
CSC 370 – Computer Architecture

and Organization

Lecture 9 – IA-32 Architecture

The Intel Microprocessor Family

• The Intel family owes its origins to the 8080, an 8-bit
processor which could only access 64 kilobytes of
memory.

• The 8086 (1978) had 16-bit registers, a 16-bit data bus, 20-
bit memory using segmented memory. The IBM PC used
the 8088, which was identical except it used an 8-bit data
bus.

• 8087 - a math co-processor that worked together with the
8086/8088. Without it, floating point arithmetic require
complex software routines.

• 80286 - ran in real mode (like the 8086/8088) or in
protected mode could access up tp 16MB using 24-bit
addressing with a clock speed between 12 and 25 MHz. Its
math co-processor was the 80287.

The Intel Microprocessor Family (continued)

• 80386 or i386 (1985) - used 32-bit registers and a 32-bit

data bus. It could operate in real, protected or virtual

mode. In virtual mode, multiple real-mode programs could

be run.

• i486 - The instruction set was implemented with up to 5

instructions fetched and decoded at once. SX version had

its FPU disabled.

• The Pentium processor had an original clock speed of 90

MHz and cold decode and executed two instructions at the

same time, using dual pipelining.

IA-32 Processor Modes of Operations

• There are three basic modes of operation on IA-32
processors:

• Protected Mode – The native processor state, where all
instructions and features are available. Each process is
given its own memory segment and the processor
catches any process attempting to go outside its own
segment

• Real-address Mode – The processor acts as if it were
an Intel 8086 processor with its more limited
environment

• System Management Mode – provides a mechanism
for implementation power management and system
security

IA-32 Processor Address Space

• In protected mode IA-32 processors can access up
to 4 Gigabytes of storage, with memory addresses
from 0 to 232-1.

• In real mode, a maximum of 1 megabyte of
memory can be accessed with memory addresses
from 0 to 220-1.

• The IA-32 processors provide a Virtual 8086
where multiple MS-DOS programs can run safely
within an Windows environment.

P6 Processor Family

• The P6 family of processors was introduced in
1995.

• It includes the Pentium Pro, Pentium II, Pentium
III and Pentium 4.

• The Pentium II introduces MMX technology for
multimedia applications.

• The Pentium III introduced SIMD with 128-bit
registers to move larger amounts of data.

• The Pentium 4 uses NetBurst micro-architecture to
allow the processors to operate at higher speeds.

CISC Architecture

• The Intel processors have been based on the

CISC (Complex Instruction Set Computer)

approach to processor design.

• CISC processors have large , powerful

instruction sets that can include many high-

level operations. But the size of the

instruction set makes the control unit

relatively slow.

RISC Architecture

• RISC computers use smaller, streamlined

instruction sets that allow their control units

to be quicker.

• Intel processors are backwards-compatible

and are basically CISC but use RISC

features such as pipelining and superscalar.

32-bit Register
General Purpose

EAX

31 0

EBX

ECX

EDX

Status and Control

AX

BX

CX

DX

Flags

IP

EFLAGS

EIP

Index

EBP

ESP

ESI

EDI

Segment

CS

SS

DS

ES

FS

GS

16-bit Processor Architecture

General Purpose Registers

AX

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL

AX (Accumulator) - favored for

arithmetic opertions

BX (Base) - Holds base address

for procedures and variables

CX (Counter) - Used as a counter

for looping operations

DX (Data) - Used in mulitplication

and division operations.

15 0

7 0 7 0

Segment Registers

Segment registers are used to hold base addresses

for program code, data and the stack.

15 0

CS

15 0

SS

15 0

DS

15 0

ES

CS (Code Segment) - holds the base

address for all executable instructions

in the program

SS (Stack Segment) - holds the base

address for the stack

DS (Data Segment) - holds the base

address for variables

ES (Extra Segment) - an additional base

address value for variable.

Index Registers
Index Registers contain the offsets for data and

instructions.

Offset - distance (in bytes) from the base address of the

segment.

BP

SP

SI

DI

BP (Base Pointer) - contains an assumed

offset from the SS register; used to locate

variables passed between procedures.

SP (Stack Pointer) - contains the offset for

the top of the stack.

SI (Source Index) - Points to the source

string in string move instructions.

DI (Destination Index) - Points to the

source destination in string move

instructions.

Status and Control Registers

IP
IP (Instruction Pointer) - contains the offset of

the next instruction to be executed within the

current code segment.

x x x x O D I T xxxS Z A P C

Flags register contain individual bits which indicate CPU

status or arithmetic results. They are usually set by

specific instructions.

O = Overflow

D = Direction

I = Interrupt

T = Trap

x = undefined

S = Sign

Z = Zero

A = Auxiliary Carry

P = Parity

C = Carry

Flags

There are two types of flags: control flags (which determine

how instructions are carried out) and status flags (which

report on the results of operations.

