
Compiler Construction

 Lecture 1 - An Overview

© 2003 Robert M. Siegfried
All rights reserved

A few basic definitions
Translate - v, a.to turn into one’s own language or another.
b. to transform or turn from one of symbols into another

Translator - n, someone or something that translates.

Compilers are translators that produce object code
(machine-runnable version) from source code (human-
readable version).

Interpreters are translators that translate only as much as is
necessary to run the next statement of the program.

• Source Language - the
language in which the
source code is written
Target Language - the
language in which the
object code is written

• Implementation
Language - Language
in which the compiler
is written

Source language program

Compiler

Target language program

Example:

Compiler

Pentium machine
language program

C++ or Java program

Choice of an Implementation Language

The implementation language for compilers used to be
assembly language.

It is now customary to write a compiler in the source
language.

Why? The compiler itself can then be used as a sample
program to test the compiler’s ability to translate complex
programs that utilize the various features of the source
language.

The Compiling Process
Source
Code

Assembler version

Object
Module

Compiler Linker
Executable
version

The Interpretation Process

Source
Code

Intermediate
Version

Interpreter Interpreter Output

Input

Source language - designed to be machine-translatable
(“Context-free grammar”)

e.g., FORTRAN, COBOL, Pascal, C, BASIC, LISP
•Portable, i.e., programs can be moved from one computer to another with
minimal or no rewriting.

•The Level of Abstraction matches the problem and not the hardware.

•Does not require an intimate knowledge of the computer hardware

Assembly language - machine acronyms for machine
language commands.

e.g., mov ax, 3
•Eliminates the worst of the details, but leaves many to be dealt with.

Object Module - a machine language version of the
program lacking some necessary references.

e.g., on the Intel 8x86 (in real mode)

1011 1 000 0000 0000 0000 0003
 mov (from register 16-bit AX the immediate value

 to immediate) value reg.

Load Module - a machine language version that is
complete with addresses of all variables and
routines.

Other types of Compilers

There are compilers that do not necessarily follow this
model:

Load-and-go compilers generate executable code
without the use of a linker.

Cross compilers run on one type of computer and
generate translations for other classes of computers.

Cross-language compilers translate from one high-level
language to another. (e.g., C++ to C)

The organization of a compiler
• The various components of a compiler are organized into a

front end and a back end.
• The front end is designed to produce some intermediate

representation of a program written in the source language
• The back end is designed to produce a program for a target

computer from the intermediate representation.

Front
 end

Source
language
program

Intermediate
Language
program

Back
end

Machine
Language
Program

Why Separate Front and Back
Ends?

BASIC

COBOL

C++

Java

Ada

PC

 JVM

MacIntosh

Linux Workstation

Why Generate Intermediate
Code?

BASIC

COBOL

C++

Java

Ada

Quadruples

IBM PC

 JVM

MacIntosh

Linux
Workstation

Components of a Compiler - The Front
End

Source
Code

Lexical
Analyzer
(Scanner)

Syntactic
Analyzer
(Parser)

Tokens

Semantic
Analyzer

Parse
tree

Intermediate
Code
Generator

Annotated ASTIntermediate
Code

Components of a Compiler - The
Back End

Intermediate
Code

Machine-
Independent
Optimizer

Optimized
Intermediate
Code

Object Code
Generator

Object
Code

Machine-
Dependent
Optimizer

Optimized
Object
Code

Lexical Analysis

• The lexical analyzer (or scanner) breaks up the
stream of text into a stream of strings called
“lexemes” (or token strings)

• The scanner checks one character at a time until it
determines that it has found a character which
does not belong in the lexeme.

• The scanner looks it up in the symbol table
(inserting it if necessary) and determines the token
associated with that lexeme.

Lexical Analysis (continued)

• Token - the language component that the
character string read represents.

• Scanners usually reads the text of the
program either a line or a block at a time.
(File I/O is rather inefficient compared to
other operations within the compiler.

Syntactic Analysis

• A syntactic analyzer (or parser) takes the
stream of tokens determines the syntactic
structure of the program.

• The parser creates a structure called a parse
tree. The parser usually does not store the
parse in memory or on disk, but it does
formally recognize program’s the
grammatical structure

Syntactic Analysis (continued)

The grammar of a language is expressed formally as
G = (T, N, S, P) where
T is a set of terminals (the basic, atomic symbols of a
language).
N is a set of nonterminals (symbols which denote
particular arrangements of terminals).
S is the start symbol (a special nonterminal which denotes
the program as a whole).
P is the set of productions (rules showing how terminals
and nonterminal can be arranged to form other
nonterminals.

