
CSC 370 – Computer 

Architecture and Organization

Lecture 10: Floating Point Data

Floating Point Representation

• Numbers too large for standard integer 
representations or that have fractional 
components are usually represented in 
scientific notation, a form used commonly 
by scientists and engineers.

• Examples:

4.25  101 10-3

-3.35  103 -1.42  102



Normalized Floating Point Numbers

• We are most interested in normalized 

floating-point numbers, a format which 

includes:

– sign

– significand (1.0  Significand  < Radix)

– integer power of the radix

Examples of Normalized Floating Point 

Numbers

These are normalized:

• +1.23456789  101

• -9.987654321  1012

• +5.0  100

These are not normalized:

• +11.3  103 significand > radix

• -0.0002  107 significand < 1.0

• -4.0  10½ exponent not integer



Converting From Binary To 

Decimal

1.001012 = 1  20 + 0  2-1 + 0  2-2 + 1  2-3

+ 0  2-4 + 1  2-5

= 1 + 0/2 + 0/4 + 1/8 + 0/16 + 1/32

= 1 + 0.125 + 0.03125

= 1.15625

= 37/32 = 1.15625

Converting From Decimal To Binary

Let’s start with 3.4625  101 = 34.625

Let’s deal separately with the 34 (which equals 

1000102)

2  .625 = 1.25 (save the integer part)

2  .25 = 0.5 (no integer part to save)

2  .50 = 1.00 (save the integer part)

Let’s write them left to right in order:

34.62510 = 100010.1012



Converting From Decimal To Binary 

– Another Example

1.23125  101 = 12.3125

1210 = 11002

2  .3125 = 0.625

2  .625 = 1.25

2  .25 = 0.50

2  .50 = 1.0

12.312510 = 1100.01012

Normalizing Floating Point Data

Floating point data is normalized so that there is the 

significand is always one:

100001.1012 = 1.00001101  25

1100.01012 = 1.1000101  23

Since the most significant bit is always 1, we can 

assume that it is implied and that we do not 

actually have to represent it.



Biased Exponents

• Short floating point numbers uses 8-bits for the 

exponents, which we want to range from  -128 to 

+127.

• A biased exponent uses some value other than 0 as 

the baseline, which must be subtracted to get the 

actual exponent value.

• Example (in short floating point):

– exponent 135 = 135 - 127 = 28

– exponent 120 = 120-127 = 2-7

Representing Floating Point 

Values In Memory

There are three standard formats for 

representing floating-point numbers:

• 32-bit format (single-precision)

• 64-bit format (double-precision)

• 80-bit format (extended precision)



Short Floating Point Numbers

31 30 23 22 0

Sign bit

1 = negative

0 = positive

Biased 

exponent

fraction
Most significant bit

Least significant bit

Implied 1 and binary point 

of significand

Representing Values

-12.437510 = -1100.01112

Short: -1.10001110000… 00002  23  +127

1 10000010 10001110000… 0000

1100 0001 0100 0111 0000 … 00002

= C1470000h



Long Floating Point Numbers

63 62 52 51 0

Sign bit

1 = negative

0 = positive

Biased 

exponent

fractionMost significant bit Least significant bit

Implied 1 and binary point 

of significand

Representing Values

-12.437510 = -1100.01112

Long: -1.10001110000… 00002  23  +1023

1 10000000010 10001110000… 0000

1100 0000 0010 1000 1110 0000 … 00002

= C028E00000000000h



Extended Floating Point Numbers

79 78 64 63 0

Sign bit

1 = negative

0 = positive

Biased 

exponent

fractionMost significant bit Least significant bit

Implied 1 and binary point 

of significand

Representing Values

-12.437510 = -1100.01112

Extended: -1.10001110000… 00002  23  +16383

1 100000000000010 10001110000… 0000

1100 0000 0000 0010 1100 0111  0000 … 00002

= C002C700000000000000h



Specifying Floating Point Data In 

Assembly Language

• We can use the:

– dd (define doubleword) directive to allocate 

storage for single-precision floats

– dq (define quadword) to allocate storage for 

double-precision floats   and 

– dt (define tenbyte) for extended-precision 

floats.

