
CSC 370 – Computer

Architecture and Organization

Lecture 8: Basic Computer

Organization and Design

Instruction Codes

• An instruction code is a group of bits that instruct

the computer to perform a specific operation.

• The operation code of an instruction is a group of

bits that define operations such as addition,

subtraction, shift, complement, etc.

• An instruction must also include one or more

operands, which indicate the registers and/or

memory addresses from which data is taken or to

which data is deposited.

Microoperations

• The instructions are stored in computer

memory in the same manner that data is

stored.

• The control unit interprets these instructions

and uses the operations code to determine

the sequences of microoperations that must

be performed to execute the instruction.

Stored Program Organization

• The operands are specified by indicating the registers

and/or memory locations in which they are stored.

– k bits can be used to specify which of 2k registers (or

memory locations) are to be used.

• The simplest design is to have one processor register

(called the accumulator) and two fields in the instruction,

one for the opcode and one for the operand.

• Any operation that does not need a memory operand frees

the other bits to be used for other purposes, such as

specifying different operations.

Stored Program Organization

Opcode Address

0111215

Instruction format

Binary operand

015

Memory

4096 x 16

Instructions

(programs)

Operands

(data)

Processor Register

(accumulator or AC)

Addressing Modes

• There are three different types of operands

that can appear in an instruction:

– Direct operand - an operand stored in the

register or in the memory location specified.

– Indirect operand - an operand whose address is

stored in the register or in the memory location

specified.

– Immediate operand - an operand whose value

is specified in the instruction.

Direct and Indirect Addressing

Opcode Address

0111215

Instruction format

I

14

AC

Operand

0 ADD 457

+

AC

Operand

1 ADD 300

+

1350

457
300

1350

Indirect

addressingDirect

addressing

Registers

• Computer instructions are stored in consecutive locations

and are executed sequentially; this requires a register

which can stored the address of the next instruction; we

call it the Program Counter.

• We need registers which can hold the address at which a

memory operand is stored as well as the value itself.

• We need a place where we can store

– temporary data

– the instruction being executed,

– a character being read in

– a character being written out.

List of Registers for the Basic Computer

Register

Symbol

of Bits Register

Name

Function

DR 16 Data Register Holds memory

operand

AR 12 Address Register Holds mem.

address

AC 16 Accumulator Processor Reg.

IR 16 Instruction

Register

Holds instruction

code

PC 12 Program Counter Holds instruction

address

TR 16 Temporary

Register

Holds temporary

data

INPR 8 Input Register Holds input

character

OUTR 8 Output Register Holds output

character

Basic Computer Registers and Memory

PC

011

AR

011

IR

015

TR

015

OUTR

07

INPR

0 7

DR

015

AC

015

Memory

4096 words

16 bits per word

The Common Bus

• To avoid excessive wiring, memory and all the register are

connected via a common bus.

• The specific output that is selected for the bus is

determined by S2S1S0.

• The register whose LD (Load) is enable receives the data

from the bus.

• Registers can be incremented by setting the INR control

input and can be cleared by setting the CLR control input.

• The Accumulator’s input must come via the Adder &

Logic Circuit. This allows the Accumulator and Data

Register to swap data simultaneously.

• The address of any memory location being accessed must

be loaded in the Address Register.

Basic Computer Registers Connected to a Common Bus

Bus

Memory

4096 x 16

Write Read

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

AC

LD INR CLR

Adder

& Logic

E

INPR

IR

LD

TR

LD INR CLR

OUTR 7

1

2

3

4

6

5

S2

S1

S0

Nb: All except INPR and Adder

are connected to a clock pulse

Computer Instructions

• The basic computer has three instruction code
formats:

– Memory-reference format – where seven 3-bit opcodes
are followed by a 12-bit memory address and preceded
by a bit which indicates whether direct or indirect
addressing is being used.

– Register-reference format – where 01112 is followed
by 12 bits which indicate a register instruction.

– Input-output format – where 11112 is followed by 12
bit which indicate an input-output instruction.

• In register-reference and I/O formats, only one of
the lower 12 bits is set.

Basic Computer Instruction Formats

011121415

I Opcode Address

Memory-reference instruction

Opcode = 000 through 110

011121415

0 1 1 1 Register operation

Register-reference instruction

Opcode = 111, I = 0

011121415

1 1 1 1 I/O operation

Input-output instruction

Opcode = 111, I = 1

Instruction-Set Completeness

• A computer instruction set is said to be
complete if the computer includes a
sufficient number of instructions in each of
these categories:

– Arithmetic, logical and shift instructions

– Instructions for moving data from registers to
memory and memory to registers.

