
CSC 370 - Computer

Architecture and Organization

Lecture 4 - Combinational Logic

Introduction

• A combinational circuit consists of input variables,
logic gates, and output variables.

– The logic gates accept n input signals and generate the
m signals that become output.

• For n input variables, there are 2n possible
combinations of binary input values.

– For each input combination, there will be one and only
possible output combination.

• Each input will have one or two wires.

– If there is one wire, it will be either in the normal
(unprimed) form or the complemented (primed) form.

– If there are two wires, it will supply both forms.

Block Diagram for a Combinational

Circuit

Combinational

Logic Circuitn input

variables

m output

variables

Combinational Circuit Analysis

• Analysis of a combinational circuit requires that

we find the function(s) that the circuit implements.

• First we must ensure that the circuit is

combinational and not sequential. (The lack of

feedback paths or memory elements ensures that).

• After this, we try to find the logic function or truth

table.

Analysis Procedure

1. Label all gate outputs that are a function of input
variables with arbitrary symbols. Determine the
Boolean functions for each gate output.

2. Label the gates that are a function of input variables and
previously labeled gates with other arbitrary symbols.
Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of
the circuits are obtained.

4. By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input
variables.

Analysis Example

B

A

C

F1

F2

F’2

T2

T1

T3

Analysis Example – The Outputs

• We initially get:

F2 = AB + AC + BC

T1 = A + B + C

T2 = ABC

• Next, we consider the outputs of gates that
are a function of symbol that are already
defined:

T3 = F’2T1

F1 = T3 + T2

Analysis Example – Solving For F1

F1 = T3 + T2 = F’2T1 + ABC

= (AB + AC + BC)’(A + B + C) + ABC

= (A’+B’)(A’+C’)(B’+C’)(A + B + C) + ABC

= (A’ + B’C’)(AB’+AC’+ BC’+ B’C) + ABC

= A’BC’ + A’B’C + AB’C’ + ABC

The Truth Table for F1

A B C F2 F’2 T1 T2 T3 F1

0 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 1 1

0 1 0 0 1 1 0 1 1

0 1 1 1 0 1 0 0 0

1 0 0 0 1 1 0 1 1

1 0 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0

1 1 1 1 0 1 1 0 1

Design Procedure

• The design procedure starts with the

verbal outline of the problem and ends

with a logic circuit diagram or a set of

Boolean functions from which the circuit

diagram can be created.

The Steps in the Design Procedure

The procedure involves these steps:

1. The problem is stated.

2. The number of available input variables and
required output variables is determined.

3. The input and output variables are assigned letter
symbols.

4. The truth tables that defines the required
relationships between inputs and outputs are
derived.

5. The simplified Boolean function for each output is
obtained.

6. The logic diagram is drawn.

The Truth Table

• The truth table consists of input and output
columns.

• The 1s and 0s for the input are obtained
from the 2n combinations of n input
variables.

• An output could be either 1 or 0 for every
valid input combination.

• Some input combinations will not occur;
these become don’t-care conditions.

Simplifying the Boolean Functions

• The output functions are simplified by Boolean
algebra, Karnaugh maps or tabulation.

• There will usually more than one simplified
expression to choose from.

• Which expression we choose may depend on
circuit design constraints such as :

– Minimum number of gates

– Number of input to a gate

– Minimum propagation time of the signal through the
circuit.

– Minimum number of interconnections

– Limitation of the driving capabilities of each gates.

Code Conversion From BCD to Excess-3

• BCD (Binary-Coded Decimal) and Excess-

3 provide two different ways of representing

a decimal value in a binary format.

• There will be a one-to-one correspondence

between BCD inputs and the corresponding

Excess-3 values.

• Not all the BCD minterms are valid values.

These will lead to don’t-care conditions.

Truth Table for BCD to Excess-3

00111001

11010001

01011110

10010110

00011010

11100010

01101100

10100100

00101000

11000000

zyxwDCBA

BCD Inputs Excess-3 Outputs

Karnaugh Map for w

CDAB
00 01 11 10

00

01

11

10

1 1 1

11

XX X X

X X

C

A

D

B

w = A + BC + BD

Karnaugh Map for x

CDAB
00 01 11 10

00

01

11

10

1 1 1

1

1

XX X X

X X

C

A

D

B

x = B’C + B’D + BC’D’

Karnaugh Map for y

CDAB
00 01 11 10

00

01

11

10

1 1

1

1

XX X X

X X

C

A

D

B

y = CD + C’D’

1

Karnaugh Map for z

CDAB
00 01 11 10

00

01

11

10

1 1

1

1

XX X X

X X

C

A

D

B

z = D’

1

Circuit Diagram for BCD to Excess-3

y

z

D

C

B
x

w

D’

CD

C+D
(C+D)’

A

Half Adder

• The most basic arithmetic operation is the

addition of two binary digits.