Specifying Floating Point Data - An Example

• Allocating storage and initializing values

ShortOne dd 1.0

LongOne dq 1.0

Pi dd 0.314159265E1

IntRate dt 13.25E-1

Allocating storage without initializing:

Mass dd ?

CoefFric dq ?

Temp dt ?



Floating Point Operations

• Floating point operations include:

– moving and rounding data

– conversion

– addition

– subtraction

– multiplication

– division

– remainder

– comparison

Moving Floating Point Data

• Moving floating point data can be done 

using the standard mov instruction in 

Assembly language.

• If the source and destination are different 

length, care must be taken in conversion to 

ensure that exponent and significand are 

properly converted.



Data Conversion

• Integer and floating point data  cannot be used 
interchangeably; data conversion is necessary and 
real-to-integer conversion is not without potential 
problems:

– Underflow – a magnitude too small to represent as an 
integer.

– Overflow  – a magnitude too large to represent as an 
integer.

– Inexact result – a loss of all of part of the fractional part 
of the floating-point fvalue.

Floating Point Addition

• To add two floating point values, they have to be 
aligned so that they have the same exponent.

• After addition, the sum may need to be 
normalized.

• Potential errors include overflow, underflow and 
inexact results.

• Examples:

2.34  103 6.22 108

+ 0.88  103 + 3.93 108

3.22  103 10.15 108 = 1.015109



Floating Point Subtraction

• Subtracting floating point values also requires re-alignment 

so that they have the same exponent.

• After subtraction, the difference may need to be 

normalized.

• Potential errors include overflow, underflow and inexact 

results, and the difference may have one signficant bit less 

than the operands..

• Examples:

2.34  103 6.44  104

-0.88  103 - 6.23 104

1.46  103 0.21 104 = 2.1 103

Floating Point Multiplication

• Multiplying floating point values does not requires re-

alignment  - realigning may lead to loss of significance. 

• After multiplication, the product may need to be 

normalized.

• Potential errors include overflow, underflow and inexact 

results. 

• Examples:

2.4  103

 6.3  10-2

15.12 101 = 1.512 102



Floating Point Division

• Dividing floating point values does not requires 

re-alignment. 

• After division, the (floating point) quotient may 

need to be normalized – there is no remainder

• Potential errors include overflow, underflow, 

inexact results and attempts to divide by zero.

• Examples:

1.86  1013  7.44  105 = 0.25  108

2.5  107

Floating Point Remainder

• There is usually no remainder in floating point 
division, because the quotient can be a floating 
point value itself. 

• Sometimes we want a remainder , i.e., the 
difference between the dividend and the product of 
the quotient rounded to the nearest integer) and the 
divisor:

• s REM t = s – t  NINT(s/t)

• Remainder will not produce inexact results, 
underflow or overflow but can lead to an attempt 
to divide by zero.



Floating Point Comparison

• There are usually three results that can happen as a 

result of floating point comparison:

– less than

– greater than

– equal to 

• In some instances, there is a fourth result:  

unordered, which occurs if one of the values is the 

result of an arithmetic error.

• These errors can result from adding or subtracting 

infinite values and are called NaNs (for Not a

Number).

The Intel Floating Point Co-processors

• Early Intel processors (8088/8086, 80286, 80386) 

had no floating point capabilities; unless you 

wished to emulate floating point operations using 

software routines, you needed to add a co-

processor (8087, 80287, 80387).

• 80486 and Pentium family processors include a 

floating point unit with an architecture that is the 

same as the coprocessors.



The Intel Floating Point Unit

• The Floating Point Unit contains 13 registers:

– Eight 80-bit data registers (ST(0), ST(1), .., 

ST(7)) that are usually accessed as a stack with 

ST(0) representing the top of the stack.

– Three 16-bit registers, called the tag, control 

and status registers.

– Two 32-bit registers that serve as exception 

pointers.

Data Register

ST(0)

ST(1)

ST(2)

ST(3)

ST(5)

ST(6)

ST(7)

ST(4)

Top

Bottom



Tag Register

tag 3tag 5tag 7 tag 1 tag 0tag 2tag 4tag 6

empty11

invalid (infinite or NaN)10

zero01

valid  (finite nonzero 

number)
00

meaningtag

Control Register

• The control register contains six exception masks 

and three control fields

• If one of the exception masks is cleared and that 

exception occurs, the program is suspended and 

the an interrupt is generated, which will either 

correct the problem or terminate the program.