Control flags include:

– Direction Flag (DF) - affects the direction of block data

transfers (like long character string). 1 = up; 0 - down.

– Interrupt Flag (IF) - determines whether interrupts can

occur (whether hardware devices like the keyboard,

disk drives, and system clock can get the CPU’s

attention to get their needs attended to.

– Trap Flag (TF) - determines whether the CPU is halted

after every instruction. Used for debugging purposes.

Status Flags

• Status Flags include:

– Carry Flag (CF) - set when the result of unsigned arithmetic is too

large to fit in the destination. 1 = carry; 0 = no carry.

– Overflow Flag (OF) - set when the result of signed arithmetic is

too large to fit in the destination. 1 = overflow; 0 = no overflow.

– Sign Flag (SF) - set when an arithmetic or logical operation

generates a negative result. 1 = negative; 0 = positive.

– Zero Flag (ZF) - set when an arithmetic or logical operation

generates a result of zero. Used primarily in jump and loop

operations. 1 =zero; 0 = not zero.

– Auxiliary Carry Flag - set when an operation causes a carry from

bit 3 to 4 or borrow (frombit 4 to 3). 1 = carry, 0 = no carry.

– Parity - used to verify memory integrity. Even # of 1s = Even

parity; Odd # of 1s = Odd Parity

Floating-Point Unit

ST(0)

ST(1)

ST(2)

ST(3)

ST(5)

ST(6)

ST(7)

ST(4)

Opcode Register

80-bit Data Registers 48-bit Pointer Registers

FPU Instruction Pointer

FPU Data Pointer

Tag Register

Control Register

Status Register

16-bit Control Registers

Segmented Memory Map, Real-Address

Mode

F0000
E0000

C0000
D0000

B0000
A0000
90000
80000
70000
60000
50000
40000
30000
20000
10000
00000

8000:FFFF

8000:0000

segment offset

0250

8000:0250

Relocatable addressing

• This is an example of relocatable

addressing, which allows programs on

mulitasking systems to be moved from one

area of memory to another without

rearranging every address referenced.

• Addresses can be rearranged simply by

changing the value of the appropriate

segment register.

Protected Mode Memory Management

• When the processor runs in protected mode, a program can

access up to 4 gigabytes of memory.

• Although the programmer’s view of memory is a flat

image of 4 GB, the operating system works in the

background to create and maintain this image.

• The segment registers point to segment descriptor tables,

which define locations of the program segments:

– CS refers to the code segment’s descriptor table

– DS refers to the data segment’s descriptor table

– SS refers to the stack segment’s descriptor table

Flat Segmentation Memory Model

----00000000 0040

base

address

limit access

p
h
y
sical R

A
M

00040000

00000000

Paging

• IA-32 architecture also allows memory segments
to be divided into 4K units called pages.

• Many of these pages of memory are saved on disk
in a swap file and are loaded into memory (and
rewritten in the swap file) when the CPU needs a
page that is not present in physical memory. This
situation is called a page fault.

• The use of paging and swap files allows the
memory used to be several times larger than
physical memory; it is known as virtual memory.

Examples of Integer Constants

• 26 Decimal

• 1Ah Hexadecimal

• 1101b Binary

• 36q Octal

• 2Bh Hexadecimal

• 42Q Octal

• 36D Decimal

• 47d Decimal

Examples of Integer Expressions

(4 + 2) * 6

12 – 1 MOD 5

-5 + 2

14 + 5 * 2

20-3 + 4 * 6 – 1

-35- (3 + 4) * (6 – 1)

316 / 5

ValueExpression

Real Number Constants

• There are two types of real number constants:

– Decimal reals, which contain a sign followed
by a number with decimal fraction and an
exponent:

[sign] integer.[integer][exponent]

Examples:

2. +3.0 -44.2E+05 26.E5

– Encoded reals, which are represented exactly
as they are stored:
3F80000r

Characters Constants

• A character constant is a single character

enclosed in single or double quotation

marks.

• The assembler converts it to the equivalent

value in the binary code ASCII:

‘A’

“d”

String Constants

• A string constant is a string of characters
enclosed in single or double quotation
marks:

‘ABC’

“x”

“Goodnight, Gracie”

‘4096’

“This isn’t a test”

‘Say “Goodnight, ” Gracie’

Reserved Words

• Reserved words have a special meaning to the

assembler and cannot be used for anything other

than their specified purpose.

• They include:

– Instruction mnemonics

– Directives

– Operators in constant expressions

– Predefined symbols such as @data which return

constant values at assembly time.

Examples of Identifiers

var1 open_file

_main _12345

@@myfile $first

Count MAX

xVal

Directives

• Directives are commands for the assembler,
telling it how to assemble the program.

• Directives have a syntax similar to assembly
language but do not correspond to Intel processor
instructions.

