
Compiler Construction

Lecture 6 - An Introduction to Bottom-
Up Parsing

© 2003 Robert M. Siegfried
All rights reserved

Bottom-up Parsing
• Bottom-up parsers parse a programs from the

leaves of a parse tree, collecting the pieces until
the entire parse tree is built all the way to the root.

• Bottom-up parsers emulate pushdown automata:
– requiring both a state machine (to keep track of what

you are looking for in the grammar) and a stack (to
keep track of what you have already read in the
program).

– making it fairly easy to automate the process of creating
the parser

– ensuring that all context-free grammars can be parsed
by this method.

Bottom-up parsers as shift-reduce parsers

• Bottom-up parsers are frequently called shift-reduce
parsers because of their two basic operations:
– A shift involves moving pushing the current input token

onto the stack and fetching the next input token.
– A reduce involves popping all the variables that

comprise the right-sentential form for a nonterminal
and replacing them on the stack with the equivalent
nonterminal that appears on the left-hand side of that
production.

– While shifting involve pushing and reducing involve
popping, do not think of them as equivalent: a shift also
involve advancing the input token stream and a reduce
involves zero or more pops followed by a push.

Bottom-up Parsing as an Emulation of
Pushdown Automata

• Most bottom-up parsers are table-driven, with the table
encoding the necessary information about the grammar.

• The parser decides what action to perform based on the
combination of current state and current input token.

• A state in the machine which the computer is emulating
reflects both what the machine has already parsed and that
which it is expect to see in the input token stream.

• Several parser generators have been created based on this
theoretical machine, the best known of which is YACC
(Yet Another Compiler Compiler), is available on many
UNIX system and its public domain lookalike Bison.

LR(k) grammars

• Bottom-up grammars are referred to as LR(k)
grammars:
– The first L indicates Left-to-Right scanning.
– The second L indicates Right-most derivation
– The k indicates k lookahead characters.

• There should be no need for anything more than a
single lookahead, i.e, an LR(1) grammar.

An example - a LR(0) grammar
An LR(0) grammar does not use a lookahead

character to determine the action that it will
take - the current token will be used to
determine the state into which it will go.

Consider the following grammar:
E ::= E + T | T
T ::= + F | - F | F
F ::= id | const

An example - a LR(0) grammar (continued)

Let’s write out our grammar and add to it a special first
production with a special start symbol S:

1 S ::= E $ (indicates that the expression is followed by EOF)

2 E ::= E + T
3 E ::= T
4 T ::= +F
5 T ::= -F
6 T ::= F
7 F ::= id
8 F ::= const

The LR(0) parse table

state

0

1

2

3
4

5

6

7

8

9

10

11

12

ACTION

GOTO

+ - id const $ E T F

s

s

r3

r6
s

s

r7

r8

s

r4

r2

r5

acc

4 5 6 7 1 2 3

8 12

6 7

6 7

9

11

4 5 6 7 10 3

Tracing LR(0) parsing
There are 3 parsing operations:

Shift - moving a token and state onto the stack (we find
the state using the GOTO table).

Reduce n - we pop enuogh items from the stack to form
the right side of production n and then we push
the nonterminal on its left side of production n on
to thestack, together with thestate indicated by the
GOTO table

Accept - we accept the program as completely and
correctly parsed and terminate execution.

Tracing LR(0) parsing - an example
Example - the expression -27 + x

We place the state 0 and the EOF marker $ on the stack.
The action for state 0 is shift. We place the - and
GOTO(0, -) = 5 on the stack 0 $

5 -

0 $
5 -

7 const The action for state 5 is shift. We place the constant on
the stack together with GOTO(5, const) = 7.

0 $
5 -

11 F The action for state 7 is reduce by production 8. Pop
the const (and state 7). Push F and GOTO(5,F) = 11

Tracing LR(0) parsing - an example (continued)

0 $
2 T

The action for state 11 is reduce by production 5.
Pop the - and F (along with states 5 and 11) and
push the T together with GOTO(0,T) = 2

0 $
1 E

The action for state 2 is reduce by production 3. Pop
the T (and state 2). Push the E and GOTO(0,E) = 1.

