standardized in the late 1990s

(currently in version 3of ECMA 262).

• Netscape 7 and Internet Explorer 6 both

support ECMA 262 v. 3.

2

The Three Parts of JavaScript

• JavaScript has three parts:

– Core –the heart of the language, including operators,

expressions, statements and subprograms.

– Client side – collection of objects that support control of

the browser and interactions with users (e.g., mouse clicks).

– Server side – collections of objects that make the language

useful on a Web server, e.g., supporting communication

with a database management system.

JavaScript and Java

• Although their names are similar, Java and JavaScript
are very different.

– JavaScript's object model is very different from C++ and
Java. JavaScript does NOT support the object-oriented
software development paradigm.

– Java is a strongly-typed language; JavaScript is
dynamically typed and does not necessarily require
declarations

– Java objects are static (their collections of methods and
properties are fixed at compile time); JavaScript's objects
are dynamic.

– Their biggest similarity is syntax.

3

Uses of JavaScript

• JavaScript was developed originally to provide programming
capability for the Web.

• Client-side JavaScript allows the client to do a lot of tasks that
would otherwise have to be done on a potentially overtaxed
server.

• JavaScript is an alternative to Java applets.

• Interaction with form elements such as button and menus can
be specified in JavaScript.

• The Document Object Model (DOM) allows JavaScript to
access and modify CSS properties and XHTML document
content, making XHTML documents dynamic.

Event-Driven Computation

• Event-driven computation – the user interacts

with the elements of the display (e.g.,

command buttons, text boxes, etc.)

• One common use is to have the script check

the validity of entries made in forms.

• Doing this on the client side saves execution

time on the server.

4

Browsers and XHTML/JavaScript

Documents
• If the browser reads an (X)HTML document, it

displays the content using information provided by
the accompanying tags.

• When a browser encounters a JavaScript script, it
executes the script before returning to the tasks of
displaying the document.

• Scripts producing content only when requested (or
reacting to an "event") appear in the head of an
XHTML document.

• Scripts that are interpreted just once (when loading)
appear in the document's body.

Object Orientation and JavaScript

• JavaScript is an "object-based" language; i.e.,

it does objects and models of objects (but not

classes).

• While there is prototyped–based inheritance,

there is not real class-based inheritance.

• JavaScript does not support polymorphism.

5

JavaScript Objects

• JavaScript objects are collections of properties,
which can be data properties or method
properties.

• Data properties are either primitive values or
references to other objects.

• All objects in a JavaScript program are
accessed indirectly though variables.

• All other objects are specializations of the root
object Object.

General Syntactic Characteristics

• JavaScript scripts are all indicated by the use of

<script> tag.

• An internal script would indicated one way:
<script type = "text/javascript">

script goes here

</script>

• An external script would be indicated another way:

<script type = "text/javascript"

src="myscript.js">

• JavaScript identifiers are case-sensitive.

6

JavaScript Keywords

break delete function return typeof

case do if switch var

catch else in this void

continue finally instanceof throw while

default for new try with

NB – other words that are reserved for future use can be found at

http://www.ecma.ch

JavaScript Comments

• Comments in JavaScript
// can be short

/* they can also be multiline

or even longer*/

• JavaScript scripts are usually embedded in XHTML
comments to avoid problems with older browsers and
XHTML validators:
<!—-

JavaScript script

// -->

7

JavaScript Syntax

• There are other problems that can come from

placing JavaScript scripts in XHTML

comments. For this reasons, it is usually a

better idea to place them in separate files.

• While JavaScript does not require semi-colons

(it normally assumes that the end-of-line ends

the statements, using semi-colons can avoid

some potential problems.

Primitive Types

• JavaScript has five primitive types:
Number String

Boolean Undefined

Null

• The primitive types number, string and boolean have
wrapper objects associated with them (called Number,
String and Boolean).

• The wrapper objects provide properties and methods
that can be convenient for a JavaScript programmer.

• Java Script will occasionally coerce between the
Number data and String data items and their
corresponding objects.

8

Primitives and Objects

17

…

…

…

prim

obj

a primitive

Nonheap memory Heap memory

17

an object

Numeric Literals

• All numeric values are represented internally as

double-precision floating point values.

• Literal numbers are integers or floating point values.

– Integers are strings of digits

– Integers can be written in hexadecimal by preceding them

with 0x

– Floating point values can have decimal points and/or

exponents:

72 7.2 .72 72. 7E2 7e2

.7e2 7.e2 7.2e-2

9

String Literals

• String literals can be enclosed in single quotes (') or

double quotes (") and can contain 0 or more

characters.