• Directives are also case-insensitive:

• Examples

.data

.code

name PROC

Instructions

• An instruction in Assembly language consists of a
name (or label), an instruction mnemonic,
operands and a comment

• The general form is:

[name] [mnemonic] [operands] [; comment]

• Statements are free-form; i.e, they can be written
in any column with any number of spaces between
in each operand as long as they are on one line and
do not pass column 128.

Labels

• Labels are identifiers that serve as place markers

within the program for either code or data.

• These are replaces in the machine-language

version of the program with numeric addresses.

• We use them because they are more readable:

mov ax, [9020]

vs.

mov ax, MyVariable

Code Labels

• Code labels mark a particular point within

the program’s code.

• Code labels appear at the beginning and are

immediately followed by a colon:
target:

mov ax, bx

… …

jmp target

Data Labels

• Labels that appear in the operand field of an

instruction:

mov first, ax

• Data labels must first be declared in the data

section of the program:

first BYTE 10

Instruction Mnemonics

• Instruction mnemonics are abbreviations
that identify the operation carried out by the
instruction:

mov - move a value to another location

add - add two values

sub - subtract a value from another

jmp - jump to a new location in the program

mul - multiply two values

call - call a procedure

Operands

• Operands in an assembly language

instruction can be:

– constants 96

– constant expressions 2 + 4

– registers eax

– memory locations count

Operands and Instructions

• All instructions have a predetermined number of

operands.

• Some instructions use no operands:

stc ; set the Carry Flag

• Some instructions use one operand:

inc ax ; add 1 to AX

• Some instructions use two operands:

mov count, bx ; add BX to count

Example: Adding Three Numbers

TITLE Add And Subtract (AddSub.asm)

; This program adds and subtracts 32-bit

; integers.

INCLUDE Irvine32.inc

.code

main PROC

mov eax, 10000h ;Copies 10000h into EAX

add eax, 40000h ;Adds 40000h to EAX

sub eax, 20000h ; Subtracts 20000h from EAX

call DumpRegs ; Call the procedure DumpRegs

exit ; Call Windows procedure Exit

; to halt the program

main ENDP ; marks the end of main

end main ; last line to be assembled

marks the

program’s title

Treated like a

commentCopies the file’s

contents into the

program

Program output

EAX=00030000 EBX=00530000 ECX=0063FF68 EDX=BFFC94C0

ESI=817715DC EDI=00000000 EBP=0063FF78 ESP=0063FE3C

EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Assembling, Linking and

Running Programs

Source

file

Link

Library

Object

File

Listing

File

Executable

Program

Map

file

Output

DOS

LoaderLinker
Assem-

bler

Intrinsic Data Types

32-bit signed integerSDWORD

32-bit unsigned integer; also Near pointer in

Protected Mode

DWORD

16-bit signed integerSWORD

16-bit unsigned integer; also Near Pointer in

Real Mode

WORD

8-bit signed integerSBYTE

8-bit unsigned integerBYTE

UsageType

Defining 32-bit Data

• The DWORD and SDWORD directives allocate

storage of one or more 32-bit integers:
val1 DWORD 12345678h ; unsigned

val2 SDWORD -21474836648; signed

val3 DWORD 20 DUP(?)

; unsigned array

Arrays of Doublewords

• You can create an array of word values by

listing them or using the DUP operator:

myList DWORD 1, 2, 3, 4, 5

1Value:

Offset 0000 0004 0008 000C

2 3 4 5

0010

Defining 64-bit and 80-bit Data

• The QWORD directive allocate storage of one or more

64-bit (8-byte) values:
quad1 QWORD 1234567812345678h

• The TBYTE directive allocate storage of one or more

80-bit integers, used mainly for binary-coded

decimal numbers:
val1 TBYTE 1000000000123456789h

Defining Real Number Data

• There are three different ways to define real
values:

– REAL4 defines a 4-byte single-precision real
value.

– REAL8 defines a 8-byte double-precision real
value.

– REAL10 defines a 10-byte extended double-
precision real value.

• Each requires one or more real constant
initializers.

Examples of Real Data Definitions

rVal1 REAL4 -2.1

rVal2 REAL8 3.2E-260

rVal3 REAL10 4.6E+4096

ShortArray REAL4 20 DUP(?)

rVal1 DD -1.2

rVal2 dq 3.2E-260

rVal3 dt 4.6E+4096

Ranges For Real Numbers

3.37×10-4932 to

1.18×104932

19Extended Real

2.23×10-308 to 1.79×1030815Long Real

1.18×10-38 to 3.40×10386Short Real

Approximate RangeSignificant

Digits

Data Type

Little Endian Order

• Consider the number 12345678h:

78

56

34

12

0001:

0000:

0002:

0003:

Little-

endian

12

34

56

78

0001:

0000:

0002:

0003:

Big-

endian

Adding Variables to AddSub

TITLE Add And Subtract (AddSub2.asm)

; This program adds and subtracts 32-bit

integers.