0 $
1 E

The action for state 1 is shift. We move the + onto the
stack together with GOTO(1, +) = 8.8 +

Tracing LR(0) parsing - an example (continued)

0 $
1 E
8 +

The action for state 8 is shift. We move the id
and GOTO(8, id) = 6 onto the stack.

6 id

0 $
1 E
8 +
3 F

The action for state 6 is reduce by production 7. We
pop the id and state 6. We push F and GOTO(8, F)
= 3

0 $
1 E
8 +
10 T The action for state 3 is reduce by production 6. We

pop the F and state 3. We push T and GOTO(8, T)
= 10.

Tracing LR(0) parsing - an example (continued)

0 $
1 E

The action for state 10 is reduce by production 2. We
pop the T (and state10), the + (and state8) and the E
(and state1). We push the E and GOTO(0,E) = 1.

0 $
1 E
12 $ The action for state 1 is shift. We push the $ and

GOTO (1,E) = 12 onto the stack.

The action for state 12 is accept. The only item on
the stack (excluding the $s) is E, which is the start
symbol in our expression grammar

Right sentential forms

• A right sentential form is a partially formed
sentence (or program). It can contain the
variables on the right- hand side of a
production or phrases derived from it.

• Right sentential forms are derived from the
rightmost derivation.

• Formally, if S =>* β, then β is a right
sentential form.

Handles

• In performing a reduce operation, we must
decide which variables in a right-sentential
form will be popped and replaced on the
stack by the nonterminal on the
production’s left-hand side. These variables
are collectively called the handle.

• If A => β, then β would be handle for the
production.

Items

• An item is a production, with a dot added to
it indicating how much of the production
has been matched up so far.

• Example:
– E ::= . E + T nothing in the production has been matched

 yet.

– E ::= E + . T we have matched the E and the +

What we would expect to the State Machine
to look like

0 1E

+

2 3
T

$

4
5

T
+

-

6 7F

F

8

id const

Constructing the State Machine

• We already know that processing context-free
languages requires a pushdown automaton.

• As we prepare to match tokens in the item
S ::= .E$

we have no way of knowing what collection of
tokens represent E

• We will have to consider all possible ways of
representing an expression:

E ::= .E + T
E ::= .T

Constructing the State Machine (continued)

• Since matches a collection of tokens to E
may mean matching it to T, we must know
what to look for here as well:

T ::= .+ F
T ::= . - F
T ::= .F

Constructing the State Machine (continued)

• Since matches a collection of tokens to T
may mean matching it to F, we must know
what to look for here as well:

F ::= .id
F ::= .const

Since we know exactly how to match id and
const to tokens (since they are terminals),
we don’t need any additional items.

Constructing the State Machine’s Initial State

0

S ::= . E$
State 0 always contains
an item showing the special
start symbol deriving the
regular start symbol followed
by EOF

Constructing the State Machine’s Initial State

0

S ::= . E $
E ::= . E + T
E ::= . T

The dot indicates that
we must process an
Expression next

This means that we need
to know what can
comprise an expression

Constructing the State Machine’s Initial State

0

S ::= . E$
E ::= . E + T
E ::= . T
T ::= . + F
T ::= . - F
T ::= . F

The dot indicates that
we must process a
Term next

This means that we need
to know what can
comprise a term

Constructing the State Machine’s Initial State

0

S ::= . E$
E ::= . E + T
E ::= T
T ::= . + F
T ::= . - F
T ::= . F
F ::= .id
F ::=. const

The dot indicates that
we must process a
Factor next

This means that we need
to know what can
comprise a factor

Here we know exactly
what we’re processing
we’re looking for the
token + (or -)

The LR(0) State Machine

0

S ::= . E$
E ::= . E + T
E ::= . T
T ::= . + F
T ::= . - F
T ::= . F
F ::= . id
F ::= . const

Constructing The Next Set of States

0

S ::= . E$
E ::= . E + T
E ::= . T
T ::= . + F
T ::= . - F
T ::= . F
F ::= . id
F ::= . const

1

S ::= E . $

E ::= E . + TE

Constructing The Next Set of States

0
S ::= . E$
E ::= . E + T

E ::= . T
T ::= . + F
T ::= . - F
T ::= . F
F ::= . id
F ::= . const

1

S ::= E . $
E ::= E . + T

E

2

E ::= T .
T

Constructing The Next Set of States

0
S ::= . E$
E ::= . E + T

E ::= . T
T ::= . + F
T ::= . - F
T ::= . F
F ::= . id
F ::= . const

1
S ::= E . $
E ::= E . + T

E 2
E ::= T .