• They can include escape sequences such as \n and \t

• A backslash can be used to enclose quotes inside a

string:
"\"This isn\'t the first time,\", he said."

• 2 backslashes place a backslash in the string:

"D:\\bookfiles"

Booleans

• Boolean variables have two potential values: true and

false.

• These can be computed by evaluating a relational

expression or a Boolean expression.

10

null And undefined

• The only value that type Null can take is null, which

means that it does not refer to an object.

– As a Boolean, null is false.

– As a Number, null is 0.

• Undefined's only value is undefined. It is assigned

when a variable has not been assigned a value or does

not exist.

– As a Boolean, undefined is false.

– As a Number, undefined is 0.

Declaring Variables

• Since JavaScript variables are dynamically typed, any variable
can be used for anything.

• The interpreter will usually convert the variable's type to
whatever it needs.

• A declaration has the keyword var followed by a list of
variable name (that may or may not include an initial value):
var counter, index,

pi = 3.14159265,

quarterback = "John Elway",

stop_flag = true;

• While explicit declarations are not required,the are
recommended.

11

Numeric Operators

• JavaScript has the usual operators:

– Binary operators such as addition (+), subtraction (-),

multiplication (*), division (/) and modulus (%)

– Unary positive (+) and negative (-) signs

– Increment and decrement operators that can be prefix or

postfix.

• Example (assume a is set to 7)

(++a) * 3 // Expression = 24, a is now 8

(a++) * 3 // Expression = 21, a is now 8

Precedence and Associativity

• Precedence rule specify which operator is evaluated

first when two or more operators are in an

expressions.

a * b + 1 * has precedence over +

• Associativity rules specify which operator is

evaluated first when two operators share the same

precedence.

a + b + c we add a + b and then add c to the sum

12

Precedence and Associativity in

JavaScript

Operators Associativity

++, --, unary - Right to left (though it is

irrelevant)

*, /, % Left to right

Binary +, Binary - Left to right

Parentheses can be used to force any desired precedence:

(a + b) * c

Operators in JavaScript: Example

var a = 2,

b = 4,

c,

d;

c = 3 + a * b; // c is now 11

d = b / a / 2; // d is now 1

13

The Math Object

• The Math object

contains a collection of

properties of Number

objects and methods

that operate on Number

objects

Math.abs() Absolute Value

Math.ceil() Rounded up to the

nearest integer

Math.cos() Cosine

Math.exp() ex

Math.pow() xn

Math.random() Random number

Math.round() Rounded to the

nearest integer

The Number Object

Property Meaning

MAX_VALUE Largest representable number

MIN_VALUE Smallest representable number

NaN Not a number

POSITIVE_INFINITY Special value to represent infinity

NEGATIVE_INFINITY Special value to represent negative infinity

PI The value of π

isNaN True if not a number; false if it is a number

toString Returns a string representation of the value

Example

var x = Number.MIN_VALUE;

Example

var price = 427, str_price;

str_price = price.toString

14

The String Concatenation Object

• Strings are not arrays in JavaScript; they are

considered scalar values.

• Concatenation is indicated by the plus (+)

operator.

• Example

var first = "Freddy";

first = first + " Freeloader"

Implicit Type Conversions

• Coercions – implicit type conversions.

• When a value of one type is used in a situation
where a value of another type is needed,
JavaScript attempts to convert the value to the
needed type.

• Example

"August " + 1977 ���� "August 1977"

7 * "August " ���� NaN

7 * "3" ���� 21

15

Explicit Type Conversions

There are several ways of forcing conversions:

• Using the String constructor

var str_value = String(value);

• Using the toString method:
var num = 6;

var str_value = num.string(); // = 6

var stValueBinary = num.toString(2);//110

• By concatenating to an empty string:

num_string = num + ""

Converting String to Number

• Subtracting a value from a string containing a

number:

var aString = "4"

var number = aString – 0

• This has a severe limitation – the number within the

string cannot be followed by anything but a blank.

• Using parseInt and parseFloat get around this

limitation, however, the number is expected at the

beginning of the string (otherwise the result is NaN).