• We know that:

– 0 + 0 = 0

– 0 + 1 = 1 + 0 = 1

– 1 + 1 = 10

• If both addends are 1, we need a carry bit which

will be added to the addend in the next more

significant bit.

Half Adder (continued)

• We can summarize this in the form of a truth table:

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

• From this we learn that:

S = x’y + xy’ = x ⊕ y

C = xy

Implementation of Half Adder

C

S

x

y

S = x’y + xy’

C = xy

Implementing a Half Adder Using XOR

C

S

x

y

S = x ⊕ y

C = xy

Implementing a Half Adder As a Product of

Sums

C

S

x

y

S = (x+y)(x’+y’)

C = xy

Implementing a Half Adder As a Product of

Sums

C

S

x

y

S = (x+y)(x’+y’)

C = (x’+y’)’

Implementing a Half Adder

C

S

x

y

C = xy

S = (C + x’y’)’

The Full Adder

• A full adder is a combinational circuit that

forms the arithmetic sum of three inputs.

– It consists of 3 inputs and two outputs.

– Two of the inputs (x and y) are the same as in

the half adder.

– The third input (z) is the carry from the addition

of the previous (lesser significance) bits.

Truth table for a full adder

11111

01011

01101

10001

01110

10010

10100

00000

SCzyx

Karnaugh Maps for Full Adder

yz

x
0100 11 10

0

1

yz

x
0100 11 10

0

1

1

1

1

1

S = x’y’z + x’ y z’ + x y’z’ + xyz

C = xy + xz + yz

1 1 1

1

Full Adder Circuit Diagram For the Sum

S

x

y

z

Full Adder Circuit Diagram For the Carry

C

x

y

z

Full Adder Circuit Diagram Using Half Adders

C

x

y

z

S

S = z ⊕ (x ⊕ y)

C = z •(x ⊕ y) + x•y

Block Diagram For Adders

HA
A

B

C

S

FA
Ai

Bi

Ci+1

S

Ci

Full Adder

Half Adder

Binary Adder

• A binary adder is a digital circuit that

produces the arithmetic sum of two binary

numbers.

• It can be constructed by connecting a series

of full adders in cascade.

4 –Bit Adder

FA

S3

B3 A3

FA

S2

B2 A2

FA

S1

B1 A1

FA

S0

B0 A0

C0

C1C2C3

C4

4-Bit Adder – An Example

Subscript i 3 2 1 0 Ci

Input Carry 0 1 1 0 Ai

Augend 1 0 1 1 Bi

Augend 0 0 1 1 Ci

Sum 1 1 1 0 Si

Output Carry 0 0 1 1 Ci+1

Carry Propagation

• Adding two binary numbers in parallel implies

that we have all the bits that we need available at

the same time. The cascading of carries seems to

belie this assumption.

• If we can generate the necessary bits to determine

carries in parallel, then we can actually do the

summation without waiting for a carry to cascade

through.

Carry Propagation

• We can add two additional terms:

Gi – Carry Generate

Pi Carry Propagate

• We can define them as:

Pi = Ai ⊕Bi

Gi = Ai Bi

• The output sum and carry are now:

Si = Pi ⊕ Gi

Ci+1 = Gi + Pi Ci

Carries in a Carry Lookahead Generator

C0 = input carry

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0

C3 = G2 + P2C2

= G2 + P2G1 + P2P1G0 + P2P1P0C0

Carry Lookahead Generator

C1

C2

C3

C0

G0

P0

G1

P1

G2

P2

3-Bit Adder with Carry Generator

S2

S1

S0

C3

Carry

Lookahead

Generator

C3

C2

C1

C0

P2

P1

P0

P2

G2

B2

A2

B2

A2

B0

A0

P1

P0

G1

G0

Half Subtractor

• A half subtractor subtracts two bits and

produces their difference and whether a 1

was borrowed.

• We must remember that:

0 – 0 = 0; 1 – 0 = 1; and 1 – 1 = 0

If we have 0 – 1, we must borrow from the next

place, so our difference is 1 with a borrow of 1.

Truth Table for the Half Subtractor

0011

1001

1110

0000

DByx

D = x’y + xy’ = x ⊕ y

B = x’y

Full Subtractor

• A full subtractor performs subtraction
between two bits takinginto account the
potential borrow from a lower significance
bit.

