CSC 370 – Computer Architecture and Organization

Lecture 8: Basic Computer Organization and Design

Instruction Codes

- An instruction code is a group of bits that instruct the computer to perform a specific operation.
- The operation code of an instruction is a group of bits that define operations such as addition, subtraction, shift, complement, etc.
- An instruction must also include one or more operands, which indicate the registers and/or memory addresses from which data is taken or to which data is deposited.

Microoperations

- The instructions are stored in computer memory in the same manner that data is stored.
- The control unit interprets these instructions and uses the operations code to determine the sequences of microoperations that must be performed to execute the instruction.

Register	<u># of Bits</u>	<u>Register</u>	Function
<u>Symdol</u> DR	16	<u>Name</u> Data Register	Holds memory operand
AR	12	Address Register	Holds mem. address
AC	16	Accumulator	Processor Reg.
IR	16	Instruction Register	Holds instruction code
PC	12	Program Counter	Holds instruction address
TR	16	Temporary Register	Holds temporary data
INPR	8	Input Register	Holds input character
OUTR	8	Output Register	Holds output character

Basic Computer Instru	action Formats
15 14 12 11 0	
I Opcode Address	Opcode = 000 through 110
Memory-reference instruction	
15 14 12 11 0	
0 1 1 1 Register operation	Opcode = 111 , I = 0
Register-reference instruction	
15 14 12 11 0	
1 1 1 1 I/O operation	Opcode = 111, I = 1
Input-output instruction	

Instruction-Set Completeness

- A computer instruction set is said to be complete if the computer includes a sufficient number of instructions in each of these categories:
 - Arithmetic, logical and shift instructions
 - Instructions for moving data from registers to memory and memory to registers.
 - Program-control and status-checking instructions
 - Input and output instructions

<u>Symbol</u>	$\underline{\mathbf{I}} = 0$	<u>I = 1</u>	Description
AND	0xxx	8xxx	AND mem. Word to AC
ADD	1xxx	9xxx	ADD mem. Word to AC
LDA	2xxx	Axxx	Load mem. Word to AC
STA	3xxx	Bxxx	Store Content of AC in mem.
BUN	4xxx	Cxxx	Branch unconditionally
BSA	5xxx	Dxxx	Branch and save return address
ISZ	6xxx	Exxx	Increment and skip if zero

Basic Register-Reference Instructions								
<u>Symbol</u>	Hex. Code	Description						
CLA	7800	Clear AC						
CLE	7400	Clear E						
СМА	7200	Complement AC						
CME	7100	Complement E						
CIR	7080	Circulate right AC & E						
CIL	7040	Circulate left AC & E						
INC	7020	Increment AC						

SPA7010Skip next instruction if AC is positiveSNA7008Skip next instruction if AC is negativeSZA7004Skip next instruction if AC is zeroSZE7002Skip next instruction if is zeroHLT7001Halt computer	<u>Symbol</u>	Hex. Code	Description
SNA7008Skip next instruction if AC is negativeSZA7004Skip next instruction if AC is zeroSZE7002Skip next instruction if is zeroHLT7001Halt computer	SPA	7010	Skip next instruction if AC is positive
SZA7004Skip next instruction if AC is zeroSZE7002Skip next instruction if is zeroHLT7001Halt computer	SNA	7008	Skip next instruction if AC is negative
SZE7002Skip next instruction if is zeroHLT7001Halt computer	SZA	7004	Skip next instruction if AC is zero
HLT 7001 Halt computer	SZE	7002	Skip next instruction if I is zero
	HLT	7001	Halt computer

Control

- There are two types of control:
 - <u>Hardwired</u> control logic is implemented with gates, flip-flops, decoders and other digital circuits.
 - <u>Microprogrammed</u> control information is stored in a control program, which is programmed to perform the necessary steps to implement instructions.

Instruction Cycle

- The instructions of a program are carried out by a process called the *instruction cycle*.
- The instruction cycle consists of these phases:
 - Fetch an instruction from memory
 - Decode the instruction
 - Read the effective address from memory if the operand has an indirect address.
 - Execute the instruction.

Execution of Register-Reference Instructions

 $D_7I'T_3 = r$ (common to all register-reference instructions) IR(I) = B_i [bit in IR(0-11) that specifies the operation]

	r	$SC \leftarrow 0$	Clear SC
CLA	rB_{11}	$AC \leftarrow 0$	Clear AC
CLE	rB_{10}	$E \leftarrow 0$	Clear E
CMA	rB9	$AC \leftarrow AC'$	Complement AC
CME	rB_8	$E \leftarrow E'$	Complement E
CIR	rB ₇	$AC \leftarrow shr AC$,	Circulate right
		$AC(15) \leftarrow E$	
		$E \leftarrow AC(0)$	
CIL	rB ₆	$AC \leftarrow shl AC$,	Circulate left
		$AC(0) \leftarrow E$	
		$E \leftarrow AC(15)$	
INC	rB ₅	$AC \leftarrow AC + 1$	Increment AC

viemory	-Kelerence	Instruction
Symbol	Op. Decoder	Symb. Desc.
AND	D_0	$AC \leftarrow AC \land M[AR]$
ADD	D_1	$\begin{array}{l} \text{AC} \leftarrow \text{AC} + \text{M}[\text{AR}], \\ \text{E} \ \leftarrow \text{C}_{\text{out}} \end{array}$
LDA	D_2	$AC \leftarrow M[AR]$
STA	D_3	$M[AR] \leftarrow AC$
BUN	D_4	$PC \leftarrow AR$
BSA	D5	$M[AR] \leftarrow PC$ $PC \leftarrow AR + 1$
ISZ	D_6	$M[AR] \leftarrow M[AR] + 1$ If M[AR] + 1 = 0 Then PC \leftarrow PC + 1

Memory-Reference Instructions (continued)

- **ISZ** skips the next instruction if the operand stored at the effective address is 0. This requires that the PC incremented, which cannot be done directly:
- D_6T_4 : DR \leftarrow M[AR] D_6T_5 : DR \leftarrow DR + 1 D_6T_6 : M[AR] \leftarrow DR, if (DR = 0) then (PC \leftarrow PC + 1), SC \leftarrow 0

Encoder for Bus Selection Circuit										
Inputs <u>Outputs</u>										
x ₁	x ₂	x ₃	X ₄	x ₅	x ₆	X ₇	S ₂	S ₁	\mathbf{S}_{0}	Register Selected for Bus
0	0	0	0	0	0	0	0	0	0	None
1	0	0	0	0	0	0	0	0	1	AR
0	1	0	0	0	0	0	0	1	0	PC
0	0	1	0	0	0	0	0	1	1	DR
0	0	0	1	0	0	0	1	0	0	AC
0	0	0	0	1	0	0	1	0	1	IR
0	0	0	0	0	1	0	1	1	0	TR
0	0	0	0	0	0	1	1	1	1	Mem.