16

String Properties and Methods

Method Parameters Result

length* None – property The length of the string

charAt() A number The character in the String object

that is at the specified position

indexOf() One-character string The position in the String object of

the parameter

substring() Two number The substring of the String object

from the first parameter position to

the second

toLowerCase() None Convert any uppercase letters in the

string to lowercase

toUpperCase() None Convert any lowercase letters in the

string to uppercase

String Methods – An Example

var str = "George"

str.charAt(2) is 'o'

str.index.Of('r') is 3

str.substring(2, 4) is 'org'

str.toLowerCase() is 'george'

17

The typeof Operator

• The typeof operator returns the type of the operand.

– If the operand is Number, String or Boolean, it returns

"number", "string" or "boolean" respectively.

– If the operand is an object or null, it returns "object".

– If the operand is undefined, it returns "undefined".

• Example

var x = 5;

typeof(x) is "number"

Assignment Statements

• JavaScript has the same range of assignment

operators as C, e.g., +=, -=, *=, /= , etc.

• Example

a += 7;

is equivalent to

a = a + 7;

18

Methods For The Date Object

Method Returns

toLocaleString() A string of the Date information

getDate() The day of the month, from 1 to 31

getMonth() The month of the year, from 1 to 12

getDay() The day of the week from 0 to 6

getFullYear() The year

getTime() The number of milliseconds since January 1, 1970

getHours() The number of the hour, from 0 to 23

getMinutes() The number of the minute, from 0 to 59

getSeconds() The number of the second, from 0 to 59

getMilliseconds() The number of the millisecond from 0 to 999

The Date Object - An Example

var today = new Date()

var thisMonth = today.getMonth()

var thisDay = today.getDay()

var thisYear = today.getFullYear()

19

Screen Output and Keyboard Input

• The normal output screen for a JavaScript
script is the browser window containing the
XHTML document in which the script is
embedded.

• This window is an object in JavaScript, which
has a constituent object called document, of
which write() is the most interesting method.

• The output produced by write() will usually
be punctuated with XHTML tags.

document.write() – An Example

document.write("The result is: ", x, "
");

appears in the browser window:

The result is: 42

_

20

alert()

• alert() opens a dialogue window and

displays its parameter as a message, along with

an "OK" button.

• The parameter string is plain text (not

XHTML); it may include \n but not
.

• Example

alert("The sum is" + sum + "\n");

confirm()

• confirm() opens a dialog window in which it

displays its string parameter, along with an OK

button and a Cancel button.

• confirm returns true (for OK) or false (for

Cancel).
var question =

confirm("Do you want to continue this download?");

21

prompt()

• prompt() creates a dialogue window that contains a
text box, which collects an input string which it
returns as its value.

• prompt() also has OK and Cancel button. It returns
a default string (often empty) if either button is
pressed without entering a string.

• prompts() has 2 parameters: a prompt for the user
and the default string.

• Example
name = prompt("What is your name", "");

firstjs.html

<!DOCTYPE html>

<!-- roots.html

Compute the real roots of a given quadratic

equation. If the roots are imaginary, this

script displays NaN, because that is what results

from taking the square root of a negative number.

-->

<html lang = "en">

<head> <title> Real roots of a quadratic equation
</title>

<meta charset = "utp-8">

</head>

22

<body>

<script type = "text/javascript">

<!--

// Get the coefficients of the equation from the
user

var a = prompt("What is the value of 'a'?\n",

"");

var b = prompt("What is the value of 'b'?\n",

"");

var c = prompt("What is the value of 'c'?\n",

"");

// Compute the square root and denominator

// of the result

var rootpart = Math.sqrt(b * b - 4.0 * a * c);

var denom = 2.0 * a;

// Compute and display the two roots

var root1 = (-b + rootpart) / denom;

var root2 = (-b - rootpart) / denom;

document.write("The first root is : ", root1,

"
");

document.write("The second root is : ", root2,

"
");

// -->

</script>

</body>

</html>

23

Control Statements

• Control statements are handled in JavaScript in a
manner similar to C/C++/Java, including the use of
braces to build compound statements.

• There are control expressions which are essentially
true or false and determine the course of action to be
taken

• There are selection statements (if, if-else and
switch).

• There are loop statements (while, for and
do..while)that allow an action or a series of action to
occur.

Control Expressions

• Control expressions determine which action is to be
performed and they are interpreted as true or false.
A string is true unless it is empty("") or zero("0").
A non-zero numeric value is true; zero is false.

• If two operands in a relational expression are not of
the same type, and the operator isn't === or !==,
JavaScript will try to convert them to a single type.

