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CSC 370 – Computer 

Architecture and Organization

Lecture 11 - Pipeline and Vector 

Processing

Parallel Processing

• Parallel processing – denotes the use of techniques designed to 

perform various data processing tasks simultaneously to 

increase a computer's overall speed.

• These techniques can include:

– performing arithmetic or logical operations while fetching the next 

instruction

– executing several instructions at the same time

– performing arithmetic or logical operations on multiple sets of 

operands.

• While parallel processing can be more expensive, 

technological advances have dropped to overall cost of 

processor design enough to make it financially feasible.



8/4/2021

2

Levels of Complexity in Parallel 

Processing

• On the low level:

– Shift registers are sequential; parallel load registers 

operate all their bits simultaneously.

• On the high level:

– Multiple functional units allow all multiple 

operations to be executed concurrently.

Processor With Multiple Functional Units

Processor

registers

Adder/subtractor

Integer

multiply

Logic unit

Shift unit

Incrementer

Floating point

add/subtract

Floating point

multiply

Floating point

divide

To memory
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Flynn's Taxonomy

• Michael Flynn classified computers according to their 
type of parallelism:
– SISD – Single Instruction Single Data – simple computers 

that are essentially devoid of parallelism

– SIMD – Single Instruction Multiple Data – processors 
capable of performing the same operation on multiple pairs 
of operands

– MISD – Multiple Instruction Single Data – performing 
several operations on the same set of data – only of 
theoretical interest

– MIMD - Multiple Instruction Multiple Data – capable of 
processing several programs simultaneously on different 
sets of data

Pipelining

• Pipelining is a technique where sequential processes 

are broken down into separate suboperations, each of 

which being performed by its own hardware.

• Each computation is passed along to the next segment 

in the pipeline, with the processes are carried in a 

manner analogous to an assembly line.

• The fact that each suboperation is performed by 

different hardware allows different stages of the 

overall operation to be performed in parallel.
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Picturing The Pipeline

• It may be easier to picture a segment of the  
pipeline as a register followed by a 
combinational circuit.

– The register holds the data

– The combinational circuit performs the specified 
operation.

– The result is passed on to another register.

• The suboperations are synchronized by the 
clock pulses.

Pipelining: An Example

• Imagine that we want to evaluate the following 
expression for seven sets of values:

Ai*Bi + Ci, for i = 1, 2, 3, …, 7

• Each suboperation can be implemented by a different 
segment within the pipeline.

• This can be decomposed into three segments:

R1 ← Ai, R2 ← Bi Input Ai and Bi

R3 ← R1 * R2, R4 ← Ci Multiply and input Ci

R5 ← R3 + R4 Add Ci to the product

• The 5 registers are each loaded on a new clock pulse.
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Pipeline Processing

R1 R2

Multiplier

R3 R4

Adder

R5

Ai Bi Ci

Registers in the Pipeline

Clock Pulse # R1 R2 R3 R4 R5

1 A1 B1 - - -

2 A2 B2 A1*B1 C1 -

3 A3 B3 A2*B2 C2 A1*B1 + C1

4 A4 B4 A3*B3 C3 A2*B2 + C2

5 A5 B5 A4*B4 C4 A3*B3 + C3

6 A6 B6 A5*B5 C5 A4*B4 + C4

7 A7 B7 A6*B6 C6 A5*B5 + C5

8 - - A7*B7 C7 A6*B6 + C6

9 - - - - A7*B7 + C7

Segment 2 Segment 3Segment 1
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Pipelining – General Considerations

• Any operation that can be decomposed into a 

series of suboperations of the same complexity 

can be implemented by pipelining.

• We define a task as the total operation that 

performing when going through the entire 

pipeline.

4-Segment Pipeline

R1S1 R2S2 R3S3 R4S4

Clock

Input
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Space-Time Diagram

1 2 3 4 5 6 7 8 9

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

T1 T2 T3 T4 T5 T6

Segment:

Clock

cycles

Speedup

• Given a k-segment pipeline with a clock cycle of tp that is used 

to execute n tasks.

– The first task requires ktp to complete the 

operation.

– The remaining tasks are completed one per clock 

cycle, requiring an additional (n-1)tp.