• The control fields control rounding and the type of 

infinity used.



Floating Point Move Instructions

Floating point move instructions include:

• fld source– convert to ext. real and push on stack

• fild source – convert from integer and push

• fst dest – store (without popping)

• fstp dest – store and pop

• fist dest – convert to integer and store

• fistp dest – convert to integer, store and pop

• fxch – exchange ST and ST(1)

• fld1 – push 1 on the stack

• fldz – push zero on the stack

Floating Point Arithmetic Instructions

• Floating point arithmetic instructions include:

– fadd Add

– fsub Subtract

– fsubr Subtract Reversed (minuend and subtrahrend 
are in reverse order)

– fmul Multiply

– fdiv Divide

• Without an operand, the operands are popped from  the 
stack and the result is pushed.

• With a single operand, the second operand is specified; the 
first operand the result are on the top of the stack



Special Floating Point Operations

• In addition to the standard arithmetic operations, 

there are a few that do not always have integer 

counterparts:

fchs - change sign (negation)

fabs - absolute value

frndint - round to nearest integer

fsqrt - square root

• In all cases, the operand is on the top of the stack

Using Comparison Instructions

• Comparison instructions set the status bits in the FPU 

control register.  To use these as the basis for a conditional 

branch, we must load these values into the main flag 

register.

• We use the sequence:

fstsw StatusReg ; store status word in

; memory

mov ax, StatusReg ; Copy into AX register

sahf ; copy copy from AH to

; the flag register

… … … 

StatusReg dw ?



Comparison Instructions

• The comparison instructions set the status bits in the FPU 

control register depending on the top two values in ST. 

• The comparison instructions include:

– fcom compares ST with ST(1) or the operand

– fcomp compares ST with ST(1) or the operand (and 

pops ST)

– ficom compare ST with an integer operand

– ficomp compare ST with an integer operand and pops ST

– ftst compares ST to zero

Control Instructions

• Control instructions give the programmer control 

over the 8087 or FPU. 

• They include:

– fwait Suspend 8086 (non-FPU) operations 

until 8087 (or FPU) is not busy

– finit Initialize tag, control and status 

registers.

– fstcw Save Control Word (where indicated by 

operand)



Example: Calculating A Square Root

• Newton’s algorithm is frequently used to 

calculate square root.

• We start with an initial guess that X0 is the 

square root of A. We then find a revised 

guess X1 where:

X1 = (A/X0 + X0) / 2

• We repeat this until the difference of XN and 

XN-1 is within an acceptably small.

The Square Root Procedure

; procedure to find the square root using Newton's method

; Can be called by programs  in higher languages as well

; Parameters and local values

A equ     dword ptr [bp + 4]

Xold equ     dword ptr [bp - 4]

Xnew equ     dword ptr [bp - 8]

TestResult equ      word ptr [bp - 10]

.data

Two dd      2.0

MaxRelErr dd      0.5E-6

.code

NewSqrt proc

; set up bp register to point to parameter

push    bp

mov     bp, sp



; allocate stack space for local variables

sub     sp, 10

; Xnew = 1.0

fld1

fstp    Xnew

REPEAT:

; Xold = Xnew        

fld     Xnew

fst     Xold ; copy of Xold remains on

; stack

; Xnew = (A/Xold + Xold)

fld     A

fld     Xold

fdiv

fld     Xold

fadd

fld     Two

fdiv

fst     Xnew ; copy of Xnew remains on

; stack

; test MaxRelErr * Xnew > abs(Xnew - Xold)

fsub

fabs

fld     MaxRelErr

fld     Xnew

fmul

fcompp

fstsw   TestResult

fwait

mov     ax, TestResult

sahf

jna     REPEAT

; UNTIL MaxRelErr * Xnew > abs(Xnew - Xold)

; return Xnew in FPU stack, restore the non-FPU stack

fld     Xnew

add     sp, 10

pop     bp

ret     4

newsqrt endp

end     newsqrt