– If the operands are a string and a number, it will try to
convert the string to a number.

– If the only one of the operands is boolean, it will convert
the boolean value to a number (1 for true, 0 for false).

24

Relational Operators

Operations Operator

Is equal to ==

Is not equal to !=

Is less than <

Is greater than >

Is less than or equal to <=

Is greater than or equal to >=

Is strictly equal to ===

Is not strictly equal to !==

if-else Statements

• if and if-else statements in JavaScript look

like those in most modern languages.
if (a > b)

document.write("a is greater than b.");

else

document.write("a is greater than b.");

25

Operator Precedence Associativity

Operators Associativity

++, --, unary - Right to left

*, /, % Left to right

+, - Left to right

>, <, >=, <= Left to right

==, != Left to right

===, !=== Left to right

&& Left to right

|| Left to right

=, +=, -=, *=, /=, &&=, ||=, %= Right to Left

The switch Statement

• The switch statement works similar to the one in C.
switch(expression) {

case value1:

//Statement(s);

case value2:

// Statement(s);

default:

//Statement(s);

}

• The expression is evaluated and the program jumps to
the appropriate case, falling through from one case to
another if there is no break statement.

26

borders2.html

<!DOCTYPE html>

<!-- borders2.html

An example of a switch statrement for table
border

size selection

-->

<html lang = "en">

<head> <title> A switch statement </title>

<meta charset = "utp-8">

</head>

<body>

<script type = "text/javascript">

<!--

var bordersize;

bordersize

= prompt("Select a table border size \n" +

"0 (no border) \n" +

"1 (1 pixel border) \n" +

"4 (4 pixel border) \n" +

"8 (8 pixel border) \n");

27

switch (bordersize) {

case "0": document.write("<table>");

break;

case "1": document.write

("<table border = \'1\'>");

break;

case "4": document.write

("<table border = \'4\'>");

break;

case "8": document.write

("<table border = \'8\'>");

break;

default: document.write

("Error - invalid choice: "

+ bordersize + "
");

}

document.write

("<caption> 2003 NFL Divisional"+

"Winners </caption>");

document.write("<tr>",

"<th />",

"<th> American Conference </th>",

"<th> National Conference </th>",

"</tr>",

"<tr>",

"<th> East </th>",

"<td> New England Patriots </td>",

"<td> Philadelphia Eagles </td>",

"</tr>",

"<tr>",

"<th> North </th>",

"<td> Baltimore Ravens </td>",

"<td> Green Bay Packers </td>",

"</tr>",

28

"<tr>",

"<th> West </th>",

"<td> Kansas City Chiefs </td>",

"<td> St. Louis Rams </td>",

"</tr>",

"<tr>",

"<th> South </th>",

"<td> Indianapolis Colts </td>",

"<td> Carolina Panthers </td>",

"</tr>",

"</table>");

// -->

</script>

</body>

</html>

Loop Statements

• JavaScript has while, for and do..while statements
that are similar to those in C/C++/Java.

while (control expression)

statement or compound statement

• JavaScript also has a do..while statement where the
test is at the end:

do {

count ++;

sum = sum + (sum * count);

} while count <= 50;

29

for Statements

• The general form of the for statement is:
for (initExpr; cntrlExpr; incrExpr)

statement or compound statement

• Both the initial expression and the increment
expression can be two expressions separated by a
comma

• Example
var sum =0, count;

for (count = 0; count <= 10; count++)

sum += count;

date.html

<!DOCTYPE html>

<!-- date.html

Illustrates the use of the Date object by

displaying the parts of a current date and

using two Date objects to time a calculation

-->

<html lang = "en">

<head> <title> Illustrates Date </title>

<meta charset = "utp-8">

</head>

30

<body>

<script type = "text/javascript">

<!--

// Get the current date

var today = new Date();

// Fetch the various parts of the date

var dateString = today.toLocaleString();

var day = today.getDay();

var month = today.getMonth();

var year = today.getFullYear();

var timeMilliseconds = today.getTime();

var hour = today.getHours();

var minute = today.getMinutes();

var second = today.getSeconds();

var millisecond = today.getMilliseconds();

// Display the parts

document.write(

"Date: " + dateString + "
",

"Day: " + day + "
",

"Month: " + month + "
",

"Year: " + year + "
",

"Time in milliseconds: "

+ timeMilliseconds + "
",

"Hour: " + hour + "
",

"Minute: " + minute + "
",

"Second: " + second + "
",

"Year: " + year + "
",

"Millisecond: " + millisecond + "
");

// Time a loop

var dum1 = 1.00149265, product = 1;

var start = new Date();

31

for (var count = 0; count < 10000; count++)

product = product

+ 1.000002 * dum1 / 1.00001;

var end = new Date();

var diff = end.getTime() - start.getTime();

document.write("
 The loop took "

+ diff + " milliseconds
");

// -->

</script>

</body>

</html>

Object Creation and Modification

• Objects are created with a new expression which includes a
call to the constructor. In JavaScript, constructors creates and
initializes the object's properties.
var myObject = new Object();

myObject does not have properties yet.