• A full subtractor’s inputs are

– x, the minuend

– y, the subtrahend

– z, the borrow

Truth Table for the Full Subtractor

11111

00011

00101

10001

01110

11010

11100

00000

DBzyx

Karnaugh Maps for Full Subtractor

yz

x
0100 11 10

0

1

yz

x
0100 11 10

0

1

1

1

1

1

D = x’y’z + x’ y z’ + x y’z’ + xyz

B = x’y + x’z + yz

1

1

11

Adder-Subtracter

• Subtracting A – B is most easily done by adding

B’ to A and then adding 1.

• This makes it convenient to combine both addition

and subtraction into one circuit, called an adder-

subtracter.

• M is the mode indicator

– M = 0 indicates addition (B is left alone and C0 is 0)

– M = 1 indicates subtraction (B is complement and C0 is

1).

4-Bit Adder-Subtractor

FA FA FA FA C0

C1C2C3

C4

S0S1S2S3

B0 A0B1 A1B2 A2B3 A3

M

Overflow

• If addition of 2 n-bit augends produces an

n+1-bit sum, we say that overflow occurs.

• Overflow is a problem for computers if

undetected because the answer that is

produced is erroneous.

Examples Of No Overflow

Carries: 0 0 0 0

+70 0 1000110 +70 0 1000110

-80 1 0110000 +20 0 0010100

-10 1 1110110 +90 0 1011010

If there is no overflow, the carry into the sign bit matches the

carry out of the sign bit.

Carry out of sign bit Carry into sign bit

Examples Of Overflow

Carries: 0 1 1 0

+70 0 1000110 -70 1 0111010

+80 0 1010000 -80 1 0110000

+150 1 0010110 -150 0 1101010

If there is overflow, the carry into the sign bit does not match
the carry out of the sign bit.

Carry out of sign bit Carry into sign bit

4-Bit Adder-Subtractor With Overflow Output

FA FA FA FA C0

C1C2C3

C4

S0S1S2S3

B0 A0B1 A1B2 A2B3 A3

M

V

If V = 1, there is overflow

If V = 0, there is no overflow

Decimal Adder

• Some systems perform arithmetic on decimal
values, which are stored in BCD form.

• A decimal adder requires 9 inputs: 4 bits for each
decimal digit of the augend and a carry bit.

• The easiest way to construct a decimal adder is by
using a binary adder and then convert the sum to
decimal form.

• The five inputs are K (the binary carry), Z8, Z4, Z2
and Z1.

• The five outputs are C (the decimal carry), S8, S4,
S2 and S1.

The Truth Table for the BCD Adder

Binary Sum BCD Sum Decimal

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

0 1 0 0 1 0 1 0 0 1 9

The Truth Table for the BCD Adder

Binary Sum BCD Sum Decimal

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 1 0 1 0 1 0 0 0 0 10

0 1 0 1 1 1 0 0 0 1 11

0 1 1 0 0 1 0 0 1 0 12

0 1 1 0 1 1 0 0 1 1 13

0 1 1 1 0 1 0 1 0 0 14

0 1 1 1 1 1 0 1 0 1 15

1 0 0 0 0 1 0 1 1 0 16

1 0 0 0 1 1 0 1 1 1 17

1 0 0 1 0 1 1 0 0 0 18

1 0 0 1 1 1 1 0 0 1 19

BCD Adder

4-bit Binary Adder

Addend Augend

K

Z8 Z4 Z2 Z1

4-bit Binary Adder

S8 S4 S2 S1

Carry in
Carry in

Output

Carry

0

Binary Multiplier

• Binary multiplication is performed the same way
as decimal multiplication, except each line is
either the multiplicand shifted or all zeros,
depending on whether the multiplier bit is 1 or 0.

• Example:

B1 B0

A1 A0

A0B1 A0B0

A1B1 A1B0

C3 C2 C1 C0

2-Bit Multiplier
B0

B1

A0

C0

A1

C1

HAHA

C2C3

4-Bit by 3-bit Multiplier

B0B1B2B3

A0

B0B1B2B3

A1

4–bit Adder

0

4–bit Adder

C Sum

B1B2B3

A2

B0

C6 C5 C4 C3 C2 C1 C0

Magnitude Comparator

• A magnitude comparator is a combinational

circuit that compares two numbers, A and B

and determines their relative magnitudes.

• The output is three variables that indicate

whether A = B, A > B or A < B.

