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Lecture 4 - Combinational Logic

Introduction

• A combinational circuit consists of input variables, 
logic gates, and output variables.

– The logic gates accept n input signals and generate the 
m signals that become output.

• For n input variables, there are 2n possible 
combinations of binary input values.

– For each input combination, there will be one and only 
possible output combination.

• Each input will have one or two wires.

– If there is one wire, it will be either in the normal 
(unprimed) form or the complemented (primed) form.

– If there are two wires, it will supply both forms.
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Combinational Circuit Analysis

• Analysis of a combinational circuit requires that 

we find the function(s) that the circuit implements.

• First we must ensure that the circuit is 

combinational and not sequential. (The lack of 

feedback paths or memory elements ensures that).

• After this, we try to find the logic function or truth 

table.



Analysis Procedure

1. Label all gate outputs that are a function of input 
variables with arbitrary symbols.  Determine the 
Boolean functions for each gate output.

2. Label the gates that are a function of input variables and 
previously labeled gates with other arbitrary symbols.  
Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of 
the circuits are obtained.

4. By repeated substitution of previously defined functions, 
obtain the output Boolean functions in terms of input 
variables.

Analysis Example
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Analysis Example – The Outputs

• We initially get:

F2 = AB + AC + BC

T1 = A + B + C

T2 = ABC

• Next, we consider the outputs of gates that 
are a function of symbol that are already 
defined:

T3 = F’2T1

F1 = T3 + T2

Analysis Example – Solving For F1

F1 = T3 + T2 = F’2T1 + ABC

= (AB + AC + BC)’(A + B + C) + ABC

= (A’+B’)(A’+C’)(B’+C’)(A + B + C) + ABC

= (A’ + B’C’)(AB’+AC’+ BC’+ B’C) + ABC

= A’BC’ + A’B’C + AB’C’ + ABC



The Truth Table for F1

A B C F2 F’2 T1 T2 T3 F1

0 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 1 1

0 1 0 0 1 1 0 1 1

0 1 1 1 0 1 0 0 0

1 0 0 0 1 1 0 1 1

1 0 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0

1 1 1 1 0 1 1 0 1

Design Procedure

• The design procedure starts with the 

verbal outline of the problem and ends 

with a logic circuit diagram or a set of 

Boolean functions from which the circuit 

diagram can be created.



The Steps in the Design Procedure

The procedure involves these steps:

1. The problem is stated.

2. The number of available input variables and 
required output variables is determined.

3. The input and output variables are assigned letter 
symbols.

4. The truth tables that defines the required 
relationships between inputs and outputs are 
derived.

5. The simplified Boolean function for each output is 
obtained.

6. The logic diagram is drawn.

The Truth Table

• The truth table consists of input and output 
columns.

• The 1s and 0s for the input are obtained 
from the 2n combinations of n input 
variables.

• An output could be either 1 or 0 for every 
valid input combination.

• Some input combinations will not occur; 
these become don’t-care conditions.



Simplifying the Boolean Functions

• The output functions are simplified by Boolean 
algebra, Karnaugh maps or tabulation.

• There will usually more than one simplified 
expression to choose from.

• Which expression we choose may depend on 
circuit design constraints such as :

– Minimum number of gates

– Number of input to a gate

– Minimum propagation time of the signal through the 
circuit.

– Minimum number of interconnections

– Limitation of the driving capabilities of each gates.

Code Conversion From BCD to Excess-3

• BCD (Binary-Coded Decimal) and Excess-

3 provide two different ways of representing 

a decimal value in a binary format.

• There will be a one-to-one correspondence 

between BCD inputs and the corresponding 

Excess-3 values.

• Not all the BCD minterms are valid values. 

These will lead to don’t-care conditions.



Truth Table for BCD to Excess-3
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Karnaugh Map for x
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Karnaugh Map for z

CDAB
00 01 11 10

00

01

11

10

1 1

1

1

XX X X

X X

C

A

D

B

z = D’

1

Circuit Diagram for BCD to Excess-3
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Half Adder

• The most basic arithmetic operation is the  

addition of two binary digits.

