Compiler Construction

Lecture1l - An Overview

© 2003 Robert M. Siegfried
All rights reserved

A few basic definitions

Trandate - v, a.to turn into one's own language or another.
b. to transform or turn from one of symbolsinto another

Tranglator - n, someone or something that translates.

Compilers are trandators that produce object code
(machine-runnable version) from source code (human-
readable version).

Interpreters are translators that translate only as much asis
necessary to run the next statement of the program.

Source language program

» SourcelLanguage - the
language in which the
source codeiswritten
Target Language - the
language in which the Example
object code is written
| mplementation
Language - Language
in which the compiler
IS written

Target language program

C++ or Java program

Pentium machine
language program

Choice of an Implementation Language

The implementation language for compilers used to be
assembly language.

It isnow customary to write acompiler in the source
language.

Why? The compiler itself can then be used as a sample
program to test the compiler’ s ability to translate complex
programs that utilize the various features of the source
language.

The Compiling Process
Source - Executable

|Assembler Version |

The Interpretation Process

Source language - designed to be machine-translatable
(“ Context-free grammar™)

e.g., FORTRAN, COBOL, Pascal, C, BASIC, LISP

Portable, i.e., programs can be moved from one computer to another with
minimal or no rewriting.

*The Level of Abstraction matches the problem and not the hardware.

*Does not require an intimate knowledge of the computer hardware

Assembly language - machine acronyms for machine
language commands.

eg., mov ax, 3
*Eliminates the worst of the details, but leaves many to be dealt with.

Object Module - amachine language version of the
program lacking some necessary references.

e.g., on the Intel 8x86 (in real mode)

1011 1 000 0000 0000 0000 0003
mov (from register 16-bit AX the immediate value

to immediate) vaue reg.

Load Module - amachine language version that is
complete with addresses of all variables and
routines.

Other types of Compilers

There are compilers that do not necessarily follow this
model:

Load-and-go compilers generate executable code
without the use of alinker.

Cross compilers run on one type of computer and
generate trandations for other classes of computers.

Cross-language compilers translate from one high-level
language to another. (e.g., C++to C)

The organization of a compiler

The various components of acompiler are organized into a
front end and a back end.

The front end is designed to produce some intermediate
representation of a program written in the source language

The back end is designed to produce a program for atarget
computer from the intermediate representation.

Source [ntermedi Back
language =PJHIOIE =D g age P and =>
program Nk program

Why Separate Front and Back
Ends?

BASIC PC

COBOL VM

C++
Maclntosh

Java
Linux Workstation

Why Generate Intermediate
Code?

BASIC IBM PC

COBOL \

uadrupl
% Maclntosh

Linux
Workstation

Components of a Compiler - The Front
End

Parse

tree
Intermediate Annotated AST
2 -

Components of a Compiler - The
Back End

Intermediate Optimized
— > Intermediate

Lexical Analysis

» Thelexical analyzer (or scanner) breaks up the
stream of text into a stream of strings called
“|exemes’ (or token strings)

The scanner checks one character at atime until it
determines that it has found a character which
does not belong in the lexeme.

The scanner looksit up in the symbol table
(inserting it if necessary) and determines the token
associated with that lexeme.

Lexical Analysis (continued)

» Token - the language component that the
character string read represents.

Scanners usually reads the text of the
program either aline or ablock at atime.
(File1/O israther inefficient compared to
other operations within the compiler.

Syntactic Analysis

» A syntactic analyzer (or parser) takesthe
stream of tokens determines the syntactic
structure of the program.

» The parser creates a structure called a parse
tree. The parser usually does not store the
parse in memory or on disk, but it does
formally recognize program’sthe
grammatical structure

Syntactic Analysis (continued)

The grammar of alanguage is expressed formally as
G=(T,N, S, P) where
T isaset of terminals (the basic, atomic symbols of a
language).
N isaset of nonterminals (symbols which denote
particular arrangements of terminals).
Sisthe start symbol (aspecial nonterminal which denotes
the program as awhole).
P isthe set of productions (rules showing how terminals
and nonterminal can be arranged to form other
nonterminals.

Syntactic Analysis (continued)

An example of terminal would be
PROGRAM, ID, and :=.

An example of a nonterminal would be
Program, Block and Statement.