; and stores the sum in a variable

INCLUDE Irvine32.inc

.data

val1 DWORD10000h

val2 DWORD40000h

val3 DWORD20000h

finalVal DWORD?

.code

main PROC

mov eax, val1 ; Start with 10000h

add eax, val2 ; Add 40000h

sub eax, val3 ; Subtract 2000h

mov finalVal, eax ; Save it

call DumpRegs ; Display the

; registers

exit

main ENDP

end main

mov Instruction

• The mov instruction copies data from one location to
another.

• The following formats are legal for moving data to or from
general purpose registers:
– mov reg, reg

– mov mem, reg

– mov reg, mem

• The following formats are legal for immediate operands
– mov mem, immed

– mov reg, immed

• The following format are legal for segment registers:
– mov segreg, r/m16 ; not CS

– mov r/m16, segreg

Moving Data From Memory to Memory

• Memory to memory moves cannot be done in a

single instruction; it requires two instructions:

.data

var1 WORD ?

var2 WORD ?

… …

.code

mov ax, var1

mov var1, ax

mov Instruction Examples

Examples of mov instructions
.data

Count BYTE 10

Total WORD 4126h

Bigval DWORD 12345678h

.code

mov al, bl ; 8-bit register to register

mov bl, count ; 8-bit memory to register

mov count, 26 ; 8-bit immediate to memory

mov bl, 1 ; 8-bit immediate to register

mov dx, cx ; 16-bit register to register

mov bx, 8FE2h ; 16-bit immediate to register

mov eax, ebx ; 32-bit register to register

mov edx, bigVal ; 32-bit memory to register

Arithmetic Instructions

Assembly language include many instructions

to perform basic arithmetic. They include:

• inc

• dec

• add

• sub

inc and dec Instructions

• The inc and dec instructions have the format:

inc reg/mem ; add 1 to destination’s

; contents

dec reg/mem ; subtract 1 to

; destination’s contents

• The operand can be either a register or memory

operand.

• All status flags (except Carry) are affected.

inc and dec - Examples

• Simple examples

inc al ; increment 8-bit register

dec bx ; decrement 16-bit register

inc eax ; increment 32-bit register

inc val1 ; increment memory operand

• Another example

.data

myWord WORD 1000h

.code

inc myWord ; 1001h

mov bx, myWord

dec bx ; 1000h

add Instruction

• add adds a source operand to the destination

operand of the same size.

• Format:

add destination, source

• Source is unchanged; destination stores the sum.

All the status flags are affected.

• The sizes must match and only one can be a

memory location.

add Instruction - Examples

• Simple examples
add cl, al ; add 8-bit register to register

add eax, edx ; add 32-bit register-to-register

add bx, 1000h ; add immediate value to 16-bit reg

add var1, ax ; add 16-bit register to memory

add var1, 10 ; add immediate value to memory

• Numeric example
.data

var1 DWORD 10000h

var2 DWORD 20000h

.code

mov eax, var1

add eax, var2 ; 30000h

sub Instruction

• sub subtracts a source operand from the

destination operand of the same size.

• Format:

sub destination, source

• Source is unchanged; destination stores the

difference. All the status flags are affected.

• The sizes must match and only one can be a

memory location.

Flags Affected by add and sub

• If add or sub generates a result of zero, ZF is set

• If add or sub generates a negative result, SF is set.

• Examples:
mov ax, 10

sub ax, 10 ; AX = 0, ZF = 1

mov bx, 1

sub bx, 2 ; BX = FFFF, SF = 1

• inc and dec affect ZF but not CF.
mov bl, 4Fh

add bl, 0B1h ; BF = 00, ZF = 1, CF = 1

mov ax, 0FFFFh

inc ax ; ZF = 1 (CF unchanged)

Flags Affected by add and sub (continued)

• The Overflow flag is useful when performing
signed arithmetic:
mov al, +126

add al, 2 ; AL = 80h, OF = 1

126 01111110

+2 + 00000010

-128 0 10000000

mov al, -128

sub al, 2 ; AL = 7Eh, OF = 1

-128 10000000

- -2 -11111110

-126 1 10000010

Implementing Arithmetic Expressions

• Imagine we are implementing the statement

Rval = -Xval + (Yval – Zval)

.data

Rval SDWORD ?

Xval SDWORD 26

Yval SDWORD 30

Zval SDWORD 40

.code

; first term: -Xval

mov eax, Xval

neg eax ; EAX = -26

Implementing Arithmetic Expressions (continued)

; second term: (Yval – Zval)

mov ebx, Yval

sub ebx, Zval ; EBX = -10

; add the terms and store

add eax, ebx

mov Rval, eax ; Rval = -36

Indirect Operands

• An indirect operand is a register containing the

offset for data in a memory location.