• We know that:

– 0 + 0 = 0

– 0 + 1 = 1 + 0 = 1

– 1 + 1 = 10

• If both addends are 1, we need a carry bit which 

will be added to the addend in the next more 

significant bit.

Half Adder (continued)

• We can summarize this in the form of a truth table:

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

• From this we learn that:

S = x’y + xy’ = x  ⊕ y

C = xy



Implementation of Half Adder
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Implementing a Half Adder Using XOR
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Implementing a Half Adder As a Product of 

Sums
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Implementing a Half Adder 
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The Full Adder

• A full adder is a combinational circuit that 

forms the arithmetic sum of three inputs.

– It consists of 3 inputs and two outputs.

– Two of the inputs (x and y) are the same as in 

the half adder.

– The third input (z) is the carry from the addition 

of the previous (lesser significance) bits.



Truth table for a full adder

11111

01011

01101

10001

01110

10010

10100

00000

SCzyx
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Full Adder Circuit Diagram For the Sum
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Full Adder Circuit Diagram Using Half Adders
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C = z •( x ⊕ y) + x•y 
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Binary Adder

• A binary adder is a digital circuit that 

produces the arithmetic sum of two binary 

numbers.

• It can be constructed by connecting a series 

of full adders in cascade.

4 –Bit Adder

FA

S3

B3 A3

FA
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B2 A2
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FA

S0

B0 A0

C0

C1C2C3

C4



4-Bit Adder – An Example

Subscript i 3 2 1 0 Ci

Input Carry 0 1 1 0 Ai

Augend 1 0 1 1 Bi

Augend 0 0 1 1 Ci

Sum 1 1 1 0 Si

Output Carry 0 0 1 1 Ci+1

Carry Propagation

• Adding two binary numbers in parallel implies 

that we have all the bits that we need available at 

the same time.  The cascading of carries seems to 

belie this assumption.

• If we can generate the necessary bits to determine 

carries in parallel, then we can actually do the 

summation without waiting for a carry to cascade 

through.



Carry Propagation

• We can add two additional terms:

Gi – Carry Generate

Pi Carry Propagate

• We can define them as:

Pi = Ai ⊕Bi

Gi = Ai Bi

• The output sum and carry are now:

Si = Pi ⊕ Gi

Ci+1 = Gi + Pi Ci

Carries in a Carry Lookahead Generator

C0 = input carry

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0)

= G1 + P1G0 + P1P0C0

C3 = G2 + P2C2

= G2 + P2G1 + P2P1G0 + P2P1P0C0



Carry Lookahead Generator
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Half Subtractor

• A half subtractor subtracts two bits and 

produces their difference and whether a 1 

was borrowed.

• We must remember that:

0 – 0 = 0; 1 – 0 = 1; and 1 – 1 = 0

If we have 0 – 1, we must borrow from the next 

place, so our difference is 1 with a borrow of 1.

Truth Table for the Half Subtractor

0011

1001

1110

0000

DByx

D = x’y + xy’ = x ⊕ y

B = x’y



Full Subtractor

• A full subtractor performs subtraction 
between two bits takinginto account the 
potential borrow from a lower significance 
bit.

• A full subtractor’s inputs are

– x, the minuend

– y, the subtrahend

– z, the borrow

Truth Table for the Full Subtractor

11111

00011

00101

10001

01110

11010

11100

00000

DBzyx



Karnaugh Maps for Full Subtractor
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Adder-Subtracter

• Subtracting A – B is most easily done by adding 

B’ to A and then adding 1.

• This makes it convenient to combine both addition 

and subtraction into one circuit, called an adder-

subtracter.

• M is the mode indicator

– M = 0 indicates addition (B is left alone and C0 is 0)

– M = 1 indicates subtraction (B is complement and C0 is 

1).



4-Bit Adder-Subtractor

FA FA FA FA C0

C1C2C3

C4

S0S1S2S3

B0 A0B1 A1B2 A2B3 A3

M

Overflow

• If addition of 2 n-bit augends produces an 

n+1-bit sum, we say that overflow occurs.

• Overflow is a problem for computers if 

undetected because the answer that is 

produced is erroneous.



