Compiler Construction

Lecture 2 - Lexical Analysis

© 2003 Robert M. Siegfried
All rights reserved

Lexical Analysis

» Lexical analysis(or scanning) isthe process by
which the stream of charactersis grouped into
strings representing the words of alanguage
(called lexemes) which correspond to specific
grammatical elements of that language (called
tokens)

Tokensare the fundamental building blocks of a
program’s grammeatical structure, representing
such basic e ements as identifiers, numericliterals,
and specific keywords and operators of the
language.

Lexical Analysis (continued)

» Lexemes are the character strings assembled
from the character stream of a program, and
the token represents what component of the
program’s grammar they constitute.

The scanner’srolein the
compiler’s front end

fequested— Semantic

X Actions
Scanner P—

»
Token
Y \J’eturned

A v

Symbol table

The scanner’srole in the compiler’'s
front end (continued)

The parser is the driving force for much of the compiler’s
front end.

The parser requests a token from the scanner, which
returns the token corresponding to the next lexeme.

The parser requests a particular semantic action, which
depends on what component of the grammar is being
parsed.

All parts of the front end add information into the symbol
table; the scanner adds lexemes to the symbol table (when

necessary) and the symbol table returns to the scanner the
token corresponding to the lexeme.

Lexical analysis - an example

Consider the statement:
for (i =0; i < amount; i++) sum+= x[i];

The character stream (with their ASCII values) is.

f o r (i = 0; i < amoun t..

66 6F 52202869 3D 303B 2069 203C 2061 6D 6F 756E 74 ...
The scanner assembles the following lexemes:

for (i = 0 ; i < ..
and finds in the symbol table the corresponding tokens:
for openparen identifier Assign NumLiteral

semicolon identifier lessthan

Tokens and Lexemes

In many instances, there is a one-to-one
correspondence between the lexemes and tokens
for reserved words and operators.

User-defined identifiers are usually assigned the
token of | dentifier.

Numbers are usually assigned the token of
NumericLiteral or something more specific like
I ntegerLiteral.

Characters and strings are assigned the token of
CharacterLiteral.

A Brief Introduction to Formal Language Theory

String - A sequence of symbols
e. g, ABabbCaC

t ypedef int * intptr ;
;\ /W 7{

Symbols
Alphabet - A finite set of symbols.
e.g, ABC

1,23

ARRAY, SET, ;, OF, +

A Brief Introduction to Formal Language Theory
(continued)

Language - Any set of string over an a phabet.
Graphs - A finite set of vertices and arcs.

A Brief Introduction to Formal Language Theory
(continued)

Trees - adirected graph without circuits.

A Brief Introduction to Formal Language Theory
(continued)

Terminals - any symbol in a given language’ s alphabet.
In formal language theory, they are represented by lower-
caseletters(i. e, a b)

e. g, int,while classareterminasin C++.

Nonterminals - any set of combinations of terminals. A
combination of terminals can be derived from a
nonterminal, according to the productions (rules) of the
grammar of the language. Usually represented by capital
letters (i. e, A B)

A Brief Introduction to Formal Language Theory
(continued)

Examples of nonterminals and the productions in which
they appear:

Expression ::= Term (xTerm)”
Term ::= Factor ({*|/} Factor)®
Factor ::= Identifier

Factor ::= Constant

Variables - Any terminal or nonterminal usually
represent by a Greek letter. 3

Chomsky Hierarchy

L anquage Automaton
Recursively enumerable Turing Machine
(or unrestricted)
Context-sensitive Linear-bounded
Turing Machine
2 Context-free Pushdown Automaton

3 Regular Finite Automaton

Type N automata are computer implementations designed to
process type N language.

Languages & Grammars

Type 0 - Recursive enumerable a:; =M
where a and 3 can be any string or variable.
Type 1 - Context-sensitive a:; =M
where|a | < || and at least one character in a isanonterminal
Type 2 - Context-free A=
where there is one and only nonterminal and NO terminals on the | eft.
Type 3 - Regular A::=aorA::=aB

Most real programming languages are almost context-free
(with afew context-sensitive traits)

Automata

Turing Machine- Given an input stream, it performs as many
computations as necessary, finally deciding whether to accept (if the
string is within the language).

C |a

A

Head

Linearly-bounded Automaton - works like a Turing Machine, but
limits space to the length of the input string.