– The register points to a label by placing its offset in that

register

– This is very convenient when working with arrays; it is

just a matter of incrementing the address so that it

points to the next array element.

– The ESI, EDI, EBX, EBP, SI, DI, BX and BP registers

can be used for indirect operands as well as the 32-bit

general purpose registers (with a restriction on the

ESP).

Indirect Operands: A Real Mode Example

• We create a string in memory at offset 0200 and set the BX

to the string’s offset; we can process any element in the

string by adding to the offset:

• .data

……

aString BYTE “ABCDEFG”

.code

mov bx, offset aString ; BX = 0200

add bx, 5 ; BX = 0205

mov dl, [bx] ; DL = ‘F’

A B C D E G … …

0200 0205

F

aString

Indirect Operands: A Protected Mode Example

.data

val1 BYTE 10h

.code

mov esi OFFSET val1

mov al, [esi] ; AL = 10h

mov [esi], bl ; The variable to

; which ESI points is

; changed

mov esi, 0

mov ax, [esi] ; General Protection

; Error

inc [esi] ; Error - needs size

inc byte ptr [esi] ; Works!

Arrays

• Indirect arrays are useful when manipulating

arrays:
.data

arrayB BYTE 10h, 20h, 30h

.code

mov esi, OFFSET arrayB

mov al, [esi] ; AL = 10h

inc esi

mov al, [esi] ; AL = 20h

inc esi

mov al, [esi] ; AL = 30h

Arrays of Doublewords

• If we use an array of 32-bit integers, we add 4

to ESI to address each subsequent array

element:

.data

arrayD DWORD 10000h, 20000h, 30000h

.code

mov esi, OFFSET arrayD

mov eax, [esi] ; first #

add esi, 4

mov eax, [esi] ; second #

add esi, 4

mov eax, [esi] ; third #

10000h

20000h

30000h

ValueOffset

10204

10208

10200

[esi]

Indexed Operands

• An indexed operand adds a constant to a register
to generate an effective address.

• Any of the 32-bit general purpose register may be
used as an index registers.

• There are two forms that are legal:
constant[reg]

[constant+reg]

• In both cases, we are combining the constant
offset of a variable label with the contents of a
register.

Indexed Operands – An Example

.data

arrayB BYTE 10h, 20h, 30h

arrayW WORD 1000h, 2000h, 3000h

.code

mov esi, 0

mov al, [arrayB+esi] ; AL = 10h

mov esi, OFFSET arrayW

mov ax, [esi] ; AX = 1000h

mov ax, [esi+2] ; AX = 2000h

mov ax, [esi+4] ; AX = 3000h

Transfer of Control

• A transfer of control is way of altering the

order in which instructions are executed.

• The two basic ways are:

– Unconditional transfer – the program branches

to a statement elsewhere in the program

– Conditional transfer – the program branches to

a statement elsewhere in the program IF some

condition is true.

JMP Instruction

• The JMP statement causes an unconditional
transfer to the target address within the same code
segment.

• The syntax is:

JMP targetLabel

where the targetLabel is the offset of an
instruction elsewhere in the program.

• Example:
top:

… …

jmp top; infinite loop

LOOP Instruction

• The LOOP instruction is used to end a block of

statements that will be performed a predetermined

number of times, with the number of times stored

in the ECX (or CX) register.

• The syntax is:

LOOP destination

where destination is the label of the statement to

which it jumps if the (E)CX register is nonzero.

• Because the (E)CX register controls the loop, it is

extremely unwise to change it during the loop.

Nested Loops

• In writing nested loops, it is important to

save the outer loop’s counter:
.data

count DWORD ?

.code

mov ecx, 100 ; set outer loop’s count

L1: mov count, ecx ; save outer loop count

mov ecx, 20 ; set inner loop count

L2: … …

loop L2 ; repeat inner loop

mov ecx, count ; restore outer loop count

loop L1

Summing An Integer Array

TITLE Summing An Array (SumArray.asm)

INCLUDE Irvine32.inc

.data

intarray WORD 100h, 200h, 300h, 400h

.code

main PROC

mov edi, OFFSET intarray

; address of intarray

mov ecx, LENGTHOF intarray; ; loop counter

mov ax, 0

L1:

add ax, [edi] ; add an integer

add edi, TYPE intarray; point to next integer

loop L1 ; repeat ECX = 0

call DumpRegs

exit

main endp

end main

Procedures

• As programs get larger and larger, it

becomes necessary to divide them into a

series of procedures.

• A procedure is a block of logically-related

instruction that can be called by the main

program or another procedure.

• Each procedure should have a single

purpose and be able to do its job

independent of the rest of the program.

Runtime Stack

• The runtime stack is a memory array that is

managed directly by the CPU using the SS

and ESP registers.