Syntactic Analysis (continued)

• An example of terminal would be
PROGRAM, ID, and :=.

• An example of a nonterminal would be
Program, Block and Statement.

• The start symbol in most cases would be
Program

• An example of a production would be
Block ::= BEGIN Statements END

Semantic Analysis

• Semantic analysis involves ensuring that the
semantics (or meaning) of the program is correct.

• It is quite possible for a program to be correct
syntactically and to be correct semantically.

• Semantic analysis usually means making sure that
the data types and control structures of a program
are used correctly.

Semantic Analysis (continued)

• The various semantic analysis routines are
usually incorporated into the parser and do
not usually comprise a separate phase of the
compiling process.

• The process of generating an intermediate
representation (usually an abstract syntax
tree) is usually directed by the parsing of the
program.

A More Realistic View of the Front End

Source
Code

Lexical
Analyzer
(Scanner)

Syntactic
Analyzer
(Parser)

tokens Semantic
Actions

Intermediate
Code

Generator
Intermediate
Code

gettoken()
Call

actions

return

Anno-
tated
AST

Error detection in Source Programs

• All the previous stages analyze the program,
looking for potential errors.

FOR i != 1 TO n DO WriteLn;

Lexical error

IF x > N THEN Y := -3; ELSE Y := 3;

Syntactic error

Error Detection in Source Programs

PROGRAM Average;
 VAR Average : Integer;
 Sum, Val1, Val2, Val3 : Real;
 BEGIN
 Val1 := 6.0;
 Val2 := 4;
 Val3 := 37.5; Mixed-typed assignment
 Sum := Val1 + Val2 + Val3;
 Average := (Val1 + Val2 + Val3) DIV 3
 END. { Average }
 Semantic error

Intermediate Code Generation

• The intermediate code generator creates a
version of the program in some machine-
independent language that is far closer to
the target language than to the source
language.

• The abstract syntax tree may serve as an
intermediate representation.

Object Code Generation

• The object code generator creates a version
of the program in the target machine’s own
language.

• The process is significantly different from
intermediate code generation.

• It may create an assembly language version
of the program, although this is not the
usual case.

An example of the compiling process
int main()
{

float average;
int x[3];
int i, sum;

x[0] = 3;
x[1] = 6;
x[2] = 10;
sum = 0;
for (i = 0; i < 3; i++)

sum += x[i];
average := Sum/3;

}

An example of Lexical Analysis

The tokens are:
INT ID () { FLOAT
ID ; INT ID [
NUMLITERAL] ; INT ID
, ID ; ID [
NUMLITERAL] =
NUMLITERAL ;
and so on

A sample parse tree

Program

type-
specifier

function-
definition

function-
body

type-decl-
list

function-
declarator

ID

function-
body

INT declarator
()

{ }
statement

list

The corresponding Abstract Syntax Tree

ID

INT VOID Statementsdecls

IDID ID

The intermediate code for the example

main:
x[0] = 3
x[1] = 6
x[2] = 10
sum = 0
i =0

t1:
if i >= 3 goto t2:
t3 : = x[i]
Sum : = Sum + t3
goto t1

t2:
Average := Sum / 3

Basic Block

Basic Block

The assembler code for the example

_main PROC NEAR ; COMDAT
; File C:\MyFiles\Source\avg3\avg3.c
; Line 4

push ebp
mov ebp, esp
sub esp, 88
push ebx
push esi
push edi
… … ..
mov DWORD PTR _x$[ebp], 3
mov DWORD PTR _x$[ebp+4], 6
mov DWORD PTR _x$[ebp+8], 10
mov DWORD PTR _sum$[ebp], 0
… … …

The Symbol Table

• The symbol table tracks all symbols used in
a given program.

• This includes:
– Key words
– Standard identifiers
– Numeric, character and other literals
– User-defined data types
– User-defined variables

The Symbol Table (continued)

• Symbol tables must contain:
– Token class
– Lexemes
– Scope
– Types
– Pointers to other symbol table entries (as

necessary)

“Shaper” - an example of a translator

• Shaper is a “microscopic” language which draws rectangles, square
and right isosceles triangles on the screen.

