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A few necessary definitions

Parse - vt, to resolve (as a sentence) into component 
parts of speech and describe them grammatically

Grammar - n, the study of the classes of words, their 
inflections, and their functions and relations  in the 
sentence

Syntax - n, the way in which words are put together to 
form, phrases, clauses or sentences



The Parsing Process

Syntactic Analysis (or Parsing) involves 
breaking a program into its syntactic components

Sentence
Subject Phrase Predicate

Verb Phrase Object Phrasedefinite
article

adj. adj. noun verb

The brownquick fox jumped

preposition def. art. adj. noun

over the lazy dogs

Adjectives

The Parsing Process (continued)

Nb: In the previous example, 
subject phrase, predicate, adjectives, etc. were 
nonterminals.
definite articeles, adjective, noun, verb, etc. were 
terminals
A language is a set of sentences formed the set of 
basic symbols.
A grammar is the set of rules that govern how we 
determine if these sentences are part of the 
language or not.



The Parsing Process (continued)

The analysis is based purely on syntax.A
syntactically correct sentence can be 
nonsensical:

Example:
A group of trout were flying east, where 
they hunted down camels for their dinner.

Parsing as a procedure

The parser takes tokens from scanner as necessary 
and produces a tree structure (or analyzes the 
program as if it were producing one).  It is called 
as a procedure of the main program:

struct parsenoderec *parsetree;

parsetree = parse( );

In most real cases, the parser actually returns a 
pointer to an abstract syntax tree or some other 
intermediate representation.



Error recovery during parsing
• The parser will (or certainly should) spot any and 

all syntactic errors in the program.
• This requires us to consider how we will handle 

recovery from any errors encountered:
– We can consider any error fatal and point it out 

to the user immediately and terminate 
execution.

– We can attempt to find a logical place within 
the program where we can resume parsing so 
that we can spot other potential errors as well.

Types of Parsers

• Parsers can be either top-down or bottom-
up:
– Top-down parsers build the parse-tree starting 

from the root building until all the tokens are 
associated with a leaf on the parse tree.

– Bottom-up parsers build the parse-tree starting 
from the leaves, assembling the tree fragments 
until the parse tree is complete. 



Top-down Parsers
Sentence

Subject phrase Predicate

definite
article

Adjec-
tives

noun

The

Top-down parsing assumes a certain minimum 
structure as we start building the parse tree

Bottom-up parsers

The

def.
art.

quick brown

adj. adj.

fox

noun

Subject Phrase

Bottom-up parsers shift
by each token, reducing
them into a non-terminal
as the grammar requires.

Nb: Until we finish 
building the predicate, 
we have no reason to 
reduce anything into the 
nonterminal Sentence



Types of Parsers (continued)
• Parsers can be either table-driven or 

handwritten:
– Table-driven parsers perform the parsing using 

a driver procedure and a table containing 
pertinent information about the grammar.  The 
table is usually generated by automated 
software tools called parser generators.

– Handwritten parsers are hand-coded using the 
grammar as a guide for the various parsing 
procedures.

Types of Parsers (continued)

• LL(1) and LR(1) parsers are table-driven 
parsers  which are top-down and bottom-up 
respectively.

• Recursive-descent parsers are top-down 
hand-written parsers.

• Operator-precedence parsers are bottom-up 
parsers which are largely handwritten for 
parsing expressions.



Context-Free Grammars
A context-free grammar is defined by the 4-tuple:

G = (T, N, S, P)
where
T = The set of terminals (e.g., the tokens returned by the 

scanner)
N = The set of nonterminals (denoting structures within the 

language such as DeclarationSection, Function).
S = The start symbol (in most instances, our program).
P = The set of productions (rules governing how tokens are 

arranged into syntactic units).

Context-Free Grammars
• Context-free grammars are well-suited to programming 

languages because they restrict the manner in which 
programming construct can be used and thus simplify the 
process of analyzing its use in a program.

• They are called context-free because the manner in which 
we parse any nonterminal is independent of the other 
symbols surrounding it (i.e., parsing is done without 
respect to context)

• The grammars of most programming languages are 
explicitly context-free (although a few have one or two 
context-sensitive elements).



Distinction between syntax and semantics
• Syntax refers to features of sentence structure as it 

appears in languages.
• Semantics refers to the meaning of such structures.
• The parser will analyze the syntax of a program, 

not its semantics.
– E. g., the parser does not do type-checking.
– Semantic actions will frequently be associated 

with specific productions, but are not actually 
part of the parser.

