
Compiler Construction

Lecture 10 - Optimization

What Is Optimization?
• The process of automated translation of a program

will invariably introduced inefficiencies. Our
goal in optimization is to remove as many of these
inefficiencies as possible.

• Optimization can be local (optimizing basic
blocks within a program) or global (across the
entire program).

• Even after optimizing intermediate code, it may be
necessary to optimize the final object code
because of inefficiencies introduced in final code
generation.

A Sample Program in JASON
PROGRAM MySample;
INTEGER x, y;
BEGIN

SET x = 12;
SET y = 3;

WHILE y ! 0 DO
SET x = x + y;
SET y = y - 1

ENDWHILE;
END.

X := 12
Y := 3
!_1:
if y = 0 goto !_2
X := X + Y
Y := Y - 1
goto !_1
!_2:

Basic Blocks

• A basic block is a sequence of instruction that will
be performed in sequence, always going from the
beginning of the block to the end of the block
without jumping out of the block.

• There may be more than one basic block that
transfers control to a given block and there may be
more than one basic block to which we will
transfer control as we leave a given block.

The Basic Blocks Of Our Sample Program

X := 12
Y := 3

!_1:
if Y != 0 goto !_2

X := X + Y
Y := Y - 1
goto !_1

!_2:

Basic blocks

Flow Graphs

X := 12
Y := 3

!_1:
if Y != 0 goto !_2

X := X + Y
Y := Y - 1
goto !_1

!_2:

Principle Optimizations On Basic
Blocks

• There are several different optimizations
that we can (and will) perform on basic
blocks. They include:
– Common Sub-expression Elimination
– Copy propagation
– Dead-Code Elimination
– Arithmetic Transformation

Common Subexpression Elimination

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c

$_5 := $_2 * b
$_6 := $_5 + c
d := $_4 * $_6

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c

$_5 := $_3
$_6 := $_5 + c
d := $_4 * $_6

Common Subexpression Elimination

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
b := $_3 + c

$_5 := $_2 * b
$_6 := $_5 + c
d := $_4 * $_6

We cannot use subexpression
elimination here because b’s
value was changed

Copy Propagation

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_5 := $_3

$_6 := $_5 + c
d := $_4 * $_6

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_5 := $_3

$_6 := $_3 + c
d := $_4 * $_6

Subexpression After Copy Propagation

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_5 := $_3

$_6 := $_3 + c
d := $_4 * $_6

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_5 := $_3

$_6 := $_4
d := $_4 * $_6

Copy Propagation After Subexpression

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_5 := $_3
$_6 := $_4

d := $_4 * $_6

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_5 := $_3
$_6 := $_4

d := $_4 * $_4

Dead-Code Elimination

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c

$_5 := $_3
$_6 := $_4

d := $_4 * $_4

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c

$_6 := $_4

d := $_4 * $_4

No references to $_5 after defining its value

Arithmetic Transformations

• We can use the laws of algebra to replace
expressions that either do not need to be
calculated or can be calculated more
quickly by other means.

• These algebraic transformations include:
– Constant Folding
– Algebraic Simplification
– Reduction In Strength

Constant Folding

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c
$_6 := $_4

d := $_4 * $_4

b := 2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c

d := $_4 * $_4

Copy Propagation & Dead-Code
Elimination After Constant Folding

b := 2
$_1 := b / 2
$_2 := a* $_1

$_3 := $_2 * b
$_4 := $_3 + c

d := $_4 * $_4

$_1 := 2 / 2
$_2 := a* $_1

$_3 := $_2 * 2
$_4 := $_3 + c

d := $_4 * $_4

More Constant Folding

$_1 := 2 / 2
$_2 := a* $_1

$_3 := $_2 * 2
$_4 := $_3 + c
$_6 := $_4

d := $_4 * $_4

$_1 := 1
$_2 := a* $_1

$_3 := $_2 * 2
$_4 := $_3 + c

d := $_4 * $_4

More Copy Propagation & Dead-Code
Elimination

$_1 := 1
$_2 := a* $_1
$_3 := $_2 * 2
$_4 := $_3 + c
$_6 := $_4

d := $_4 * $_4

$_2 := a * 1
$_3 := $_2 * 2
$_4 := $_3 + c

d := $_4 * $_4

Algebraic Simplification

• We can simplify our expressions by using
algebraic identities:
x + 0 = 0 + x = x
x - 0 = x
x •1 = 1• x = x
x / 1 = x

Applying Algebraic Simplification

$_2 := a * 1
$_3 := $_2 * 2
$_4 := $_3 + c
d := $_4 * $_4

$_2 := a
$_3 := $_2 * 2
$_4 := $_3 + c
d := $_4 * $_4

After Copy Propagation & Dead-
Code Elimination

$_2 := a
$_3 := $_2 * 2
$_4 := $_3 + c
d := $_4 * $_4

$_3 := a * 2
$_4 := $_3 + c
d := $_4 * $_4

After Copy Propagation & Dead-
Code Elimination

$_2 := a
$_3 := $_2 * 2
$_4 := $_3 + c
d := $_4 * $_4

$_3 := a * 2
$_4 := $_3 + c
d := $_4 * $_4

Reduction In Strength

• We can replace multiplication and division (or
exponentiation) with addition and subtraction (or
multiplication) which can usually be done much
more quickly.

• We can use the identities:
x2 = x • x
2 • x = x + x

• We can also use shifts to replace multiplication
and division by powers of 2

Applying Reduction In Strength

$_3 := a * 2
$_4 := $_3 + c
d := $_4 * $_4

$_3 := a + a
$_4 := $_3 + c
d := $_4 * $_4

Our End Result

$_3 := a + a
$_4 := $_3 + c
d := $_4 * $_4

b := 4-2
$_1 := b / 2
$_2 := a* $_1
$_3 := $_2 * b
$_4 := $_3 + c

$_5 := $_2 * b
$_6 := $_5 + c
d := $_4 * $_6