• In Protected mode, the SS register holds a

segment descriptor and is not modified byu

user programs; the ESP register holds a 32-

bit offset into some memory location on the

stack.

The Intel Processor’s Stack

• The stack in an Intel processor is a special

memory area.

– The stack is a temporary holding area for

addresses and data.

– Most of the data held here allows a program to

return (successfully) to the calling program and

procedures or to pass parameters.

– The stack resides in the stack segment.

Stack Operations - Push

00000006 ESP 00000006

ESP000000A5

Before After

mov eax, 00000A5h

push eax

00000FFC

00001000

00000FF8

00000FF4

00000FFC

00001000

00000FF8

00000FF4

Stack Operations - Push (continued)

00000006

000000A5

ESP 00000006

000000A5

00000001

00000002 ESP

Before After

mov ebx, 00000001h

mov ecx, 00000002h

push ebx

push ecx

high

low low

high

Stack Operations - Pop

00000006

000000A5

00000001

00000002 ESP

00000006

000000A5

00000001 ESP

Before After

pop eax

high

low low

high

Uses of the Stack

• There are several important uses of stacks in
programs:

– A stack makes an excellent temporary save area for
registers, allowing a program to use them as a scratch
area and then to restore them.

– When a subroutine is called, the CPU saves a return
address on the stack, allowing the program to return to
the location after the procedure call.

– When calling a procedure, you can push arguments on
the stack , allowing the procedure to retrieve them.

– High-level languages create an area on the stack inside
subroutines where procedure store local variables and
them discard them when it leaves the procedure.

Stack Operations - PUSH

• PUSH Instruction

– Decrements ESP and copies a 16-bit or 32-bit register or

memory operand onto the stack at the location indicated by

SP.

– With 80286+ processors, you can push an immediate

operand onto the stack.

– Examples:

push ax ; push a 16-bit register operand

push ecx ; push a 32-bit register operand

push memval ; push a 16-bit memory operand

push 1000h ; push an immediate operand

Stack Operations - POP

• POP Instruction

– copies the contents of the stack pointed to by
ESP into a register or variable and increments
ESP.

– CS and IP cannot be used as operands.

– Examples:

pop cx ; pop stack into 16-bit register

pop memval; pop stack into 16-bit memory

operand

pop eds ; pop stack into 32-bit register

Procedures

• In general, there are two types of subprograms:
functions and procedures (or subroutines).

– Functions return a value (or result).

– Procedures (or subroutines) do not.

– The terms procedures and subroutines are used
interchangeably although some languages use one term
and others use the other.

– Calling a procedure implies that there is a return. Also
implies is that the state of the program, (register values,
etc.) are left unaffected when the program returns to the
calling procedure or program.

PROC and ENDP Directives

• PROC and ENDP mark the beginning and end of a
procedure respectively.
.code

main proc

… …

call MySub

… …

main endp

; Nb: procedures cannot overlap

MySub proc ; one must have endp before

… ; the next can have proc
ret

MySub endp

The exit Instruction

• While all other procedures end with the ret
instruction, exit is used by the main procedure.

• exit is actually an not an instruction but an alias
for

INVOKE ExitProcess, 0

the Windows system function for terminating
programs

• In Irvine16.inc, it is defined as
mov ah, 4ch

int 21h

Passing Parameters

• Passing arguments in registers

– The most common method for passing parameter
between the calling program (or procedure) and the
procedures that it calls is through the registers

– It is efficient because the called procedure has
immediate and direct use of the parameters and
registers are faster than memory.

– Example: WriteInt
.data

aNumber DWORD 234

.code

mov eax, aNumber

call WriteInt

Preserving Registers

• Ordinarily procedures have the responsibility to preserve register
contents.

– This ensures that the main procedure has no surprises.

– What would happen here if WriteInt modified ECX?

.data

DECIMAL_RADIX = 10

LIST_COUNT=20

aList dw LIST_COUNT dup(?)

.code

mov ecx, LIST_COUNT

mov ebx, DECIMAL_RADIX

mov esi, offset aList

L1: mov eax, [si]

call WriteInt

add esi, size aList

loop L1

Using Registers to Return a Value

• Some functions will use a register as a method of

returning a value to the calling procedure:

SumOf proc

push eax

mov eax, ebx

add eax, ecx

pop eax ; Error – EAX reset to orig.

; value

ret

SumOf endp

Procedure ArraySum

ArraySum PROC

;--

; Calculates the sum of an array of 32-bit integers.

; Receives: ESI - the array offset

; ECX = # of elements in array

; Returns EAX - the sum of the array

;--

push esi ; save ESI, ECX

push ecx

mov eax, 0 ; Sum = 0

L1:add eax, [esi] ; Sum = Sum + x[i]

add esi, 4 ; Point to next integer

loop L1 ; Repeat for array size

pop ecx

pop esi

ret

ArraySum ENDP

Calling ArraySum

TITLE Driver for Array Sum (ArrayDr.asm)

INCLUDE Irvine32.inc

.data

array DWORD 10000h, 20000h, 30000h, 40000h

theSum DWORD ?