• JavaScript objects can have properties added or deleted at any
time.

//Create an Object object

var myCar = new Object();

// Create and initialize the make property

myCar.make = "Ford";

// Create and initialize model

myCar.model = "Contour SVT":

32

Objects and Their Properties

• Properties of object can become objects themselves:
myCar.engine = new Object();

myCar.engine.config = "V6";

myCar.engine.hp = 200;

• Object properties can be accessed using the dot
operator or as a subscript of the object to which they
belong:

var prop1 = myCar.make;

var prop2 = myCar["make"];

• Objects can be deleted using delete:

delete myCar.model;

for..in Statement

• JavaScript has a loop statement that allows the

listing of properties in an object.

• The syntax:

for (identifier in object) statement(s)

• Example
for (var prop in myCar)

document.write("Name: ", prop,

"; Value: ", myCar[prop], "
");

33

Arrays

• Arrays in JavaScript, like in Java, are special

cases of objects.

• JavaScript arrays have dynamic length.

Array Object Creation

• JavaScript arrays can be created in a few ways.

• If the new statement has a single parameter, it is

assumed to be the size of the array:

var myList = new Array(100); //uninitialized

• If there is more than one parameter they are taken to

be initial values:
var yourList = new Array(1, 2, "three", "four");

• You can initialize an array without even using new:
var myOtherList = [1, 2, "three", "four"];

34

Characteristics of Array Objects

• All arrays in JavaScript have indices in the range of 0 to n-1, where n is the
number of items in the array.

• The array will have m elements if m-1 is the highest index for which there
is a value assigned, i. e., if your script includes:
myList[47] = 2222;

there are at least 48 elements in the array, although they may not all be
assigned.

• The length of an array is a user-readable and writeable property. Adding
the statement
myList.length = 1002;

set the length at 1002,whether all these values are defined or
not.

• Only array elements to which values are assigned have storage
allocated for them.

insert_names.html

<!DOCTYPE html>

<!-- insert_names.html

The script in this docuument has an array of

names, nameList, whose values are in

alphabetical order. New names are input

through prompt. Each new name is inserted

into the name array, after which the new

list is displayed.

-->

<html lang = "en">

<head> <title> Font properties </title>

</head>

35

<body>

<script type = "text/javascript">

<!--

// the original list of names

var nameList = new Array("Al", "Betty",

"Kasper", "Michael", "Roberto",

"Zimbo");

var newName, index, last;

// Loop to get a new name and insert it

while (newName

= prompt("Please type a new name", "")) {

// Loop to find the place for the new name

last = nameList.length - 1;

while (last >= 0

&& nameList[last] > newName) {

nameList[last + 1] = nameList[last];

last--;

}

// Insert the new name into its spot in

// the array

nameList[last + 1] = newName;

// Display the new array

document.write("<p> The new name list",

" is:
");

36

for (index = 0; index < nameList.length;

index++)

document.write(nameList[index], "
");

document.write("</p>");

}

// -->

</script>

</body>

</html>

Array Methods

• JavaScript arrays have several methods that

can be useful, including:
join() reverse()

sort() concat()

slice() toString()

push() pop()

unshift() shift()

37

join()

• join converts all of the elements of an array into

string and concatenates them into a single string.

• If there are no parameters, the values in the string are

separated by a comma. If there is a parameter, that

string is used as a separator.

• Example
var names = new Array("Mary", "Murray", "Murphy",

"Max");

var nameString = names.join(":");

produces "Mary : Murray : Murphy : Max"

reverse()

• reverse reverses the order in which elements

appear in the array.

• Example
var names = new Array("Mary", "Murray",

"Murphy", "Max");

names = names.reverse();

produces "Max", "Murphy", "Murray", "Mary"

38

sort()

• sort converts all the elements of the sarray into

strings and places them in alphabetical order.
var names = new Array("Mary", "Murray",

"Murphy", "Max");

names = names.sort();

produces "Mary", "Max", "Murphy", "Murray"

concat()

• concat concatenates its parameters to the end

of the array.