– Program-control and status-checking
instructions

– Input and output instructions

Arithmetic, Logic and Shifting Completeness

• We have instructions for adding, complementing and

incrementing the accumulator. With these we can also

subtract.

• AND and complement provide NAND, from which all

other logical operations can be constructed.

• We can construct logical and arithmetic shifts from the

circular shift operations.

• We can construct multiply and divide from adding,

subtracting and shifting.

• While this is complete, it is not very efficient; it would be

to our advantage to have subtract, multiply, OR and XOR.

Instruction Set Completeness (continued)

• We can perform moves using the LDA and
STA instructions.

• We have unconditional branches (BUN),
subprogram calls (BSA) and conditional
branches (ISZ).

• We also have all the instructions we need to
perform input and output and handle the
interrupt that they generate.

Basic Memory-Reference Instructions

Symbol I = 0 I = 1 Description

AND 0xxx 8xxx AND mem. Word

to AC

ADD 1xxx 9xxx ADD mem. Word

to AC

LDA 2xxx Axxx Load mem. Word

to AC

STA 3xxx Bxxx Store Content of

AC in mem.

BUN 4xxx Cxxx Branch

unconditionally

BSA 5xxx Dxxx Branch and save

return address

ISZ 6xxx Exxx Increment and skip

if zero

Hexadecimal code

Basic Register-Reference Instructions

Symbol Hex. Code Description

CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC & E

CIL 7040 Circulate left AC & E

INC 7020 Increment AC

Basic Register-Reference Instructions (continued)

Symbol Hex. Code Description

SPA 7010 Skip next instruction if

AC is positive

SNA 7008 Skip next instruction if

AC is negative

SZA 7004 Skip next instruction if

AC is zero

SZE 7002 Skip next instruction if E

is zero

HLT 7001 Halt computer

Basic Input-Output Instructions

Symbol Hex. Code Description

INP F800 Input character to AC

OUT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

Timing and Control

• The timings for all the registers is controlled

a master clock generator.

– Its pulses are applied to all flip-flops and

registers, including in the control unit.

– The control signals are generated in the control

unit and provide control inputs for the bus’s

mutlitplexers and for the processor registers and

provides micrroperations for the accumulator.

Control

• There are two types of control:

– Hardwired – control logic is implemented with

gates, flip-flops, decoders and other digital

circuits.

– Microprogrammed – control information is

stored in a control program, which is

programmed to perform the necessary steps to

implement instructions.

Timing Signals

• Timing signals are generated by the sequence
counter (SC), which receives as inputs the clock
pulse, increment and clear.

• The SC’s outputs are decoded into 16 timing
signal T0 through T15, which are used to control
the sequence of operations.

• The RTL statement

D3T4: SC ← 0

resets the sequence counter to zero; the next
timing signal is T0

Control Unit of Basic Computer

Control

Logic

Gates

Control

outputs

Other inputs

15 14 13 12 11 - 0

Instruction Register(IR)

3 x 8

decoder

7 6 5 4 3 2 1 0
D0

D7

15 0

T15

T0

4 x 16

decoder

4-bit

sequence counter

(SC)

Increment(INR)

Clear (CLR)

Clock

Examples of Control Timing Signals

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR

SC

Instruction Cycle

• The instructions of a program are carried out by a

process called the instruction cycle.

• The instruction cycle consists of these phases:

– Fetch an instruction from memory

– Decode the instruction

– Read the effective address from memory if the

operand has an indirect address.

– Execute the instruction.

Fetch and Decode

• Initially, the PC has stored the address of the
instruction about to be executed and the SC is
cleared to 0.

• With each clock pulses the SC is incremented and
the timing signals go through the sequence T0, T1,
T2, etc.

• It is necessary to load the AR with the PC’s
address (it is connected to memory address
inputs):

T0: AR ← PC

Fetch and Decode

• Subsequently, as we fetch the instruction to be

executed, we must increment the program counter

so that it points to the next instruction:

• T1: IR ← M[AR], PC ← PC + 1

• In order to carry out the instruction, we must

decode and prepare to fetch the operand. In the

event it is an indirect operand, we need to have the

indirect addressing bit as well:

• T2: D0, … D7 ← Decode IR(12-14),

AR ← IR (0-11), I ← IR(15)

Register Transfers For the Fetch Phase

Bus

Memory unit 7

AR

Addr

1

Read

LD

PC

INR

IR

LD

T1

T0

2

5
Clock

S2

S1

S0

Type of Instruction and Addressing

• During time T3, the control unit determines if this is a
memory-reference, register-reference or input/output
instruction.

– The latter two are distinguished by the I (indirect) bit.

– If it is a memory-reference instruction, the I bit will
determine direct or indirect addressing.