The start symbol in most cases would be
Program

An example of aproduction would be
Block ::= BEGIN Statements END

Semantic Analysis

Semantic analysisinvolves ensuring that the
semantics (or meaning) of the program is correct.
It is quite possible for aprogram to be correct
syntactically and to be correct semantically.

Semantic analysis usually means making sure that

the data types and control structures of a program
are used correctly.

Semantic Analysis (continued)

The various semantic analysis routines are
usually incorporated into the parser and do
not usually comprise a separate phase of the
compiling process.

The process of generating an intermediate
representation (usually an abstract syntax

tree) is usually directed by the parsing of the
program.

A More Redlistic View of the Front End

Intermediate
Code

Error detection in Source Programs

 All the previous stages analyze the program,
looking for potential errors.

FORi !=1 TOn DO WiteLn;
&

Lexical error
IF x > NTHEN Y := -3; ELSE Y := 3;

Syntactic error

Error Detection in Source Programs

PROGRAM Aver age;
VAR Average : |nteger;
Sum Val1l, Val2, Val3 : Real;
BEG N
Vall := 6.0;
Val 2 : = 4;
Val 3 := 37.5; - Mixed-typed assignment
Sum:= Vall + Val2 + Val 3;
Average := (Vall + Val 2 + Val 3) Dy
END. { Average }
Semantic error

| ntermediate Code Generation

* The intermediate code generator creates a
version of the program in some machine-
independent language that is far closer to
the target language than to the source
language.

The abstract syntax tree may serve as an
intermediate representation.

Object Code Generation

The object code generator creates aversion
of the program in the target machine’s own
language.

The process is significantly different from
intermediate code generation.

It may create an assembly language version
of the program, although thisis not the
usual case.

i nt

{

An example of the compiling process

mai n()

fl oat aver age;
i nt X[3];
i nt i, sum

x[0] = 3;

x[1] = 6;

x[2] = 10;

sum = 0;

for (i =0; i <3; i++4)
sum += x[i];

average := Sum 3;

An example of Lexical Analysis

The tokens are:

INT ID { FLOAT
ID : ID [
NUMLITERAL : INT 1D

1D

NUMLITERAL
NUMLITERAL
and so on

A sample parse tree

The corresponding Abstract Syntax Tree

The intermediate code for the example

main:

x[0] =3 {

x[1] =6 Basic Block
x[2] =10

sum=0 @

i =0

ifi >=3 gotot2: ﬁ

t3: =x[i] Basic Block
Sum : = Sum +t3

gototl

Average :=Sum/ 3

The assembler code for the example

_main PROC NEAR ; COMDAT
; File C:\MyFiles\Sour ce\avg3\avg3.c
:Line4

push ebp

mov ebp, esp

sub esp, 88

push ebx

push esi

push edi

mov DWORD PTR _x$[ebp], 3
mov DWORD PTR _x$[ebp+4], 6
mov DWORD PTR _x$[ebp+8], 10
mov DWORD PTR _sum$[ebp], 0

The Symbol Table

* The symbol table tracks all symbols used in
agiven program.
» Thisincludes:
— Key words
— Standard identifiers
— Numeric, character and other literals
— User-defined data types
— User-defined variables

The Symbol Table (continued)

» Symbol tables must contain:
— Token class
— Lexemes
— Scope
— Types
— Pointers to other symbol table entries (as
necessary)

“Shaper” - an example of atranslator

Shaper isa“microscopic” language which draws rectangles, square
and right isosceles triangles on the screen.

Shaper has three statements:
— RECTANGLE {WIDE or LONG} Number BY Number
— SQUARE SIZE Number
— TRIANGLE SIZE Number
Example
RECTANGLE LONG 6 by 5
RECTANGLE WIDE 15BY 30
SQUARE SIZE 9
TRIANGLE SIZE 5

The “Shaper” Translator

#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <ctype. h>

#i ncl ude <stdlib. h>
#i ncl ude <string. h>

enum tokentype {t okby, tokeof, tokerror,
t okr ect angl e, toksi ze,
t oksquare, toktriangle,
t okwi de};

char *tokennanme[] = {"by","eof", "error",
"l ong", "nunber", "rectangle",
"size","square", "triangle",
"wi de"};

const int filenamesize = 40,
t okenstringl ength = 15,
nunt okens = 10;

wor dsearch(char *test, char *words[],
int len);

cl ass scanner {

publi c:
scanner (int argcount, char *arg[]);
scanner (voi d);
~scanner (voi d);
t okentype scan(char tokenstring[]);

private:
t okent ype scanword(char c, char tokenstring[]);
t okentype scannum(char c, char tokenstring[]);
ifstream infile;

b

scanner: :scanner (int argcount, char *arg[])

{

char filenanme[fil enanmesi ze];

/1 1f there is only one argunment, it nust be
/1l the programfile for Shaper. That neans
/1 that we need the source file.