• Example
var names = new Array("Mary", "Murray",

"Murphy", "Max");

names = names.concat("Moo", "Meow");

produces "Mary", "Max", "Murphy", "Murray",

"Moo", "Meow"

39

slice()

• slice returns the part of the array specified by its

subscripts.

• If there are two subscripts i and j, the new array

includes from array [i] up to but not including
array[j]

• If there is one subscript i, the new array includes

from array[i] to the end of the array.

• Example
var list = [2, 4, 6, 8, 10];

list2 = list.slice(1, 3);

produces [4, 6]

toString()

• toString converts the elements of a array into one

string where commas separates the elements.

• Example
<script type="text/javascript">

var arr = new Array(3);

arr[0] = "Jani";

arr[1] = "Hege";

arr[2] = "Stale";

document.write(arr.toString());

</script>

produces Jani,Hege,Stale

40

push() and pop()

• push and pop treat the array as if it were a
stack with the higher indices being nearer the
top of the stack.

• Example

var list = ["Dasher", "Dancer", "Donner",
"Blitzen"]

var deer = list.pop(); // deer = Blitzen

// restores the lists as it was.

list.push("Blitzen");

unshift()

• shift and unshift remove and insert an item

from or to the beginning of the list.

• Example
var list = ["Dasher", "Dancer", "Donner",

"Blitzen"]

var deer = list.shift(); // deer = Dasher

// restores the lists as it was.

list.unshift("Dasher");

41

nested_arrays.html

<!DOCTYPE html>

<!-- nested_arrays.html

An example to illustrate an array of arrays

displayed.

-->

<html lang = "en">

<head> <title> Font properties </title>

<meta charset = "utp-8">

</head>

<body>

<script type = "text/javascript">

<!--

// Create an array object with three arrays

// as its elements

var nestedArray = [[2, 4, 6],

[1, 3, 5],

[10, 20, 30]

];

42

// Display the elements of nestedList

for (var row = 0; row <= 2; row++) {

document.write("Row ", row, ": ");

for (var col = 0; col <= 2; col++)

document.write(nestedArray[row][col], " ");

document.write("
");

}

// -->

</script>

</body>

</html>

Functions

• Functions in JavaScript are similar to those in C/C++

and PHP.

• A function definition includes a header and a

compound statement that specifies what the function

does.

• A return statement return control to whatever called

the function and passes back a value, if there is one

specified in the return statement. If none is

specified the function's result is undefined.

43

Function Fundamentals

• Functions in JavaScript are objects so variables

that reference them can be handled like other

object references:
function fun() {

document.write("This is fun!
");

}

refFun = fun;

// Now, refFun refers to the fun object

fun(); // A call to fun

refFun(); // Also a call to fun

Local Variables

• Implicit variables (those not declared with a var
statement) have global scope (over the entire
XHTML document).

• Variables declared outside of a function definition
also have global scope.

• Variables explicitly defined (using var) inside a
function have only local scope.

• When there is a variable has been defined globally
and locally, local scope has precedence.

• Functions in JavaScript can be nested but it is not
considered a good idea.

44

Parameters

• JavaScript passes parameters by value. It

passes object references by value, which still

allows them to be changed. This provides one

form of passing values by reference.

• There is no type checking of parameters and

although the called function can use typeof, it

cannot distinguish between different types of

objects.

The arguments Array

• JavaScript does not check the number of

parameters either. Excess actual parameters are

ignored and excess formal parameters are set

to undefined.

• All parameters are passed through the array

arguments, which has a property length. This

can be used to access all the parameters passed

to the function.

45

parameters.html

<!DOCTYPE html>

<!-- parameters.html

The params functrion and a test driver for it.

This example illustates function parameters.