.code

main PROC

mov esi, OFFSET array ; ESI points to array

mov ecx, LENGTHOF array ;ECX = array count

call ArraySum ; calculate the sum

mov theSum, eax ; returned in EAX

call WriteHex ; Is it correct?

exit

main ENDP

ArraySum PROC… …

END main

Procedure goes here

CMP Instruction

• The CMP instruction sets the flags as if it

had performed subtraction on the operand.

• Neither operand is changed.

• The CMP instruction takes the forms:

CMP reg, reg CMP mem, reg

CMP reg, mem CMP mem, immed

CMP reg, immed

CMP Results

01destination = source

00destination > source

10destination < source

CFZFCMP Results

CMP Results

ZF = 1destination = source

SF = OFdestination > source

SF ≠ OFdestination < source

FlagsCMP Results

CMP Instruction : Examples

• Subtracting 5-10 requires a borrow:
mov ax, 5

cmp ax, 10 ; CF = 1

• Subtracting 1000 from 1000 results in zero.
mov ax, 1000

mov cx, 1000

cmp cx, ax ; ZF = 1

• Subtracting 0 from 105 produces a positive
difference:
mov si, 105

cmp si, 0; ZF = 0 and CF = 0

Setting & Clearing Individual Flags

• Setting and Clearing the Zero Flag

and al, 0 ; Set Zero Flag

or al, 1 ; Clear Zero Flag

• Setting and Clearing the Sign Flag

or al, 80h ; Set Sign Flag

and al, 7fh ; Clear Sign Flag

Setting & Clearing Individual Flags

• Setting and Clearing the Carry Flag

stc ; Set Carry Flag

clc ; Clear Carry Flag

• Setting and Clearing the Overflow Flag

mov al, 7fH ; AL = +127

inc al ; AL = 80H; OF = 1

or eax, 0 ; Clear Overflow

; Flag

Conditional Structures – An Example

• Compare AL to Zero. Jump to L1if the zero

flag was set by the comparison:

cmp al, 0

jz L1

… …

L1:

Conditional Structures – Another

Example

• Perform a bitwise AND on the DL register .

Jump to L2 if the Zero flag is clear:

and dl, 10110000b

jnz L2

… …

L2:

Jcond Instruction

• A conditional jump instruction branches to
a destination label when a flag condition is
true.

• If the flag is false, the instruction
immediately following the conditional jump
is performed instead.

• The syntax is:

Jcond destination

Limitations of Conditional Jumps

• Microsoft Macro assembler limits jumps to a label
within the current procedure and within –128 to
+127 of the current address.

• To jump to another procedure, you must use a
global label:

jc MyLabel ; Jump if Carry

; (flag is set)

… …

MyLabel::

Examples of Conditional Jumps

• In all three cases, the jump is made:

mov ax, 5

cmp ax, 5

je L1 ; jump if equal

mov ax, 5

cmp ax, 6

jl L1 ; jump if less

mov ax, 5

cmp ax, 4 ; jump if greater

Jumps based on General Comparisons

ZF = 0Jump if not equalJNE

ZF = 0Jump if not zeroJNZ

ZF = 1Jump if equalJE

ZF = 1Jump if zeroJZ

Flags/RegistersDescriptionMnemonic

Jumps based on General Comparisons

ECX = 0Jump if ECX = 0JECXZ

CX = 0Jump if CX = 0JCXZ

CF = 0Jump if not carryJNC

CF = 1Jump if carryJC

Flags/RegistersDescriptionMnenomic

Jumps based on General Comparisons

PF = 0Jump if Parity

odd

JNP

PF = 1Jump if Parity

even

JP

Flags/RegistersDescriptionMnenomic

Jumps based on Unsigned Comparisons

CF = 0Jump if not belowJNB

CF = 0Jump if above or

equal

JAE

CF = 0 & ZF = 0Jump if not below

or equal

JNBE

CF = 0 & ZF = 0Jump if above

(op1 > op2)

JA

Flag(s)DescriptionMnenomic

Jumps based on Unsigned Comparisons

CF = 1 or ZF = 1Jump if not aboveJNA

CF = 1 or ZF = 1Jump if below or

equal

JBE

CF = 1Jump if not aboveJNAE

CF = 1Jump if below

(op1 < op2)

JB

Flag(s)DescriptionMnenomic

Jumps based on Signed Comparisons

Flag(s)DescriptionMnenomic

SF = OFJump if not less

than
JNL

SF = OFJump if greater

than or equal
JGE

SF = 0 & ZF =0Jump if not less

than or equal
JNLE

SF = 0 & ZF =0Jump if greaterJG

Jumps based on Signed Comparisons

Flag(s)DescriptionMnenomic

ZF = 1 or

SF = <> OF

Jump if not greater

than
JNG

ZF = 1 or

SF = <> OF

Jump if less than or

equal
JLE

SF <> OFJump if not greater

than or equal
JNGE

SF <> OFJump if lessJL

Jumps based on Signed Comparisons

Flag(s)DescriptionMnenomic

OF = 0Jump if not

overflow
JNO

OF = 1Jump if overflowJO

SF = 0Jump if not signedJNS

SF = 1Jump if signed

(op1 is negative)

JS

Example – Smallest of Three Integers

.data

V1 WORD ?