• Shaper has three statements:

– RECTANGLE {WIDE or LONG} Number BY Number
– SQUARE SIZE Number
– TRIANGLE SIZE Number

• Example
– RECTANGLE LONG 6 by 5
– RECTANGLE WIDE 15 BY 30

– SQUARE SIZE 9
– TRIANGLE SIZE 5

The “Shaper” Translator
#include <iostream.h>
#include <fstream.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

enum tokentype {tokby, tokeof, tokerror,
tokrectangle, toksize,
toksquare, toktriangle,
tokwide};

char *tokenname[] = {"by","eof", "error",
"long", "number", "rectangle",
"size","square", "triangle",
"wide"};

const int filenamesize = 40,
tokenstringlength = 15,
numtokens = 10;

int wordsearch(char *test, char *words[],
int len);

class scanner {
public:

scanner(int argcount, char *arg[]);
scanner(void);
~scanner(void);
tokentype scan(char tokenstring[]);

private:
tokentype scanword(char c, char tokenstring[]);
tokentype scannum(char c, char tokenstring[]);
ifstream infile;

};

scanner::scanner(int argcount, char *arg[])
{

char filename[filenamesize];

// If there is only one argument, it must be
// the program file for Shaper. That means
// that we need the source file.
// If there are two arguments, we have it
// already as the second argument. If there
// are more, there must be a mistake.

if (argcount == 1) {
cout << "Enter program file name\t?";

 cin >> filename;
}
else if (argcount == 2)

strcpy(filename, arg[1]);

else {
cerr << "Usage: Shaper <filename>\n";
exit(1);

}

infile.open(filename, ios::in);
if (!infile) {

cerr << "Cannot open " << filename << endl;
exit(1);

}
}

// scanner() - Default constructor for the
// scanner
scanner::scanner(void)
{

char filename[filenamesize];

cout << "Enter program file name\t?";
cin >> filename;

// Open the input file
infile.open(filename, ios::in);
if (!infile) {

cerr << "Cannot open " << filename << endl;
exit(1);

}
}

scanner::~scanner(void)
{

infile.close();
}

//scan() - Scan out the words of the language
tokentype scanner::scan(char tokenstring[])
{

char c;

// Skip the white space in the program
while (!infile.eof() &&

isspace(c=infile.get()))
;

// If this is the end of the file, send the
// token that indicates this
if (infile.eof())

 return(tokeof);

//If it begins with a letter, it is a word. If
//begins with a digit, it is a number. Otherwise,
//it is an error.

if (isalpha(c))
return(scanword(c, tokenstring));

else if (isdigit(c))
return(scannum(c, tokenstring));

else
return(tokerror);

}

//scanword() - Scan until you encounter
// something other than a letter.
// It uses a binary search to find
// the appropriate token in the
// table.
tokentype scanner::scanword(char c,

char tokenstring[])
{

int i = 0;
tokentype tokenclass;

// Build the string one character at a time.
// It keep scanning until either the end of
// file or until it encounters a non-letter
tokenstring[i++] = c;

while (!infile.eof() &&
isalpha(c = infile.get()))

tokenstring[i++] = c;
tokenstring[i] ='\0';

 // Push back the last character
infile.putback(c);

// Is this one of the legal keywords for
// Shaper? If not, it's an error
if ((tokenclass =

(tokentype)wordsearch(tokenstring,
tokenname, numtokens))

== -1)
return(tokerror);

else
return(tokenclass);

}

//scannum() - It returns the token toknumber.
// The parser will receive the
// number as a string and is
// responsible for converting it
// into numerical form.
tokentype scanner::scannum(char c,

char tokenstring[])
{

int i = 0;

// Scan until you encounter something that
// cannot be part of a number or the end of
// file
tokenstring[i++] = c;

while (!infile.eof() &&
isdigit(c = infile.get()))

tokenstring[i++] = c;

tokenstring[i] = '\0';

// Push back the last character
infile.putback(c);
return(toknumber);

}

Managing the “Symbol Table”
//wordsearch() - A basic binary search to find a
// string in an array of strings
int wordsearch(char *test, char *words[],

int len)
{

int low = 0, mid, high = len - 1;

// Keep searching as long as we haven't
// searched the whole array
while (low <= high) {

mid = (low + high)/2;
if (strcmp(test,words[mid]) < 0)