– The total execution time is (k + n-1)tp

• A nonpipelined unit would require ntn to complete these tasks.

• The speedup is the ratio

S = 
ntn

(k + n – 1)tp
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Theoretical Speedup

• As the tasks increase n is much larger than k – 1 and  

k + n – 1 → n.  Thus the speedup becomes

S = tn / tp

• If we assume that the task takes as long with or 

without pipelining, we have tn = ktp, which yields:

S = k

• Therefore k is the theoretical maximum speedup.

Speedup – An Example

• Let's assume that

tp = 20ns

the pipeline has k = 4 segments

executes n = 100 tasks in sequence

• The pipeline will 

(k + n - 1) tp = (4 + 100 -1)  20 ns 

= 2060 ns to complete the task

• Assuming tn = 4  20 = 80ns, it will require

ktp = 100  80 = 8000 ns

• Therefore the speedup is 8000/2060 = 3.88

which will approach 4 as n grows
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To reach the maximum theoretical speedup, we 

need to construct multiple functional units in 

parallel

P1

Ii

P2

Ii+1

P3

Ii+2

P4

Ii+3

Applying Pipelining

• There are two areas where pipeline 

organization is applicable:

– Arithmetic pipelining

• divides an arithmetic operation into suboperations for 

execution in the pipeline segments.

– Instruction pipelining

• operates on a stream of instructions by overlapping the 

fetch, decode, and execute phases of the instruction 

cycles.
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Arithmetic Pipelining

• Pipelined arithmetic units are used to 

implement floating point operations, fixed 

point multiplication, etc.

• Floating point operations are readily 

decomposed into suboperations that can be 

handled separately.

Example – Floating Point Addition

• The operands in floating point addition are 2 

normalized binary numbers:

X = A  2a

Y = B  2b

where X and y are fractions representing the mantissa

a and b are the exponents

• The four segments are:

1. Compare the exponents

2. Align the mantissas

3. Add or subtract the mantissas

4. Normalize the results
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Pipeline for Floating Point Addition/Subtraction
MantissasExponents

BAa b

R

Compare 

exponents
Segment 1:

R

R

Choose

exponent

Align

mantissas
Segment 2:

Difference

R

Add/subtract

mantissas

RR

Segment 3:

Normalize

result

R

Adjust

exponent

R

Segment 4:

Example – Floating Point Addition

• If our operands are

X = 0.9504  103

Y = 0.8200  102

• The difference of the exponents is 3-2 = 1; we adjust 
Y's exponent:

X = 0.9504  103

Y = 0.0820  103

• We calculate the product:

Z = 1.0324  103

• Then we normalize:

Z = 0.10324  104
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Implementing The Pipeline

• The comparator, shifter, adder/subtractor, 

incrementer and decrementer are implemented using 

combinational circuits.

• Assuming time delays of t1 = 60 ns, t2 = 70 ns, t3 = 

100 ns, t4 = 80 ns and the registers have a delay tr = 

10 ns

• We choose a clock cycle of tp = t3 + tr = 110

• A non-pipelined implementation would have a delay 

of tn = t1 + t2 + t3 + t4 + tr = 320 ns.  This results in a 

speedup of 320/110 = 2.9

Instruction Pipelining

• Pipeline processing can occur in the instruction 
stream as well, with the processor fetches instruction 
while the previous instruction are being executed.

• It’s possible for an instruction to cause a branch out 
of sequence, and the pipeline must be cleared of all 
the instructions after the branch.

• The instruction pipeline can read instructions from 
memory and place them in a queue when the 
processor is not accessing memory as part of the 
execution of instructions.
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Steps in the Instruction Cycle

• Computers with complex instructions require 
several phases in order to process an 
instruction.  These might include:

1. Fetch the instruction from memory

2. Decode the instruction

3. Calculate the effective address

4. Fetch the operands from memory

5. Execute the instruction

6. Store the result in the proper place

Difficulties Slowing Down the 

Instruction Pipeline

• Certain difficulties can prevent the instruction 

pipeline from operating at maximum speed:

– Different segments may require different amounts of time 

(pipelining is most efficient with segments of the same 

duration)

– Some segments are skipped for certain operations (e.g., 

memory reads for register-reference instructions)

– More that one segment may require memory access at the 

same time (this can be resolve with multiple busses).