Automata (continued)

Pushdown automaton - Uses a stack, and it can read from
only the stack.

Finite Automaton - The machine cannot write anything.
After reading the string, it either accepts or rejects the
string.

In theory, computers can be as powerful asa Turing
Machine.

Deterministic Finite Automata

Definition — A finite deterministic automaton is a 5-tuple
(Q, S, d, gy, F) where:

Qisafinite set of states
Sisafinite alphabet

U1 Qistheinitial state

FI Qisaset of fina states

disatransition function

Deterministic Finite Automata (continued)

‘<—e—f S={1,0}
0 1 0

1 Q={000y,0,05}

1

d(dp, 0) =0y d(do, 1) =0y d(cy, 0) =0y, d(gy, 1) =0
d(d,, 0) =qg d(d,, 1) =0y d(gz, 0)=ql; d(gs, 1) =0,
dmapsQ x Sinto Q

Deterministic Finite Automata (continued)

d(dy, @ =de d(ay, b) =qy
d(d, @ =dz d(g, b) = g3
d(ds @ =dg d(ds, b) =qg

What language will this DFA accept?

S= {A-Z, 0-9, blank}

Regular Expressions
Regular expressions have an indefinite repetition of
symbolsin its accepted language.

(01)* = {01, 0101, 010101, 01010101, 0101010101, ...}

1*001* = {0000, 100, 10001, 1000, 1001, 100001,
10000, ...}

(0+10)* ={0, 10, 100, 1010, 010, 0100...}
(1+€)(0+10)* = {1, 010, 100, 1100, 010, 1010, ...}

(0+1)* 101 = {101, 00101, 0101, 10101, 00101, 1011101,
000101, ...}

0*1*2* = 00*11*22* = {001112, 012, 0112, 00111222, ...}

b (@) c* = ()

Deterministic vs. Nondeterministic Automata

A deterministic finite automaton makes one and
only move in a given state-symbol combination.

A Nondeterministic finite automaton can make 0
or more moves for such a combination.

6 @ + @ , M=(QS,d, qyF)ashefore
g g <" but d(Q, S) may beaset or
1

undefined

«

Is this more powerful than a DFA?

Nondeterministic Finite Automata

A nondeterministic finite automaton will have an equivalent
deterministic automaton.
The NFA M isdefined as
m=(Q, S, q, d, F) where
Q={ Gy 01, 0}
S={01}
F={aq}

Yo
{do a2}
O

Nondeterministic Finite Automata (continued)

The equivalent Deterministic Finite Automaton

The equivalence of DFAsand NFAs

A DFA and an NFA are equivalent if their 5-tuple are equivalent.
They are also equivalent if they accept the same language.

@ What language will this NFA accept?
0

The equivalence of DFAs and NFA's (continued)

What language will this DFA accept?

NFA with epsilon-moves

NFAs can contain e-moves, where e is the empty
string. It takes us to another state without having to
read another character.

0 1 2
e e
- r L

NFAswith epsilon moves (continued)

To convert this to the equivalent NFA without e-moves, we need to find e-
closure(q), the set of all states p which can be reached from g by e-moves.

NFAswith epsilon moves (continued)

To convert thisto the equivalent NFA without e-moves,
we need to find e-closure(q), the set of all states which
can be reached from q by e-moves.

0 1
Q 01 1,2
L - F
01,2

Why are DFAs NFAsand NFAswith epsilon moves
important?

» We can automate the construction of NFAs
with epsilon moves for regular expressions.

* From there, we can build NFAs with epsilon
moves, and in turn, a DFA.

» A DFA iseasy to implement in a computer
program procedure.

A few basic NFAs

O O
- F - F
r=0 r=1
-’ -
r=0 r=1

A few basic NFAs (continued)

A==~
0+0/

r=0+1

A few basic NFAs (continued)

e
e 1 e
— (%)
e

Combining the basic NFAS

r=0+0*1

\

Transition Diagrams

» Transition diagrams are a special form of
finite automaton, incorporating features that
belong in acompiler’s scanner:

— Actions associated with final states.

— Backup from a state, allowing for alookahead
character being returned to the input stream.

— Trangitions can be labeled as belonging to
“other”, indicating any class of character not
explicitly accounted for.