/1 1f there are two argunents, we have it

/1 already as the second argunent. |f there
/1l are nore, there nmust be a mi stake.

if (argcount == 1) {
cout << "Enter programfile nanme\t?";
cin >> filenane;
}
else if (argcount == 2)
strcpy(filenane, arg[1]);

el se {
cerr << "Usage: Shaper <filenanme>\n";
exit(1l);

infile.open(filename, io0s::in);

if (linfile) {
cerr << "Cannot open " << filename << endl
exit(1l);

/'l scanner() - Default constructor for the
/1 scanner
scanner::scanner (voi d)

{

char filenane[fil enanesi ze];

cout << "Enter programfile name\t?"
cin >> fil enane;

/1 Open the input file
infile.open(filename, io0s::in);
if (linfile) {
cerr << "Cannot open " << filename <<
exit(1);

scanner: : ~scanner (voi d)

{

infile.close();

/1 scan() - Scan out the words of the |anguage
t okent ype scanner::scan(char tokenstring[])

{

char c;

/1 Skip the white space in the program
while (linfile.eof () &&
i sspace(c=infile.get()))

/1 1f this is the end of the file, send the
/1 token that indicates this
if (infile.eof())

return(tokeof);

/11f it begins with a letter, it is a word. |If
/1 begins with a digit, it is a nunmber. O herw se,
/lit is an error.
if (isalpha(c))
return(scanword(c, tokenstring));
else if (isdigit(c))
return(scannun(c, tokenstring));
el se
return(tokerror);

/1l scanword() - Scan until you encounter
/1 somet hing other than a letter
/1 It uses a binary search to find
/1 the appropriate token in the
/1 t abl e.
t okent ype scanner: :scanword(char c,

char tokenstring[])

{
i nt i = 0;
t okent ype t okencl ass;

/1 Build the string one character at a tine.
/1 1t keep scanning until either the end of
/1 file or until it encounters a non-letter
tokenstring[i++] = c;

while ('infile.eof () &&
i sal pha(c = infile.get()))
tokenstring[i++] = c;
tokenstring[i] =\0

/1 Push back the | ast character
i nfile.putback(c);

/1 1s this one of the |egal keywords for
/1l Shaper? |If not, it's an error
if ((tokenclass =
(t okent ype) wor dsear ch(t okenstri ng,
t okenname, numt okens))
1)

return(tokerror);
el se

return(tokencl ass);

11
/1
11
/1
/1

scannum() - It returns the token toknumber.
The parser will receive the
nunber as a string and is
responsi bl e for converting it
into nunerical form

t okent ype scanner: : scannum(char c,

char tokenstring[])

int i = 0;

/1 Scan until you encounter sonething that
/1l cannot be part of a number or the end of
11 file

tokenstring[i++] = c;

while (!linfile.eof() &&
isdigit(c = infile.get()))
tokenstring[i++] = c;

tokenstring[i] = '"\0";
/1 Push back the |ast character

infile.putback(c);
return(toknumnber);

Managing the “ Symbol Table”

/!l wordsearch() - A basic binary search to find a
/1 string in an array of strings
i nt wor dsearch(char *test, char *words[],

int |en)

int low =0, md, high =1en - 1

/1 Keep searching as |ong as we haven't
/'l searched the whole array
while (1 ow <= high) {
md = (low + high)/2;
if (strcmp(test,words[mid]) < 0)
/1 search the | ower half
high = md - 1;

else if (strcnmp(test,words[md]) > 0)
/1 search the upper half
low = mid + 1;
el se
/1 We found it!!
return(md);
}
/1 It isn't there
return(-1);

Parsing A “Shaper” Program

cl ass parser : scanner {
publi c:
parser (i nt argcount, char *args[]);
par ser (voi d);
voi d ProcProgram(voi d) ;
private:
voi d ProcRect angl e(voi d) ;
voi d ProcSquar e(voi d);
voi d ProcTri angl e(voi d);
t okent ype t okencl ass;
char t okenstring[tokenstringl ength];

b

/1l parser() - A constructor that passes
/1 initial values to the base
/1 cl ass
parser::parser(int argcount, char *args[])
scanner (argcount, args)