Examples Of No Overflow

Carries:      0 0 0 0

+70 0 1000110 +70 0 1000110

-80 1 0110000 +20 0 0010100

-10 1 1110110 +90 0 1011010

If there is no overflow, the carry into the sign bit matches the 

carry out of the sign bit.

Carry out of  sign bit Carry into sign bit

Examples Of Overflow

Carries:      0 1 1 0

+70 0 1000110 -70 1 0111010

+80 0 1010000 -80 1 0110000

+150 1 0010110 -150 0 1101010

If there is overflow, the carry into the sign bit does not match 
the carry out of the sign bit.

Carry out of  sign bit Carry into sign bit



4-Bit Adder-Subtractor With Overflow Output

FA FA FA FA C0

C1C2C3

C4

S0S1S2S3

B0 A0B1 A1B2 A2B3 A3

M

V

If V = 1, there is overflow

If V = 0, there is no overflow

Decimal Adder

• Some systems perform arithmetic on decimal 
values, which are stored in BCD form.

• A decimal adder requires 9 inputs: 4 bits for each 
decimal digit of the augend and a carry bit.

• The easiest way to construct a decimal adder is by 
using a binary adder and then convert the sum to 
decimal form.

• The five inputs are K (the binary carry), Z8, Z4, Z2
and Z1.

• The five outputs are C (the decimal carry), S8, S4, 
S2 and S1.



The Truth Table for the BCD Adder

Binary Sum BCD Sum Decimal

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0    0    0    0    0 0   0   0   0   0 0

0    0    0    0    1 0   0   0   0   1 1

0    0    0    1    0 0   0   0   1   0 2

0    0    0    1    1 0   0   0   1   1 3

0    0    1    0    0 0   0   1   0   0 4

0    0    1    0    1 0   0   1   0   1 5

0    0    1    1    0 0   0   1   1   0 6

0    0    1    1    1 0   0   1   1   1 7

0    1    0    0    0 0   1   0   0   0 8

0    1    0    0    1 0   1   0   0   1 9

The Truth Table for the BCD Adder

Binary Sum BCD Sum Decimal

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0    1    0    1    0 1   0   0   0   0 10

0    1    0    1    1 1   0   0   0   1 11

0    1    1    0    0 1   0   0   1   0 12

0    1    1    0    1 1   0   0   1   1 13

0    1    1    1    0 1   0   1   0   0 14

0    1    1    1    1 1   0   1   0   1 15

1    0    0    0    0 1   0   1   1   0 16

1    0    0    0    1 1   0   1   1   1 17

1    0    0    1    0 1   1   0   0   0 18

1    0    0    1    1 1   1   0   0   1 19



BCD Adder

4-bit Binary Adder

Addend Augend

K

Z8 Z4 Z2 Z1

4-bit Binary Adder

S8 S4 S2 S1

Carry in 
Carry in 

Output

Carry 

0

Binary Multiplier

• Binary multiplication is performed the same way 
as decimal multiplication, except each line is 
either the multiplicand shifted or all zeros, 
depending on whether the multiplier bit is 1 or 0.

• Example:

B1 B0

A1 A0

A0B1 A0B0

A1B1 A1B0

C3 C2         C1      C0



2-Bit Multiplier
B0

B1

A0

C0

A1

C1

HAHA

C2C3

4-Bit by 3-bit Multiplier

B0B1B2B3

A0

B0B1B2B3

A1

4–bit Adder

0

4–bit Adder

C Sum

B1B2B3

A2

B0

C6 C5 C4 C3 C2 C1 C0



Magnitude Comparator

• A magnitude comparator is a combinational 

circuit that compares two numbers, A and B 

and determines their relative magnitudes.

• The output is three variables that indicate 

whether A = B, A > B or A < B.

Magnitude Comparator – The Algorithm

• If A = A3A2A1A0 and B = B3B2B1B0 then if we 

define xi = AiBi + A’iB’i where i = 0, 1, 2, 3

• A = B when x3x2x1x0 = 1

• (A > B)

= A3B’3 + x3A2B’2 + x3x2A1B’1 + x3x2x1A0B’0

• (A < B)

= A’3B3 + x3A’2B2 + x3x2A’1B1 + x3x2x1A’0B0



Magnitude Comparator – The Circuit
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Decoders

• A decoder is a combinational circuits that converts 

binary information from the n coded inputs to a 

maximum of 2n unique outputs.