Transition Diagrams(continued)

In drawing transition diagrams, it is helpful to use
an alternate approach to describing regular
expressions.

ab denotesaor b.
ab denotesafollowed by b
(ab)* denotes afollowed by b zero or more times

(ab)c denotes a or b followed by ¢

Transition Diagrams(continued)

The different lexical categories or classes can be
described in this fashion:

letter : (a|b|c|d|e...A|B|C|D|E.[X]|Y|2)

digitt (0]|1]2]3]4|5|6]|7]8]9)

other: (! | @ [#]$|% ™ & [* [([)[_|+[=]-]
=1L)

identifier : letter (letter | digit)*

integer : digit digit*

real: (digit digit* . digit digit*) |

(digit digit* . digit digit* (E | €) (+|- |) digit digit*)

Transition Diagrams(continued)

The transition diagram for our language shown before
becomes:

|

A4

letter

> ‘f’fhe'—, {Identifier}
diai

\ igit di&t

4
digit

Practical Issuesin Lexical Analysis

There are several important practical issues
that arise in the design of a scanner:

L ookahead

Case sensitivity

Skipping of lead blanks and comments
Use of first characters

L ookahead characters

Since you cannot determine if you have read beyond
the end of alexeme until you have done so, you must
be prepared to handle the “lookahead” character. There
are two approaches available:

Start with alookahead character and fetch anew one
every time the lookahead character is“consumed” by
the lexeme.

*Use two functions to manipulate the input stream, one
to “get” the next character and oneto “unget” the next
character, returning it temporarily to the input stream.

/1
/1
11
/1

L ookahead characters (continued)

gettc() - Fetches a character froma
file. 1t uses get and adjusts
the |line number count when
necessary.

char scanner::gettc(void)

{

char

/1 1If we' re at the end of file, return a nul
/1 byte, which serves to mark the end of file.
if (infile.eof())

c ="'\0";

L ookahead characters (continued)

/1 1f the next character is a newine,
/1l increnent the line count
else if ((c =infile.get()) == "\n")
[i nenumt+;
/1l Return the character converted to | ower case
return(tol ower(c));

L ookahead characters (continued)

/1l ungettc() - Returns a character to the
/1 file. Uses ungetc and will
/1 adj ust |ine nunber count.
void scanner::ungettc(char c)
{

/1 1If it's a newine, decrenent the |ine

/'l count; we haven't gone to the next |ine

/Il yet.

if (c == "'\n")

--linenum
// Put it back into the input stream
i nfile.putback(c);

Case sengitivity

Although “a’ and “A” areregarded asthe
same character in the English language,
they are represented by different ASCII
codes. For acompiler to be case insensitive,
we need to consider these both as the same
|etter.

The easiest way to do thisisto convert al
|etters to the same case.

Not all languages do this, e.g., C.

Skipping lead blanks and comments

» Beforereading the first significant character

in

alexeme, it necessary to skip past both

lead blanks as well as comments.

« O

ne must assume that the scanner can

encounter either or both repeatedly and
interchangeably before reading the first
significant character.

/1 f
/1
/1
/1
char

{

Skipping lead blanks and comments (continued)

irstchar() - Skips past both white space
and coments until it finds
the first non-white space
character outside a conment.
scanner::firstchar(void)

char c;
bool goodchar = fal se;

/1 If we're at the end of the file,
/1 return the ECF marker so that we'll
/1 return the ECF token
if (infile.eof())
return(EndOfFil e);

Skipping lead blanks and comments (continued)

We're | ooking for a non-white space
character that is outside a conment.
Keep scanning until we find one or
reach the end of the file.
(!goodchar) {
/1 Skip the white space in the
/1 program
while (linfile.eof()

&& i sspace(c = gettc()))

I/ Is it a comment or a real
I/ first character?
if (cl="'{")

goodchar = true;

Skipping lead blanks and comments (continued)

el se
/1 Skip the conment
while (linfile.eof()
&& (¢ = gettc()) '="'1}")

}

/1 If we're at the end of file, return
/1 the EOF marker. Otherwi se, return
/1 the character.
if (infile.eof())

return(EndOfFil e);
el se

return(c);

Use of first character

* In most programming languages, the first
character of alexeme indicates the nature of
thelexeme and token associated with it.

* In most instances, identifiers and reserved
words begin with a letter (followed by zero
or more letters and digits), numbers begin
with adigit and operators begin with other
characters.