8/4/2021

14

Example: Four-Segment CPU Pipeline

• Assumptions:

– Instruction decoding and effective address can be combined 

into one stage

– Most of the instructions place the result into a register 

(execution and storing result become one stage)

• While one instruction is being executed in stage 4, another is 

fetching an operand in stage 3, another is calculating an 

effective address and a fourth is being fetched.

• If a branch is encountered, we complete the operations in the 

last stages, delete the instructions in the instruction buffer and 

restart the pipeline with the new address.

4-Segment CPU Pipeline
Fetch instruction 

from memory

Decode instruction

& calc. effective

address

Segment 1:

Segment 2:

Branch?

Fetch operand 

from memory
Segment 3:

no

Execute instruction Segment 4:

Branch?

Interrupt

handling

no

yes

Update PC

Empty pipe

yes
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Timing of Instruction Pipeline

1 2 3 4 5 6 7 8 9 10 11 12 13

1 FI DA FO EX

2 FI DA FO EX

3 FI DA FO EX

4 FI - - FI DA FO EX

5 - - - FI DA FO EX

6 FI DA FO EX

7 FI DA FO EX

Step:

Instruction:

(Branch)

FI – Fetch instruction

DA – Decode instruction and calculate eff. address

FO – Fetch operand

EX – Execute instruction

Decoding

a branch

instruction

Everything has to wait

until the branch has finished

executing

Pipeline Conflicts

• There are three major difficulties that cause the 

instruction pipeline to deviate from its normal 

operations

1. Resource conflicts – caused by access to memory by two 

segments at the same time.  Separate memory for data and 

instructions resolves this.

2. Data dependency – an instruction depends on the result 

of a previous instruction but this result is not yet 

available.

3. Branch difficulties – branch and other instructions that 

change the PC's value.
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Data Dependency

• A data dependency occurs when an instruction needs 
data that is not yet available.

• An instruction may need to fetch an operand being 
generated at the same time by an instruction that is 
first being executed.

• An address dependency occurs when an address 
cannot be calculated because the necessary 
information is not yet available, e.g., an instruction 
with an register indirect address cannot fetch the 
operand because the address is not yet loaded into the 
register.

Dealing With Data Dependency

• Pipelined computers deal with data dependencies in 
several ways:

– Hardware interlocks - a circuit that detects instructions 
whose source operands are destinations of instructions 
farther up in the pipeline.  It delays the later instructions.

– Operand forwarding – if a result is needed as a source in 
an instruction that is further down the pipeline, it is 
forwarded there, bypassing the register file.  This requires 
special circuitry.

– Delayed load – using a compiler that detects data 
dependencies in programs and adds NOP instructions to 
delay the loading of the conflicted data.
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Handling Branch Instructions

• Branch instructions are a major problem in operating 
an instruction pipeline, whether they are 
unconditional (always occur) or conditional
(depending on whether the condition is satisfied). 

• These can be handled by several approaches:

– Prefetching target instruction – Both the target 
instruction (of the branch) and the next instruction are 
fetched and saved until the branch is executed.  This can be 
extended to include instructions after both places in 
memory.

– Use of a branch target buffer – the target address and the 
instruction at that address are both stored in associative 
memory (along with the next few instructions).

Handling Branch Instructions (continued)

– Using a loop buffer – a small high-speed register file that 

stores the instructions of a program loop when it is 

detected.

– Branch prediction – guesses the outcome of a condition 

and prefetches instructions

– Delayed branch – used by most RISC processors.  Branch 

instructions are detected and object code is rearranged by 

inserting instructions that keep the pipeline going. (This 

can be NOPs).
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RISC Pipeline

• The RISC architecture is able to use an efficient 
pipeline that uses a small number of suboperations for 
several reasons:

– Its fixed length format means that decoding can occur 
during register selection

– Data manipulation are all done using register-to-register 
operations, so there is no need to calculate effective 
addresses.

– This means that instructions can be carried out in 3 
suboperations, with the third used for storing the result in 
the specified register.

RISC Architecture and Memory-

Reference Instructions

• The only data transfer instructions in RISC 
architecture are load and store, which use register 
indirect addressing, which typically requires 3-4 
stages in the pipeline.