Backus-Naur Form
BNF (Backus-Naur Form) is a metalanguage for 

describing a context-free grammar.
• The symbol ::= (or   → ) is used for may derive.
• The symbol | separates alternative strings on the 

right-hand side.
Example E ::= E + T | T

T ::= T * F | F
F ::= id | constant | (E)

where E is Expression, T is Term, and F is Factor



Extended Backus-Naur Form
EBNF (Extended Backus-Naur Form) adds a few 

additional metasymbols whose main advantage is 
replacing recursion with iteration.

• {a} means that a is occur zero or more times.
• [a] means that a appears once or not at all.
Example Our expression grammar can become:

E ::= T  { +  T }
T ::= F { * F } 
F ::= id | constant | (E)

A simple grammar

S  ::= A B c

A ::= a A | b

B ::= A b | a 

Start Symbol

The strings   abbbc, aaabac, aaaababbc
are all generated by this grammar.  Can 
you determine how?



Another simple grammar

S ::=  a | (b S S)

Sample strings generated by this 
grammar include :

(b a a ) ( b ( b a a ) a) a

The Empty String

• Productions within a grammar can contain 
ε, the empty string.

• A → B is equivalent to A → Bε
• It is also possible to write the production 

A→ε; such productions become particularly 
useful in top-down parsing.



Derivations
• A derivation is a series of replacements where the 

nonterminal on the left of a production is 
replacement by a string of symbols from the right-
hand side of a production.

• This may be done in one step or in many steps.
Example
For the grammar S ::= Aa

A ::= Ab | c

S Aa Aba Abba cbba
cbba is ultimately derived from S

Derivations (continued)
• There are several different notations used to 

indicate occurs:
A ⇒ α A derives α in one step
A ⇒∗ α A derives α in zero or more steps
A ⇒† α A derives α in one or more steps

• Example
S ⇒ Aa ⇒ Aba ⇒ Abba ⇒ cbba
We can say that S ⇒∗ cbba



Derivations (continued)

• If the start symbol S derives a string ß
which contains nonterminals, ß is a 
sentential form.

• If S derives a string ß which contains only 
terminals, ß is a sentence.

Parse Trees

A parse tree is a graphical representation of such a 
derivation:

S

A a
A b

A b

c



Left and right derivations

Remember our grammar: S  ::= A B c

A ::= a A | b

B ::= A b | a

How do we parse the string abbbc?
S

A B c

a A

S

A B c

A bLeft derivation
Right derivation

Languages and Grammars

• A grammar is just a way of describing a language.
• There are actually an infinite number of grammars 

for a particular language.
• 2 grammars are equivalent if they describe the 

same language.
– This becomes extremely important when 

parsing top-down.
– Most programming language manuals contain a 

grammar in BNF or EBNF, which we may 
modify to fit our parsing method better.



Ambiguous grammars

• While there may be an infinite number of 
grammars that describe a given language, 
their parse trees may be very different.

• A grammar capable of producing two 
different parse trees for the same sentence is 
called ambiguous.  Ambiguous grammars 
are highly undesireable.

Is it IF-THEN or IF-THEN-ELSE?

The IF-THEN=ELSE ambiguity is a classical example of 
an ambiguous grammar.

Statement ::= if Expression then Statement else Statement
| if Expression then Statement

How would you parse the following string?
IF x > 0
THEN IF y > 0 

THEN z := x + y 
ELSE z := x;



Is it IF-THEN or IF-THEN-ELSE? (continued)

There are two possible parse trees:
Statement

if Expression then Statement

if Expression then Statement else Statement

Statement

if Expression then Statement else Statement

if Expression then Statement

Is it IF-THEN or IF-THEN-ELSE? (continued)

Statement ::= if Expression then Statement ElseClause

ElseClause ::= else Statement | ε

Statement

if Expression then Statement ElseClause

if Expression then Statement ElseClause

else Statement

ε



Operator Precedence
Most programming languages have an order of 

precedence for operators.  It would be helpfulcan
if this could be encoded into the language’s 
grammar

E. g., let’s take a look at the order of precedence in 
Pascal:
Highest Unary +, Unary - , NOT

*, /, DIV, MOD, AND
+, -, OR

Lowest =, < >, > =, < =, >, <

Operator Precedence (continued)
This can encoded in our grammar by considering 

first a production for our highest level of 
precedence:
Factor ::=  Unary-operator Unary-Factor

|  Unary-Factor

Let’s now consider the next-highest level:
Term ::=  Term Multiplicative-operator Factor

|   Factor



Operator Precedence (continued)

Now let’s consider the next-level:
Expr. ::= Expr. Add.-op Term | Term

And finally,
Rel.-Expr. ::= Rel.-Expr Rel.-op Expr. | Expr.