Use of first character (continued)

/'l gettoken() - Scan out the token strings of

/1 t he | anguage and return the

/1 correspondi ng token class to the
/1 par ser.

t okent ype scanner:: gettoken(int &tabindex)

{

char c¢;

/1 If this is the end of the file, send the
// token that indicates this

if ((c = lookahead) == EndO File)
return(tokeof);

Use of first character (continued)

[l 1f it begins with a letter, it is a word.
/1 1f begins with a digit, it is a nunber.
/[l Oherwise, it is an error.
| ookahead = gettc();
if (isalpha(c))
return(scanword(c, tabindex));
else if (isdigit(c))
return(scannunm(c, tabindex));
el se
return(scanop(c, tabindex));

Scanning for reserved words and identifiers

» Once the scanner determines that the first
character is aletter, it continues to read
characters and concatenate them to the
lexeme until it encounters a character other
than aletter or digit.

o If the resultant lexemeis not in the symbol
table, it must be a new identifier.

Scanning for reserved words and identifiers (continued)

/1l scanword() - Scan until you encounter
/1 sonmet hing other than a letter
t okent ype scanner: : scanword(char c,
i nt &t abi ndex)
{
char | exene[LexenelLen];
i nt i = 0;

[/ Build the string one character at a tine.
/1 1t keeps scanning until either the end of
[l file or until it encounters a non-letter
| exemel[i ++] = c;
while ((c = | ookahead) !'= EndOFile

&& (isalpha(c) || isdigit(c)))

| exemel[i ++] = c;

| ookahead = gettc();

/1 Add a null byte to term nate the
/1 string and get the | ookahead that
/1 begi ns the next | exene.

| exenme[i] = "\0O

ungett c(l ookahead);

| ookahead = firstchar();

/1 If the lexenme is already in the synbol
/1 table, return its tokenclass. If it
/1 isn"t, it nust be an identifier whose
/1 type we do not know yet.
if (st.installname(l exene, tabindex))
return(st.gettok_cl ass(tabindex));
else {
st.setattrib(tabi ndex, stunknown,
tokidentifier);
return(tokidentifier);

Scanning for numeric literals

After determining that the lexeme begins with a
digit, the scanner reads characters, concatenating
them to thelexeme until it encounters a non-digit.

If itisaperiod, it will concatenate thisto the
lexeme and resume reading characters until it
encounters another non-digit.

If itisan“E”, it must then read the exponent.

The token associated with the lexemeis either
number or the number’ s type.

Scanning for numeric literals (continued)

/'l scannum() - Scan for a nunber.
t okent ype scanner::scannunm(char c,int &tabindex)
{

i nt ival, i = 0;

bool isitreal = fal se;

fl oat rval ;

char | exene[LexenelLen] ;

/1 Scan until you encounter sonething that
/1l cannot be part of a nunber or the end of
Il file
| exenel[i++] = c;
while ((c = | ookahead) != EndOFile
&& isdigit(c))
| exenel[i++] = c;
| ookahead = gettc();

Scanning for numeric literals (continued)

there a fractional part?

=='.") {

isitreal = true

| exenel[i ++] = c;

while ((c = | ookahead) != EndOFile

&& isdigit(c)) {

| exenel[i ++] = c;
| ookahead = gettc();

}

/1 Add a null byte to term nate the
/1 string and get the | ookahead that
/1 begi ns the next | exene.
ungett c(l ookahead);

| exene[i] = "\0O

| ookahead = firstchar();

Scanning for numeric literals (continued)

/[l 1f there is no fractional part, it is an
/1l integer literal constant. O herw se, it
/1l is areal literal constant. Firstly, is
/1 it already in the synbol table?
if (st.installname(l exene, tabindex))
return(st.gettok_class(tabindex));
/1 1f not, is it real?
else if (isitreal) {
st.setattrib(tabindex, stunknown,
t okconst ant) ;
st.instal |l datatype(tabi ndex,
stliteral, dtreal);
rval = atof (Il exene);
st.setval ue(tabi ndex, rval);
return(st.gettok_class(tabindex));

Scanning for numeric literals (continued)

/1 Must be an integer litera

else {
st.setattrib(tabindex, stunknown,

tokconstant);
st.install dat atype(tabi ndex,
stliteral, dtinteger);

ival = atoi(lexene);
st . setval ue(tabi ndex, ival);
/l'ungettc(l ookahead);
return(st.gettok_cl ass(tabindex));

}

unget t c(l ookahead);

return(st.gettok_cl ass(tabindex));

Scanning for operators and characters literals

 If thefirst character is neither aletter nor adigit, the
lexeme must be one of the following:

— an operator
— acharacter literal
— astring literal
* In scanning an operator:

— we should be cognizant of how many charactersit may
contain.