• The decoders in which that we are interested are 

n-to-m-line decoders, where 2n ≥ m.

• Commercial decoders usually include an enable 

input, without which there is no response from the 

decoder.



Truth Table For For a 3-to-8-Line Decoder

000000011111

000000100111

000001001011

000010000011

000100001101

001000000101

010000001001

100000000001

00000000XXX0

D0D1D2D3D4D5D6D7A0A1A2E

Enable Inputs Outputs

3-to-8 Decoder

D0
000

D1
001

D2
010

D3
011

D4
100

D5
101

D6
110

D7
111

E

A2

A1

A0



NAND Gate Decoder

• Some decoders are constructed with NAND 

gates instead of AND gates.

• Since NAND gates invert the outputs, it is 

more economical to invert the signals, i.e., 

E has a value 0 to enable the circuit and 1 to 

disable, and there is only one output Di with 

a value of 0.

2-to-4-Line NAND Gate Decoder 

Truth Table

1111XX1

0111110

1011010

1101100

1110000

D3D2D1D0A0A1E



2-to-4 Decoder With NAND Gates

D0
00

D1
01

D2
10

D3
11

E

A0

A1

Expanding Decoders

• Sometimes a decoder may be needed but 

only smaller decoders are available.

• Take the example of using 2-to-4 decoders 

to build a 3-to-8 decoder:

– The less significant inputs are attached to both 

decoders.

– A2 is used as E for the lower decoder and E’ in 

the higher decoder.



3-to-8 Decoder Constructed With Two 2-to-4 

Decoders With Enable
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3-to-8 Decoder Constructed With Two 2-to-4 

Decoders
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Implementing A Full Adder With a Decoder
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Encoders

• An encoder does the opposite of a decoder

• An encoder has 2n (or less) inputs and n 
outputs.

• An encoder can be implemented using OR 
gates whose inputs are determined from the 
truth table.:

A0 = D1 + D3 + D5 + D7

A1 = D2 + D3 + D6 + D7

A2 = D4 + D5 + D6 + D7



Encoders

D0

D1

D2

D3

D4

D5

D6

D7

000

001

010

011

100

101

110

111

A0

A1

A2

Priority Encoder

• A priority encoder is an encoder with a priority 
function.

• If two or more inputs are both set, the input with 
the highest priority takes precedence.

• The outputs x and y indicate the encoded bit; the 
output V is a valid bit indicator, which is set when 
one or more bits are set to 1.



Truth Table For A Priority Encoder

Inputs Outputs

D0 D1 D2 D3 x y V

0    0     0    0 X X 0

1    0     0    0 0 0 1

X   1     0    0 0 1 1

X   X    1    0 1 0 1

X   X    X   1 1 1 1

Karnaugh Map for X

01 11 1000

00

01

11

10

D0D1

D2D3

1X 1 1

1 1 1

1 1 1

1 1 1

D2

D3



Karnaugh Map for Y

01 11 1000

00

01

11

10

D0D1

D2D3

1X 1

1 1 1

1 1 1

1 1

D1D’2

D3

4-input Priority Encoder
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D3

D0

V

x

y



Multiplexers

• A multiplexer allows 2n input lines to share  a single output 
line.

– The line currently using the common output line is 
indicated by the select line inputs.

– The select lines are decoded to determine which input 
has use of the line.

• A 4-to-1-line multiplexer has six inputs (four data inputs 
and two select inputs) and one output. 

– The truth table would require 64 lines.

– It is more efficient and just as informative to use a 
function table, where we indicate by function what the 
output will be.

4-to-1-Line Multiplexer

Y

I0

I1

I2

I3

S0

S1



4-to-1-Line Multiplexer Function Table

I311

I201

I110

I000

YS0S1

Select Output

Quadruple 2-to-1 Line Multiplexer

Quadruple

2 x 1

multiplexer

Enable

Select

A0

A1

A2

A3

B0

B1

B2

B3

Y0

Y1

Y2

Y3