// search the lower half
high = mid - 1;

else if (strcmp(test,words[mid]) > 0)
// search the upper half
low = mid + 1;

else
// We found it!!

 return(mid);
}
// It isn't there
return(-1);

}

Parsing A “Shaper” Program

class parser : scanner {
public:

parser(int argcount, char *args[]);
parser(void);
void ProcProgram(void);

private:
void ProcRectangle(void);
void ProcSquare(void);
void ProcTriangle(void);
tokentype tokenclass;
char tokenstring[tokenstringlength];

};

// parser() - A constructor that passes
// initial values to the base
// class
parser::parser(int argcount, char *args[])

: scanner (argcount,args)
{

// Get the first token
tokenclass = scan(tokenstring);

}

// parser() - A default constructor
parser::parser(void)
{

// Get the first token
tokenclass = scan(tokenstring);

}

void parser::ProcProgram(void)
{

// Get a token and depending on that token's
// value, parse the statement.
while (tokenclass != tokeof)

switch(tokenclass) {
case tokrectangle:

ProcRectangle();
tokenclass = scan(tokenstring);
break;

case toksquare:
ProcSquare();
tokenclass = scan(tokenstring);
break;

case toktriangle:
ProcTriangle();
tokenclass = scan(tokenstring);
break;

default: cerr << tokenstring
<< " is not a legal”
<< “ statement\n"
<< endl;

exit(3);
}

}

//ProcRectangle() - Parse the rectangle
// command and if there
// are no errors, it will
/ produce a rectangle
// on the whose dimensions
// are set by the
// rectangle statement.
void parser::ProcRectangle(void)
{

int shape, columns, rows;
char tokenstring[tokenstringlength];

// The next word should be wide or long to
// indicate whether there are more rows or
// columns. This is not really necessary for
// the statement to work correctly, but is a
// good simple illustration of how type
// checking works.

if ((tokenclass = scan(tokenstring)) != tokwide
&& tokenclass != toklong) {

cerr << "Expected \"wide\" or \"long\“”
<< “ instead of " << tokenstring
<< endl;

exit(4);
}

// Get the number of columns and if it is a
// number
if ((tokenclass = scan(tokenstring)) !=
toknumber) {

cerr << "Expected number instead of "
<< tokenstring << endl;

exit(5);
}

// The token by is simply a separator but the
// grammar requires it.
if ((tokenclass = scan(tokenstring)) != tokby){

cerr << "Expected \"by\" instead of "
<< tokenstring << endl;

}

// Get the number of rows and if it is a
// number
if ((tokenclass = scan(tokenstring))

!= toknumber) {
cerr << "Expected number instead of "

<< tokenstring << endl;
exit(5);

}
}

Adding the Semantic Actions to ProcRectangle

void parser::ProcRectangle(void)
{

int shape, columns, rows;
chartokenstring[tokenstringlength];

// The next word should be wide or long to indicate
// whether there are more rows or columns. This is
// not really necessary for the statement to work
// correctly, but is a good simple illustration of
// how type checking works.
if ((tokenclass = scan(tokenstring)) != tokwide

&& tokenclass != toklong) {
cerr << "Expected \"wide\" or \"long\" instead”

<< of “ << tokenstring << endl;
exit(4);

}

// The shape is indicated by whether this
// token was wide or long
shape = tokenclass;

// Get the number of columns and if it is a number,
// convert the character string into an integer
if ((tokenclass = scan(tokenstring)) != toknumber) {

cerr << "Expected number instead of "
<< tokenstring << endl;

exit(5);
}
columns = atoi(tokenstring);
// The token by is simply a separator but the
// grammar requires it.
if ((tokenclass = scan(tokenstring)) != tokby){

cerr << "Expected \"by\" instead of "
<< tokenstring << endl;

}

// Get the number of rows and if it is a
// number, convert the character string into
// an integer.
if ((tokenclass = scan(tokenstring)) != toknumber) {

cerr << "Expected number instead of "
<< tokenstring << endl;

exit(5);
}
rows = atoi(tokenstring);

// A long rectangle should have more rows than
// columns and a wide rectangle will have the
// opposite. This illustrates how type
// checking works on a facile level.

if (shape == toklong && columns < rows
|| shape == tokwide

&& columns > rows) {
cerr << "A " << tokenname[shape]

<< " rectangle cannot be " << columns
<< " by " << rows << endl;

exit(6);
}
DrawRectangle(columns, rows);

}