T

3
T ::= F .

F

Constructing The Next Set of States

0
S ::= . E$
E ::= . E + T

E ::= . T
T ::= . + F
T ::= . - F
T ::= . F
F ::= . id
F ::= . const

1
S ::= E . $
E ::= E . + T

E 2
E ::= T .

T

4
T ::= + . F
F ::= . id
F ::= . const

3
T ::= F .F

We now need two
items indicating
how to match F

+

Constructing The Next Set of States

0
S ::= . E$
E ::= . E + T

E ::= . T
T ::= . + F
T ::= . - F
T ::= . F
F ::= . id
F ::= . const

1
S ::= E . $
E ::= E . + T

E 2
E ::= T .

T

 5
T ::= - . F
F ::= . id
F ::= . const

3
T ::= F .F

We now need two
items indicating
how to match F

4
T ::= + . F
F ::= . id
F ::= . const

+

-

The LR(0) State Machine

0

S ::= . E$
E ::= . E + T
E ::= .T
T ::= . + F
T ::= . - F
T ::= . F
F ::= .id
F ::=. const

1

S ::= E . $
E :: E . + T

2

E ::= T .

3 T ::= F .

4 T ::= + . F
 F ::= . id
 F ::= . const

5 T ::= - . F
 F ::= . id
 F ::= . const

6 F ::= id .

7 F ::= const .

E

+

-T

F

id

const

The LR(0) State Machine

0

S ::= . E$
E ::= . E + T
E ::= .T
T ::= . + F
T ::= . - F
T ::= . F
F ::= .id
F ::=. const

8

E ::= E + . T

T ::= . + F

T ::= . - F

T ::= . F

F ::= . id

F ::= . const

1

S ::= E . $
E :: E . + T

2

E ::= T .

3 T ::= F .

4 T ::= + . F
 F ::= . id
 F ::= . const

9 T ::= + F .

5 T ::= - . F
 F ::= . id
 F ::= . const

11 T ::= - F .

12 S ::= E $.

6 F ::= id .

7 F ::= const .

7

6 7

E
$

+

+

-T

F

id

const

F

id

constid

F

const

The LR(0) State Machine

0

S ::= . E$
E ::= . E + T
E ::= .T
T ::= . + F
T ::= . - F
T ::= . F
F ::= .id
F ::=. const

8

E ::= E + . T

T ::= . + F

T ::= . - F

T ::= . F

F ::= . id

F ::= . const

1

S ::= E . $
E :: E . + T

2

E ::= T .

3 T ::= F .

4 T ::= + . F
 F ::= . id
 F ::= . const

9 T ::= + F .

5 T ::= - . F
 F ::= . id
 F ::= . const

11 T ::= - F .

10 E ::= E + T .

12 S ::= E $.

6 F ::= id .

7 F ::= const .

7

6 7

E
$

+

+

-T

F

id

const

F
+

-

id

const

F

T

const
id

The LR(0) parse table

state

0

1

2

3
4

5

6

7

8

9

10

11

12

ACTION

GOTO

+ - id const $ E T F

s

s

r3

r6
s

s

r7

r8

s

r4

r2

r5

acc

4 5 6 7 1 2 3

8 12

6 7

6 7

9

11

4 5 6 7 10 3

Follow
the
transitions
to the
next
state

The LR(0) parse table

state

0

1

2

3
4

5

6

7

8

9

10

11

12

ACTION

GOTO

+ - id const $ E T F

s

s

r3

r6
s

s

r7

r8

s

r4

r2

r5

acc

4 5 6 7 1 2 3

8 12

6 7

6 7

9

11

4 5 6 7 10 3

This is
a “final”
state
because
of the
item
E ::= T .

The LR Parser Driver
Perform the Action associated with the current state and token
REPEAT

IF the Action is:
Shift: Shift the current token on the stack with the

new state
Reduce n: Popall the variables of the right sentential form

together with the states. Push the nonterminal
from the left side of the production together
with GOTO(state, Nonterminal).

Acecept Clean up
Error Any error handling procedure

UNTIL Action for the current state and token is ACCEPT