Once we add the production
Factor ::= Identifier | Constant | (Rel.Expr.)
we have a complete expression grammar for Pascal.

Operator Precedence (continued)

In general, we can start from the lowest order of 
precedence and work our way to highest in this 
fashion

ExprA ::= ExprA opA ExprB | Exprb
ExprB ::= ExprB opB ExprC | ExprC

.......
ExprZ ::= Identifier | Const | .......



Expression grammar in C
C was 14 levels of precedence, making its expression 

grammar more complex than that of most other 
languages:

Expr ::=   Expr , AssnExpr |   AssnExpr
AssnExpr ::= UnaryExpr AssnOp AssnExpr | CondExpr
AssnOp ::=  = | *= | /= |  %= | += | -= | <<= |  >>= |  &=

| ^= | !=
CondExpr ::= LogORExpr | LogORExpr ? Expr : CondExpr
LogORExpr ::= LogORExpr || LogANDExpr | LogANDExpr
LogANDExpr ::= LogANDExpr && InclORExpr |  InclORExpr
InclORExpr ::= InclORExpr | ExclORExpr | ExclORExpr

C operatorDerivation
Separator

Expression grammar in C (continued)

ExclORExpr ::= ExclORExpr ^ ANDExpr | ANDExpr
ANDExpr ::= ANDExpr & EQExpr | EQExpr
EQExpr ::= EQExpr == RelExpr | EQExpr != RelExpr | RelExpr
RelExpr ::= RelExpr >= ShftExpr | RelExpr <= ShftExpr

| RelExpr > ShftExpr | RelExpr < ShftExpr | ShftExpr
ShftExpr ::= ShftExpr >> AddExpr | ShftExpr << AddExpr

|  ShftExpr
AddExpr ::= AddExpr + MultExpr | AddExpr - MultExpr

| MultExpr
MultExpr ::= MultExpr * CastExpr | MultExpr / CastExpr

|  MultExpr % CastExpr | CastExpr



Expression grammar in C (continued)
CastExpr ::= (typename) CastExpr | UnExpr
UnExpr ::= PostExpr | ++UnExpr | --UnExpr

|  UnOp CastExpr | sizeof UnExpr | sizeof(typename)
UnOp ::= &  |    *    |    + | - | ~    |    !
ExprList ::= ExprList, AssnExpr | AssnExpr
PostExpr ::= PrimExpr | PostExpr[Expr] | PosrExpr(ExprList)

|  PostExpr.id | Post Expr -> id | PostExpr ++
|  PostExpr --

PrimExpr ::= Literal | (Expr) | id
Literal ::= integer-constant | char-constant | float-constant

|  string-constant

JASON grammar

Program ::= Header DeclSec Block .
Header ::= program id ;
DeclSec ::= VarDecls ProcDecls
VarDecls ::= VarDecls VarDecl | VarDecl | ε
VarDecl ::= DataType IdList
DataType ::= real | integer
IdList ::= IdList, id | id



JASON grammar (continued)

ProcDecls ::= ProcDecls ProcDecl | ProcDecl | ε
ProcDecl ::= ProcHeader DeclSec Block ;
ProcHeader ::= procedure id ParamList ; 
ParamList ::= ( ParamDecls ) | ε
ParamDecls ::= ParamDecls ; ParamDecl

| ParamDecl
ParamDecl ::= DataType id
Block ::= begin Statements end
Statements ::= Statements ; Statement | Statement

JASON grammar (continued)

Statement ::= read id | write id
| set id = Expression
| if Condition then Statements

ElseClause endif
| while Condition do Statements

endwhile
| until Condition do Statements

enduntil
| call id Arglist
| ε



JASON grammar (continued)

ElseClause ::= else Statements | ε
ArgList ::= ( Arguments ) | ε
Arguments ::= Arguments, Factor | Factor
Condition ::= Expression RelOp Expression
Expression ::= Expression AddOp Term | Term
Term ::= Term MultOp Factor | Factor
Factor ::= id | constant
RelOp ::= > | < | = | !
AddOp ::= + | -
MultOp ::= * | /