• Conflicts between instruction fetches and transferring 
the operand can be avoid with multiple busses that 
access separate memories for data and instructions.
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Advantages of RISC Architecture

• RISC processors are able to execute 

instructions at a rate of one instruction per 

clock cycle.

– Each instruction can be started with a new clock 

cycle and the processor is pipelined so the one 

clock cycle per instruction rate can be achieved.

• RISC processors can rely on the compiler to 

detect and minimize the delays caused by data 

conflicts and branch penalties.

Example: 3-Segment Instruction 

Pipeline

• A typical RISC processor will have 3 

instruction formats:

– Data manipulation instructions use registers only

– Data transfer instructions use an effective address 

consisting of register contents and constant offset

– Program control instructions use registers and a 

constant to evaluate the branch address.
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Implementing the Pipeline

• The necessary hardware:

– The control unit fetches the instruction, saving it in an instruction 

register.

– The instruction is decoded while the registers are selected.

– The processor consists of registers and an ALU that does arithmetic, 

shifting and logic

– Data memory is used for storing and loading data.

• The instruction cycle can consist of  3 suboperations:

– I – Instruction fetch

– A – ALU operation (decode the instruction and calculate the result, or 

the effective operand address or the branch address

– E – Execute instruction – direct the result to a register, memory or the 

PC

Pipeline Timing With Data Conflict

Clock Cycles: 1 2 3 4 5 6

1. Load R1 I A E

2. Load R2 I A E

3. Add R1 + R2 I A E

4. Store R3 I A E

Data conflict

we're using R2 

before it is finished

loading
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Pipeline Timing With Delayed Loading

Clock 

Cycles:

1 2 3 4 5 6 7

1. Load R1 I A E

2. Load R2 I A E

3. No-

operation

I A E

4. Add R1+ 

R2

I A E

5. Store R3 I A E

The compiler inserting

a NOP eliminates the

data conflict without

needed extra hardware

support

Delayed Branch

Clock 

cycles:

1 2 3 4 5 6 7 8 9 10

1. Load I A E

2. 

Increment

I A E

3. Add I A E

4. Subtract I A E

5. Branch 

to X

I A E

No-

operation

I A E

No-

operation

I A E

Instruction 

in X

I A E

The branch 

instruction

here

makes these Nops

necessary
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Delayed Branch

Clock 

cycles:

1 2 3 4 5 6 7 8 9 10

1. Load I A E

2. 

Increment

I A E

3. Branch 

to X

I A E

4. Add I A E

5. Subtract I A E

Instruction 

in X

I A E

Placing the

branch 

instruction

here

makes a Nop

instruction

here

unecessary

Vector Processing

• There is a class of computation problems that 
require far greater computation power than 
many computers can provide.  They can take 
days or weeks to solve on conventional 
computers.

• These problems can be formulated in terms of 
vectors and matrices.

• Computers that can process vectors as a unit 
can solve these problems much more easily.
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Applications

• Computers with vector processing capabilities are 

useful in problems such as:

– Long range weather forecasting

– Petroleum exploration

– Seismic data analysis

– Medical diagnosis

– Aerodynamics and space flight simulation

– Artificial intelligence and expert systems

– Mapping the human genome

– Image processing

Vector Operations

• A vector is an ordered set of data items in a 
one-dimensional array. 

– A vector V of length n can be represented as a row 
vector by V = [V1, V2, … , Vn]

– If these values were listed in a column, it would be 
a column vector.

• On sequential computers, vector operations are 
broken down into single computations on 
subscripted variables.  The operations on the 
entire vector is done by iteration.
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Example: Vector Addition

• Adding corresponding elements in two vectors would be 
performed by the following FORTRAN loop:

DO 20 I = 1, 100

20 C(I) = A(I) + B(I)

• This would implemented by the following machine language 
operations:
Initialize I = 0

20 Read A(I)

Read B(I)

Store C(I) = A(I) + B(I)

Increment I = I + 1

IF I ≤ 100 GO TO 20

Continue

Vector Addition With a Vector Processor

• A computer with vector processing could handle this 
with one instruction:
C(1:100) = A(1:100) + B(1:100)

• This could be performed using a pipelined floating-
point adder similar to the one shown earlier.