-->

<html lang = "en">

<head> <title> Parameters </title>

<meta charset = "utp-8">

<script type = "text/javascript">

<!--

// function params

// Parameters: two named parameters and one

// unnamed parameter, all numbers

// Returns: Nothing

function params(a, b) {

document.write("Function params was passed ",

arguments.length, " parameter(s)
");

document.write

("Parameter values are:
");

for (var arg = 0; arg < arguments.length;

arg++)

document.write(arguments[arg], "
");

document.write("
");

}

// -->

</script>

</head>

46

<body>

<script type = "text/javascript">

<!--

// A text driver for params

params("Mozart");

params("Mozart", "Beethoven");

params("Mozart", "Beethoven", "Tchaikowsky");

// -->

</script>

</body>

</html>

Passing By Reference

• There is no elegant way to pass parameters in JavaScript. One
way to do this is by passing the parameter as an object (e.g., an
array).

function by10(a) {

a[0] *= 10;

}

…

var x

var listX = new Array(1);

listx[0] = x;

by10(list);

x = listx[0];

47

Passing By Reference (continued)

• Another way to pass the value back as the

return value of the function:
function by10_2(a) {

return 10*a;

}

…

var x;

…

x = by10_2(x);

The sort Method, Revisited

• If you want to sort an array containing

anything other than string, you must supply a

comparison function that indicates which is

greater:

– A negative result indicates that the two values are

in the correct order.

– A zero result means that they are equal.

– A positive result means that they must be

switched.

48

Sorting, Revisited – An Example

// Function numOrder – 2 parameters a and b

// Returns a negative value if a and b are in

// order

// Returns 0 if a= b

// Returns a positive values if a and b need to

// be switched.

function numorder(a, b) { return a – b; }

// Sort the array of numbers, list, into ascending

// order

numList.sort(numOrder);

An Example – medians.html
<!DOCTYPE html>

<!-- medians.html

A function and a function tester

Illustrates array operations

-->

<html lang = "en">

<head> <title> Median Computation </title>

<meta charset = "utp-8">

<script type = "text/javascript">

<!--

// function median

// Parameter: An array of numbers

// Result: The median of the array

// Return value: None

49

function median(list) {

list.sort(function (a, b) { return a - b;});

var listLen = list.length;

// Use the modulus operator to determine

// whether the array's length is odd or even

// Use the Math.floor to truncate numbers

// Use Math.round to round numbers

if ((listLen % 2) == 1)

return list[Math.floor(listLen / 2)];

else

return Math.round((list[listLen / 2 - 1]

+ list [listLen / 2]) / 2);

}

// -->

</script>

</head>

<body>

<script type = "text/javascript">

<!--

var myList1 = [8, 3, 9, 1, 4, 7];

var myList2 = [10, -2, 0, 5, 3, 1, 7];

var med = median(myList1);

document.write("Median of [", myList1,

"] is: ", med, "
");

med = median(myList2);

document.write("Median of [", myList2,

"] is: ", med, "
");

// -->

</script>

</body>

</html>

50

Constructors

• Constructors are special methods that create
and initialize properties of newly created
objects. Calling a constructor is necessary for
any new object.

• Constructor must be able to reference the
object on which it is working. The reserved
word this allows us to do that.

• If you wish to pass a reference to an object's
method, the method must first be defined.

Constructors – An Example

<body>

<script type = "text/javascript">

function car (newMake, newModel, newYear) {

this.make = newMake;

this.model = newModel;

this.year = newYear;

this.display = displayCar;

}

51

function displayCar() {

document.write("Car make: ", this.make,

"
");

document.write("Car model: ", this.model,

"
");

document.write("Car year: ", this.year,

"
");

}

myCar = new car("Ford", "Contour SVT", "2000");

myCar.display();

</script>

</body>

Pattern Matching Using Regular

Expressions

• JavaScript has two approaches to pattern

matching, one based on the RegExp object and

another one based on the String object. We

will use the latter.

• Patterns are based on the notation used for

regular expressions.

52

Character and Character-Class Patterns

• Metacharacters have special meaning within

patterns. They are

\ | () [] { } ^ $ * + ? .

• "Normal" characters are not metacharacters

and match themselves within a pattern.

• The simplest technique for matching a pattern

is search, which takes a pattern as a

parameter.

Pattern Matching – An Example

<html>

<head> <title> Let's try this out </title>

</head>

<body>

<script type = "text/javascript">

var str = "Rabbits are furry";

var position = str.search(/bits/);

if (position > 0)

document.write

("'bits' appears in position ",

position, "
");

</script>

</body>

</html>

Output 'bits' appears in position 3

53

Pattern Matching – Some Other Examples

• /snow./ matches snowy, snowe, and snowd (among others).