Magnitude Comparator – The Algorithm

• If A = A3A2A1A0 and B = B3B2B1B0 then if we

define xi = AiBi + A’iB’i where i = 0, 1, 2, 3

• A = B when x3x2x1x0 = 1

• (A > B)

= A3B’3 + x3A2B’2 + x3x2A1B’1 + x3x2x1A0B’0

• (A < B)

= A’3B3 + x3A’2B2 + x3x2A’1B1 + x3x2x1A’0B0

Magnitude Comparator – The Circuit

x3

x2

x1

A3

B3

A2

B2

A1

B1

A0

B0

A = B

A > B

A < B

x0

Decoders

• A decoder is a combinational circuits that converts

binary information from the n coded inputs to a

maximum of 2n unique outputs.

• The decoders in which that we are interested are

n-to-m-line decoders, where 2n ≥ m.

• Commercial decoders usually include an enable

input, without which there is no response from the

decoder.

Truth Table For For a 3-to-8-Line Decoder

000000011111

000000100111

000001001011

000010000011

000100001101

001000000101

010000001001

100000000001

00000000XXX0

D0D1D2D3D4D5D6D7A0A1A2E

Enable Inputs Outputs

3-to-8 Decoder

D0
000

D1
001

D2
010

D3
011

D4
100

D5
101

D6
110

D7
111

E

A2

A1

A0

NAND Gate Decoder

• Some decoders are constructed with NAND

gates instead of AND gates.

• Since NAND gates invert the outputs, it is

more economical to invert the signals, i.e.,

E has a value 0 to enable the circuit and 1 to

disable, and there is only one output Di with

a value of 0.

2-to-4-Line NAND Gate Decoder

Truth Table

1111XX1

0111110

1011010

1101100

1110000

D3D2D1D0A0A1E

2-to-4 Decoder With NAND Gates

D0
00

D1
01

D2
10

D3
11

E

A0

A1

Expanding Decoders

• Sometimes a decoder may be needed but

only smaller decoders are available.

• Take the example of using 2-to-4 decoders

to build a 3-to-8 decoder:

– The less significant inputs are attached to both

decoders.

– A2 is used as E for the lower decoder and E’ in

the higher decoder.

3-to-8 Decoder Constructed With Two 2-to-4

Decoders With Enable

2 x 4

decoder

2 x 4

decoder

D0

D1

D2

D3

D4

D5

D6

D7

20

21

E

20

21

E

A0

A1

A2

3-to-8 Decoder Constructed With Two 2-to-4

Decoders

2 x 4

decoder

2 x 4

decoder

D0

D1

D2

D3

D4

D5

D6

D7

20

21

E

20

21

E

A0

A1

A2

E

Implementing A Full Adder With a Decoder

21

20

22x

y

z

6

7

0

1

2

3

4

5

S

C

Encoders

• An encoder does the opposite of a decoder

• An encoder has 2n (or less) inputs and n
outputs.

• An encoder can be implemented using OR
gates whose inputs are determined from the
truth table.:

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7

Encoders

D0

D1

D2

D3

D4

D5

D6

D7

000

001

010

011

100

101

110

111

A0

A1

A2

Priority Encoder

• A priority encoder is an encoder with a priority
function.

• If two or more inputs are both set, the input with
the highest priority takes precedence.

• The outputs x and y indicate the encoded bit; the
output V is a valid bit indicator, which is set when
one or more bits are set to 1.

Truth Table For A Priority Encoder

Inputs Outputs

D0 D1 D2 D3 x y V

0 0 0 0 X X 0

1 0 0 0 0 0 1

X 1 0 0 0 1 1

X X 1 0 1 0 1

X X X 1 1 1 1

Karnaugh Map for X

01 11 1000

00

01

11

10

D0D1

D2D3

1X 1 1

1 1 1

1 1 1

1 1 1

D2

D3

Karnaugh Map for Y

01 11 1000

00

01

11

10

D0D1

D2D3

1X 1

1 1 1

1 1 1

1 1

D1D’2

D3

4-input Priority Encoder

D1

D2

D3

D0

V

x

y

Multiplexers

• A multiplexer allows 2n input lines to share a single output
line.

– The line currently using the common output line is
indicated by the select line inputs.

– The select lines are decoded to determine which input
has use of the line.

• A 4-to-1-line multiplexer has six inputs (four data inputs
and two select inputs) and one output.

– The truth table would require 64 lines.

– It is more efficient and just as informative to use a
function table, where we indicate by function what the
output will be.

4-to-1-Line Multiplexer

Y

I0

I1

I2

I3

S0

S1

4-to-1-Line Multiplexer Function Table

I311

I201

I110

I000

YS0S1

Select Output

Quadruple 2-to-1 Line Multiplexer

Quadruple

2 x 1

multiplexer

Enable

Select

A0

A1

A2

A3

B0

B1

B2

B3

Y0

Y1

Y2

Y3