— we may wish to hand-code the token that will be
returned by the symbol table.

» Inscanning aliteral, we read characters until encountering
the appropriate closing quotation mark.

Special problemsin lexical
analysis
There are afew other problemsfaced in
lexical analysis.
Token overloading
Backtracking

Buffering
When keywords are not reserved words

Token overloading

On occasion, there are difficulties presented by a

lexeme serving more than oneroleina

programming language.e.g, = isthe test of equality

AND the assignment operator.

This can be handled by using different lexemes
—E. g.,, Cuses == and =, Pascal uses=and : =,

FORTRAN uses .EQ. and =.

If several lexemes are grouped into one token, it
may become necessary to separate one or more of

thelexemes out to become a distinctly different
token.

Backtracking

* Inrareinstances, it may become necessary
to backtrack and re-scan the text of the
program.

E.g., the DO statement in FORTRAN
DO 101 |1 =1,50

Isinitialy read as
DO101 =1

until the, is encountered.

Text buffering

» Reading fileinput is atime-consuming
process. This makes the buffering of input
text crucial to the efficiency of a compiler.

* In most instances, fileinput is buffered on
modern operating systems, rendering the
Issue less important than a decade ago.

Text buffering (continued)

#defi ne NUMBYTES 512

#def i ne NUMBUFFERS 2

#defi ne MAXSTACK 2

#define gettch()(top > 0 ? buffer[--top]: fetchchar())

i nt bytesread, fd, c, top, linenum= 1
char buf [NUMBUFFERS] [NUMBYTES] ,
buf f er [MAXSTACK], i nputstring[MAXLI NE]

ungettch() - This function, together with the
macro gettch(), all ows the
programto push and pop
characters to and fromthe
* | ookahead buffer
*/
ungettch(char c)
{
if (top > MAXSTACK) {
printf("\'nToo many characters \"ungotten\””
0"
exit(1l);
}

buffer[top++] = c;

Text buffering (continued)

/*

* openfile() - This opens an inputfile as "read
* only” using the unbuffered I/0O
library for greater efficiency.

*/
openfile(char infilenane[])
{
if ((fd = open(infilename, O RDONLY)) < 0)
printf("Cannot open %\n",infilenane);
exit(1l);

Text buffering (continued)

/*

* closefile() - This closes the file. It is a
* separate function to allow for
easi er nodification.

*
*/
closefil e(void)

{
cl ose(fd);

Text buffering (continued)

fetchchar() - This function uses two buffers
of 512 bytes (one block in
MS- DOS), and unbuffered I/0O
to fetch a single character at
atine. Wien it reaches the
end of the buffer, it gets
anot her 512 bytes until end of
file.

Text buffering (continued)

i nt fetchchar (voi d)
{
static int next char = NUMBYTES,
t hi sbuf = NUMBUFFERS- 1;
i f (nextchar >= bytesread)
/* Buffer is ful
Fill the next buffer */
if ((bytesread = read(fd,
buf [t hi sbuf
= (thisbuf == NUMBUFFERS- 1) ?0:t hi sbuf +1],
NUMBYTES-1)) <= 0)
/* Reached end of file. */
return(EOF);

Text buffering (continued)

/* Reset buffer pointer */

next char = O;
return(buf[thisbuf][nextchar++]);

}

When keywords are not reserved words

» The keywords of a programming language are
usually reserved, i. e., they cannot be used by a
programmer as an identifier, a user-defined
variable, datatype, etc.

There are programming languages where this is not
the case, making programs difficult to understand
and making it difficult to return the proper token.
E. g,
| F THEN THEN THEN = ELSE;
ELSE ELSE = THEN,

Scanner generators

» Scanner generators automatically generate
a scanner given the lexical specifications
and software routines given by the user.

» Scanner generators take advantage of the
fact that a scanner is essentially an
implementation of afinite automaton and
can thus be created in an automated fashion.

« LEX isan example of such a software tool.