• The four separate paths are:

D7’IT3: AR ← M[AR]

D7’I’T3: Nothing

D7I’T3: Execute a register-reference instruction

D7IT3: Execute an input-output instruction

Flowchart For Instruction Cycle

Start

SC ← 0

AR ← PC

T0

IR ←M[AR], PC ← PC + 1

Decode opcode in IR(12-14)

AR ←IR(0-11), I ← IR(15)

T1

T2

D7

(Register or I/O) = 1 = 0 (Memory-ref.)I I
= 0 (reg.)

= 1 (I/O)

Exec. I/O inst.

SC ← 0

Exec. reg.inst.

SC ← 0

= 1

= 0 (Direct)

NothingAR ← M[AR]

Exec. memory ref. .inst.

SC ← 0

T3T3T3

T3

Execution of Register-Reference Instructions

D7I’T3 = r (common to all register-reference instructions)

IR(I) = Bi [bit in IR(0-11) that specifies the operation]

r SC ← 0 C lear SC

CLA rB 11 AC ← 0 C lear A C

CLE rB 10 E ← 0 C lear E

CM A rB 9 AC ← A C ' C om plem ent AC

CM E rB 8 E ← E ' C om plem ent E

CIR rB 7 AC ← shr A C,

AC (15) ← E

E ← AC (0)

C irculate right

CIL rB 6 AC ← shl A C,

AC (0) ← E

E ← AC (15)

C irculate left

IN C rB 5 AC ← AC + 1 Increm ent A C

Execution of Register-Reference Instructions

SPA rB4 If (AC(15) = 0)

then PC ← PC + 1

Skip if positive

SNA rB3 If (AC(15) = 1)

Then PC ← PC + 1

Skip if negative

SZA rB2 If (AC = 0)

Then PC ← PC + 1

Skip if AC zero

SZE rB1 If (E = 0)

Then PC ← PC + 1

Skip if E zero

HLT rB0 S ← 0 (S is a start-stop

flip-flop)

Halt computer

Memory-Reference Instructions

Symbol Op. Decoder Symb. Desc.

AND D0 AC ← AC ∧ M[AR]

ADD D1 AC ← AC + M[AR],

E ← Cout

LDA D2 AC ← M[AR]

STA D3 M[AR] ← AC

BUN D4 PC ← AR

BSA D5 M[AR] ← PC

PC ← AR + 1

ISZ D6 M[AR] ← M[AR] + 1

If M[AR] + 1 = 0

Then PC ← PC + 1

Memory-Reference Instructions

• All memory-reference instructions have to wait until T4 so

that the timing is the same whether the operand is direct or

indirect.

• AND, ADD and LDA must all be performed in two steps

because AC can only be access via DR:

• AND: D0T4: DR ← M[AR]

D0T5: AC ← AC ∧ DR, SC ← 0

• ADD: D1T4: DR ← M[AR]

D1T5: AC ← AC + DR, E ← Cout, SC ← 0

• LDA: D2T4: DR ← M[AR]

D2T5: AC ← DR, SC ← 0

Memory-Reference Instructions (continued)

• STA stores the contents of the AC, which can be applied
directly to the bus:

D3T4: M[AR] ← AC, SC ← 0

• BUN transfers control unconditionally to th effective
address indicated by the effective address:

D4T4: PC ← AR, SC ← 0

• BSA is used to branch to a subprogram. This requires
saving the return address, which is saved at the operand’s
effective address with the subprogram beginning one word
later in memory:

• D5T4: M[AR] ← PC, AR ← AR + 1

D5T5: PC ← AR, SC ← 0

Example of BSA Instruction Execution

Memory, PC, & AR at time T4

Memory

20

PC= 21

AR = 135

136

0 BSA 135

1 BUN 135

Next instruction

Subroutine

Memory & PC after execution

Memory

20

21

135

PC = 136

0 BSA 135

1 BUN 135

Next instruction

Subroutine

21

Memory-Reference Instructions

(continued)

• ISZ skips the next instruction if the operand
stored at the effective address is 0. This
requires that the PC incremented, which
cannot be done directly:

• D6T4: DR ← M[AR]

D6T5: DR ← DR + 1

D6T6: M[AR] ← DR,

if (DR = 0) then (PC ← PC + 1),

SC ← 0

Flowchart For Memory-Reference Instructions

Memory-reference Instructions

DR ← M[AR]

D0T4

DR ← M[AR]

D1T4

DR ← M[AR]

D2T4

M[AR] ← AC

SC ← 0

D3T4

AC ← AC ∧ DR

SC ← 0

D0T5

AC ← AC + DR

E ← C out

SC ← 0

D1T5

AC ← DR

SC ← 0

D2T5

ADDAND LDA STA

Flowchart For Memory-Reference Instructions (continued)

Memory-reference Instructions

PC ← AR

SC ← 0

D4T4

M[AR] ← PC

AR ← AR + 1

D5T4

DR ← M[AR]

D6T4

M[AR] ← DR

IF (DR = 0)

then (PC ← PC+1)

SC ← 0

D6T6

PC ← AR

SC ← 0

D5T5

BSABUN ISZ

DR ← DR + 1

D6T5

Input-Output Configuration

Serial Comm.