• /3\.4/ matches 3.4

• [abc] matches a, b or c

• [a-h] matches a, b, c, d, e, f, g, or h

• [^aeiou] matches any character except a, e, i, o and u

Predefined Character Classes

Name Equivalent Pattern Matches

\d [0-9] A digit

\D [^0-9] Not a digit

\w [A-Za-z_0-9] A word character (alphanumeric)

\W [^A-Za-z_0-9] Not a word character

\s [\r\t\n\f] A whitespace character

\S [^ \r\t\n\f] Not a whitespace character

54

Pattern Matching –Even More Examples

• /\d.\d\d/ matches a digit, followed by a period, followed by
2 digits.

• /\D\d\D/ matches a single digit (with non-digits on either
side).

• /\w\w\w/ matches three adjacent word characters.

• /xy{4}z/ matches xyyyyz

• /x*y+z?/ matches zero or more x's followed by one or more
y's and possible by z.

• /[A-Za-z]\w*/ matches identifier in most common
programming languages.

• /\bis\b/ matches "A tulip is a flower" but not "A
frog isn't" (\b matches a border)

Anchors

• ^ anchors a pattern to the beginning of a string.

• $ anchors a pattern to the end of a string.

• Examples

– /^pearl/ - matches "pearls are pretty" but

not "My pearls are pretty"

– /gold$/ - matches "I like gold" but not
"golden"

55

Pattern Modifiers

• Modifiers can appear at the end of a pattern to
increase their flexibility

• i allows the pattern to match either lower or upper
case

– /Apple/i matches "APPLE" "Apple" or "apple"

• x allows white space to be added to the pattern.
/\d+ # The street number

\s # The space before the street name

[A-Za-z]+ # The street name

/x

is equivalent to /\d+\s[A-Za-z]+/

Other Pattern Matching Methods of

String

• replace replaces substrings of the String object that
match the given pattern.

– replace takes 2 parameters: the pattern that it seeks to
replace and the string that replaces it.

– The matched substrings are assigned to the predefined
variables $1, $2, $3, etc.

• match takes one parameter (the pattern to be
matched) and returns and array of the strings that
match it.

• split splits the object string into substring based on
the pattern given as its parameter.

56

replace – An Example

var str =

"Fred, Freddie, and Frederica were siblings";

str.replace("/Fre/g, "Boy");

changes the string to
"Boyd, Boyddie, and Boyderica were siblings"

match – An Example

var str =

"Having 4 apples is better than having 3 oranges";

var matches = str.match(/\d/g);

matches will be set to [4, 3]

var str = "I have 428 dollars, but I need 500";

var matches = str.match(/(\d+)([^\d]+)(\d+)/

document.write(matches, "
");

matches will be set to

["428 dollars, but I need 500", "428",

"dollars, but I need ", "500"]

57

split – An Example

var str = "grapes: apples: oranges";

var fruit = str.split(":")

fruit is set to ["grapes", "apples",
"oranges"]

formschecks.html

<!DOCTYPE html>

<!-- formscheck.html

A function tstPhoneNum is defined and tested.

This function checks the validity of phone

number input from a form

-->

<html lang = "en">

<head> <title> Median Computation </title>

<meta charset = "utp-8">

<script type = "text/javascript">

<!--

58

/* Function testPhoneNum

Parameters; A string

Result: Returns true if the parameters has

the form of a legal seven-digit

phone number 3 digits, a dash, 4

digits)

*/

function tstPhoneNum(num) {

// Use a simple pattern to check the

// number of digits and the dash

var ok = num.search(/\d{3}-\d{4}/);

if (ok == 0)

return true;

else

return false;

}

// -->

</script>

</head>

<body>

<script type = "text/javascript">

<!--

// A script to test txtPhoneNum

var tst = tstPhoneNum("444-5432");

if (tst)

document.write("444-5432 is a ",

"legal phone number
");

else

document.write("Error in tstPhoneNum",

"
");

tst = tstPhoneNum("444-r432");

if (tst)

document.write("Error in tstPhoneNum",

"
");

else

document.write("444-r432 is not",

" a legal phone number
");

59

tst = tstPhoneNum("44-5432");

if (tst)

document.write("Error in tstPhoneNum",

"
");

else

document.write("44-5432 is not ",

"a legal phone number
");

// -->

</script>

</body>

</html>

Errors in Scripts

• The Default setting for Internet Explorer does

not provide debugging for JavaScript.

– This can be changed by going to the Tools menu

(select) Internet options. Uncheck the box that

reads "Disable JavaScript debugging."

• JavaScript can be debugged in Firefox by

going to the Tools menu and selecting "Error

Console."