The instruction format

Operation

code

Base address

Source 1

Base address

Source 2

Base address

Destination

Vector

length



8/4/2021

25

Matrix Multiplication

• Matrix multiplication is an extremely computationally 

intensive operation.

– Multiplying 2 nn matrices requiring n2 inner products, 

each of which requires n multiplications = n3

multiplications

– An n  m matrix can be thought of as n row vectors or m 

column vectors.

• Consider multiplying two 33 matrices:

Matrix Multiplication (continued)

a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

c11 c12 c13

c21 c22 c23

c31 c32 c33

 =

where kj

k

ikij bac =
=

3

1

 c11 = a11b11 + a12b21 + a13b31

This requires 27 multiplication.

It is typical to encounter matrices that have 100 or even 1000 

rows and/or columns.
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Pipeline for Calculating An Inner Product

Source A

Source B Multiplier

pipeline

Adder

pipeline

C = A1B1 + A5B5 + A9B9 + A13B13 + … 

+ A2B2 + A6B6 + A10B10 + A14B14 + … 

+ A3B3 + A7B7 + A11B11 + A15B15 + … 

+ A4B4 + A8B8 + A12B12 + A16B16 + ...

Why Multiple Module Memory?

• Pipeline and vector processors frequently need 
access to memory from multiple sources at the 
same time.

– Instruction pipelines may need to fetch an 
instruction and an operand at simultaneously.

– An arithmetic pipeline may need more than 
operand at the same time.

• Instead of using multiple memory busses, 
memory can be partitioned into separate 
modules.
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Multiple Module Memory Organization

Memory

array

Memory

array

Memory

array

Memory

array

AR AR AR AR

DR DR DR DR

Address bus

Data bus

Memory Interleaving

• Multiple memory units allow the use of 

memory interleaving, where different sets of 

addresses are assigned to different modules.

• n-way interleaved memory fetches can be 

staggered, reducing the effective memory 

cycle time by factor that is close to n.
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Supercomputers

• Supercomputers are commercial computers with vector 

instructions and pipeline floating-point arithmetic operations.

– Components are also placed in close proximity to speed 

data transfers and require special cooling because of the 

resultant heat build-up.

• Supercomputers have all the standard instructions that one 

might expect as well as those for vector operations. They have 

multiple functional units, each with their own pipeline.

• They also make heavy use of parallel processing and are 

optimized for large-scale numerical operations.

Supercomputers and Performance

• Supercomputer performance are usually 

measured in terms of floating-point operations 

per second (flops).  Derivative terms include 

megaflops and gigaflops.

• Typical supercomputer has a cycle time of 4 

to 20 ns.

– With one floating-point operation per cycle, this 

can lead to performance of 50 to 250 megaflops. 

(This does not include set-up time).
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Cray 1

• The Cray 1 was the first supercomputer 

(1976).

It used vector processing with 12 distinct functional 

units in parallel, operating concurrently with 

operands stored in over 150 registers.

It could perform a floating-point operation on 2 sets 

of 64 operands in one 12.5 ns clock cycle, 

translating to 80 megaflops.

Array Processors

• Array processors performs computations on 

large arrays of data

• There are two different types of such 

processors:

– Attached array processors, which are auxiliary 

processors attached to a general-purpose computer

– SIMD array processors, which are processors with 

an SIMD organization that uses multiple functional 

units to perform vector operations.
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Attached Array Processors

• An attached array processor is designed as a 

peripheral for a conventional host computer, 

providing vector processing for complex 

numerical applications.

• The array processor, working with multiple 

functional units, serves as a back-end machine 

driven by the host computer.

Attached Array Processor With Host Computer

General-purpose

computer

Input-output

interface

Attached array

processor

Main memory Local memory
High-speed memory-

to-memory bus
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SIMD Array Processor

• An SIMD processor is computer with multiple 

processing units running in parallel.

• The processing units are synchronized to perform the 

same operation under a common control unit on 

multiple data streams.

– Each processing element has its own ALU FPU and 

working registers as well as local memory.

• The master control unit's main purpose is to decode 

instruction and determine how they are executed.

SIMD Array Processor Organization

Master control

unit

Main Memory

PE1

PE2

PE3

PEn

M1

M2

M3

Mn