Interface

Input-output

terminal

Comp. Registers

and Flip-flops

FGO

OUTR

AC

INPR

FGI

Receiver

Interface
Printer

Transmitter

Interface
Keyboard

= 1 NOP

= 0 output

data

= 0 NOP

= 1 input

waiting

Input-Output Instructions

p SC ← 0 Clear SC

INP pB11 AC(0-7) ← INPR,

FGI ← 0

Input character

OUT pB10 OUTR ← AC(0-7),

FGO ← 0

Output character

SKI pB9 If (FGI = 1)

Then PC ← PC + 1

Skip on input flag

SKO pB8 If (FGO = 1)

Then PC ← PC + 1

Skip on output flag

ION pB7 IEN ← 1 Interrupt enable on

IOF pB6 IEN ← 0 Interrupt enable off

Flowchart For Interrupt Cycle

R

Fetch & decode

instruction

Execute

instruction

= 0

Store return address

in location 0

M[0] ← PC

Branch to location 1

PC ← 1

IEN ← 0

R ← 0

IEN

FGI

FGO

= 0

= 1

= 0

R ← 1

= 1

= 1

= 1Instruction cycle Interrupt cycle

= 0

Demonstration of the Interrupt Cycle

Before Interrupt

Memory

0

1

PC = 255

256

0 BUN 1120

1 BUN 0

I/O

Program

After Interrupt Cycle

Memory

0

PC = 1

255

0 BUN 1120

1 BUN 0

256

Main

Program

1120 I/O

Program

256

Main

Program

Flowchart For Computer Operation

Start

SC← 0, IEN ← 0, R ← 0

R

AR ← 0, TR ← PCAR ← PC

RT0
R’T0

M[AR] ← TR, PC ← 0

RT1

IR ← M[AR], PC ← PC + 1

R’T1

= 0 = 1

PC ← PC + 1, IEN ← 0

R ← 0, SC ← 0

RT2

AR ← IR(0-11), I ← IR(15)

D0…D7 ← Decode IR(12-14)

R’T2

D7

I

Instruction

Cycle

Interrupt

Cycle

Execute I/O

Instruction

Execute Reg.

Instruction

= 0= 1
D7I’T3D7IT3 I

AR ← M[AR] Nothing

= 0= 1
D’7I’T3D’7IT3

Execute Mem..

Instruction

Control Gates Associated With AR

AR
12

To bus
12

From bus

Clock

D’7

I

T3

T2

R
T0

D5

T4

LD

INR CLR

Control Inputs for IEN

IENQJ

K

Clock

T3

I

D7

B7

B6

R

T2

Encoder for Bus Selection Inputs

S1

S2

S0

Multiplexer

Bus Select

Inputs

Encoder

x1

x2

x3

x4

x5

x6

x7

Encoder for Bus Selection Circuit

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0 Register Selected

for Bus

0 0 0 0 0 0 0 0 0 0 None

1 0 0 0 0 0 0 0 0 1 AR

0 1 0 0 0 0 0 0 1 0 PC

0 0 1 0 0 0 0 0 1 1 DR

0 0 0 1 0 0 0 1 0 0 AC

0 0 0 0 1 0 0 1 0 1 IR

0 0 0 0 0 1 0 1 1 0 TR

0 0 0 0 0 0 1 1 1 1 Mem.

T R

Inputs Outputs

Circuits Associated With AC

16
To bus

16 Accumulator

Register (AC)

Control

Gates

Clock

CLRINRLD

Adder &

Logic

Circuit

16

16

8

From

DR

From

INPR

Gate structure for Controlling the LD, INR, CLR of AC

AC
16

To bus

Clock

AND

ADD

DR
INPR

COM

SHR

SHL

INC

CLR

r
B9

B7

B6

B5

B11

D0

T5

D1

D2

T5

p
B11

16
From adder

and logic

One stage of Adder and Logic Circuit

J

K

Q

Clock

AC(i)

FA

ci

Ci+1

DR(i)

DR

AND

ADD

INPR
From

INPR

bit (I)
COM

SHL

SHR

AC(i-1)

AC(i+1)

LD

Recommended…

• The Soul of a New Machine by

Tracy Kidder