{

/1 Get the first token

t okencl ass = scan(tokenstring);

}

/1l parser() - A default constructor
par ser: : parser(void)
{

/1 Get the first token

t okencl ass = scan(tokenstring);

voi d parser:: ProcProgramvoid)
{
/'l CGet a token and depending on that token's
/1 value, parse the statenent.
whil e (tokenclass != tokeof)
swi tch(tokencl ass) {
case tokrectangl e:
ProcRect angl e() ;
t okencl ass = scan(tokenstring);
br eak;

case toksquare:
ProcSquare();
t okencl ass = scan(tokenstring);
br eak;

case toktriangl e:
ProcTri angl e();
t okencl ass = scan(tokenstring);
br eak;

defaul t: cerr << tokenstring
<< " is not a legal”
<< “ statement\n"
<< endl;
exit(3);

/'l ProcRectangl e() - Parse the rectangle
/1 command and if there
/1 are no errors, it wll
/ produce a rectangle
/1 on the whose di nensions
/1 are set by the
/1 rectangl e statenent.
void parser::ProcRectangl e(void)
{

i nt shape, columms, rows;

char t okenstring[tokenstringl ength];

/1 The next word should be wide or long to

/1 indicate whether there are nore rows or

/1 colums. This is not really necessary for
/1l the statenment to work correctly, but is a
/1 good sinple illustration of how type

/'l checki ng works.

if ((tokenclass = scan(tokenstring)) != tokw de
&& tokencl ass ! = tokl ong) {
cerr << "Expected \"wide\" or \"long\"”
<< “ instead of " << tokenstring
<< endl;
exit(4);

[/ Get the nunmber of colums and if it is a

/'l nunber

if ((tokenclass = scan(tokenstring)) !=
t oknunber) {

cerr << "Expected nunber instead of
<< tokenstring << endl
exit(5);

/1 The token by is sinply a separator but the
/1 grammar requires it.
if ((tokenclass = scan(tokenstring)) != tokby){

cerr << "Expected \"by\" instead of
<< tokenstring << endl

/1 Get the number of rows and if it is
/1 number
if ((tokenclass = scan(tokenstring))
I = toknunber)
cerr << "Expected nunber instead of
<< tokenstring << endl
exit(5);

Adding the Semantic Actions to ProcRectangle

void parser::ProcRectangl e(void)

{

i nt shape, columms, rows;
chartokenstring[tokenstringl ength];

/1 The next word should be wide or long to indicate
/1 whether there are nore rows or colums. This is
/1 not really necessary for the statement to work
/[l correctly, but is a good sinple illustration of
/1 how type checki ng works.
if ((tokenclass = scan(tokenstring)) != tokw de
&& tokenclass ! = toklong) ({
cerr << "Expected \"wide\" or \"long\" instead”
<< of " << tokenstring << endl
exit(4);

/'l The shape is indicated by whether this
/1 token was wi de or |ong
shape = tokencl ass;

/1l Get the nunber of colums and if it is a nunber,
/1 convert the character string into an integer
if ((tokenclass = scan(tokenstring)) != toknunber) {
cerr << "Expected nunber instead of
<< tokenstring << endl;
exit(5);
}
colums = atoi (tokenstring);
/1 The token by is sinply a separator but the
/1 granmmar requires it.
if ((tokenclass = scan(tokenstring)) != tokby){
cerr << "Expected \"by\" instead of
<< tokenstring << endl;

/1l Get the number of rows and if it is a
/1 number, convert the character string into
/1l an integer
if ((tokenclass = scan(tokenstring)) != toknunber) {
cerr << "Expected nunber instead of
<< tokenstring << endl;
exit(5);

}
rows = atoi (tokenstring);

/1 A long rectangle should have nore rows than
/1 colums and a wide rectangle will have the
/1l opposite. This illustrates how type

/1 checking works on a facile |evel

if (shape == toklong && col ums < rows
|| shape == tokw de

&& columms > rows)
cerr << "A " << tokennane[shape]

<< " rectangl e cannot be << col umms
<< " by " << rows << endl
exit(6);
}

Dr awRect angl e(col unms, rows);