V2 WORD ?

V3 WORD ?

.code

mov ax, V1 ; assume that V1 is smallest

cmp ax, V2 ; IF AX <= V2 then

jbe L1 ; jump to L1

mov ax, V2 ; else move V2 to AX

L1: cmp ax, V3 ; if AX <= V3 then

jbe L2 ; jump to L3

mov ax, V3 ; else move to V3 to AX

L2: ; smallest is in AX

Writing IF-THEN

In C++:

if (x > y)

z = 0;

In Assembler

mov ax, x

cmp ax, y

jng L1

mov ax, 0

mov z, ax

L1:

is

x > y

?

z = 0

yes

no

Writing IF-THEN-ELSE

In C++:

if (x > y)

z = x;

else

z = y;

In Assembler

mov ax, x

cmp ax, y

jng L1

mov ax, x

jmp L2

L1:

mov ax, y

L2:

mov z, ax

is

x > y

?

z = x

yes no

z = x

Writing WHILE loops

In C++:

while (x <= y)

x = x + 3;

In Assembler

L1:

mov ax, x

cmp ax, y

jg L2

mov ax, x

add x, 3

jmp L1

L2:

is

x > y

?

x = x+3

yes no

IMUL Instruction

• The IMUL instruction multiplies an 8-, 16, or 32-bit
signed operand by either the AL, AX or EAX
register (depending on the operand’s size).

• The instruction formats

are:

IMUL r/m8

IMUL r/m16

IMUL r/m32

EAX

r/m32x

EAXEDX

IMUL Instruction (continued)

• The IMUL instruction sets the Carry and Overflow

flags if the upper half of the product is not a sign

extension of the low-order product.equal to zero.

• E.g., if AX is multiplied by a 16-bit multiplier, the

product is stored in DX:AX. IF the AX contains a

negative value and the DX is not all 1s, the Carry

and Overflow flags are set.

IMUL Instruction - Examples

• 8-bit signed multiplication (48 * 4)

mov al, 48

mov bl, 4

imul bl ; AX = 00C0h, OF = 1

• 16-bit signed multiplication (-4 * 4)

mov al, -4

mov bl, 4

imul bl ; AX = FFF0h, OF = 0

• 32-bit signed multiplication (12345h*1000h)

mov eax, +4823424

mov ebx, -423

imul ebx ; EDX:EAX =

; FFFFFFFF86636D80h, OF = 0

CBW, CWD and CDQ Instructions

• CBW intends the sign bit of AL into the AH register.

• CWD intends the sign bit of AX into the DX register.

• CDQ intends the sign bit of EAX into the EDX register.
.data

byteVal SBYTE -65 ; 9Bh

wordVal SWORD -65 ; FF9Bh

dwordVal SDWORD -65 ;FFFFFF9Bh

.code

mov al, byteVal ; AL = 9Bh

cbw ; AX = FF9Bh

mov ax, wordVal ; AX = FF9Bh

cwd ; DX:AX = FFFFFF9Bh

mov eax, dwordVal; EAX = FFFFFF9Bh

cdq ; EDX:EAX = FFFFFFFFFFFFFF9Bh

IDIV Instruction

• The IDIV instruction divides an 8-, 16, or

32-bit signed divisor into either the AL, AX

or EAX register (depending on the

operand’s size).

• Signed division requires that the sign bit be

extend into the AH, DX or EDX (depending

on the operand’s size) using CBW, CWD or

CDQ.

IDIV Instruction – 8-bit Example

.data

byteVal SBYTE -48

.code

mov al, byteVal ; dividend

cbw ; extend Al into AH

mov bl, 5 ; divisor

idiv bl ; AL = -9, AH = -3

IDIV Instruction – 16-bit Example

.data

wordVal SWORD -5000

.code

mov ax, wordVal ; dividend, low

cwd ; extend AX into DX

mov bx, 256 ; divisor

idiv bx ; quotient AX = -19

; rem. DX = -136

IDIV Instruction – 32-bit Example

.data

wordVal SWORD -50000

.code

mov eax, dwordVal ; dividend, low

cdq ; extend EAX into EDX

mov ebx, 256 ; divisor

idiv bx ; quotient EAX = -195

; remainder EDX = -80

