
CSC 370 - Computer

Organization and Architecture

Lecture 0: Review of Numeric

Representation

Number Systems - Base 10

The number system that we use is base 10:

1734 = 1000 + 700 + 30 + 4

= 1x1000 + 7x100 + 3x10 + 4x1

= 1x103 + 7x102 + 3x101 + 4x100

724.5 = 7x100 + 2x10 + 4x1 + 5x0.1

= 7x102 + 2x101 + 4x100 + 5x10-1

Why use base 10?

Number Systems - Base 2

For computers, base 2 is more convenient (why?)

100112 = 1x16 + 0x8 + 0x4 + 1x2 + 1x1 = 1910

1000102 = 1x32 + 0x16 + 0x8 + 0x4 + 1x2 + 0x1 = 3410

101.0012 = 1x4 + 0x2 + 1x1 + 0x0.5 + 0x0.25 + 1x0.125

= 5.12510

Example - 11010112 = ?

101101112 = ?

10100.11012 = ?

Number Systems - Base 16

Hexadecimal (base 16) numbers are commonly used

because it is convert them into binary (base 2) and vice

versa.

8CE16 = 8x256 + 12x16 + 14x1

= 2048 + 192 + 14

= 2254

3F9 = 3x256 + 15x16 + 9x1

= 768 + 240 + 9 = 1017

Number Systems - Base 16 (continued)

Base 2 is easily converted into base 16:

1000110011102 = 1000 1100 1110 = 8 C E 16

111011011101010012 = 1 1101 1011 1010 1001 = 1 D B A 916

101100010100000101112 = ?16

1011010100101110112 = ?16

Number Systems - Base 16 (continued)

Converting base 16 into base 2 works the same way:

F3A516 = 1111 0011 1010 01012

76EF16 = 0111 0110 1110 11112

AB3D16 = ?2

15C.3816 = ?2

Converting From Decimal to Binary

19

9 R 1

4 R 1

2 R 0

1 R 0

0 R 1

100112

Converting From Decimal to Hexadecimal

23716

14 R 13

0 R 14

ED16

Converting From Decimal to Octal

2378

29 R 5

3 R 5

0 R 3

3558

Binary, Octal, Decimal and Hexadecimal Equivalents

1001

1010

1011

1100

1101

1111

1110

10000000

0001

0010

0011

0100

0101

0110

0111

Binary BinaryDecimal DecimalHex. Hex.

0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

0 8

9

10

11

12

13

14

15

8

A

B

C

D

9

F

E

Octal

0

1

2

3

4

5

6

7

Octal

10

11

12

13

14

15

16

17

2s Complement Representation

• In 2s complement representation, we subtract the
absolute value from 2n:
100000000

00000110

11111010

-6 11111010

+ +13 00001101

+ 7 1 00000111 (= +7)

2s Complement Representation (continued)

• The 2s complement representation can also be
found by reversing the bits (into 1s complement)
and then adding 1:
6 => 00000110 =>11111001

+ 1

11111010

43 => 00101011 => 11010100

+ 1

11010101

Overflow

• If an addition operation produces a result that exceeds our
number system’s range, overflow has occurred.

• Addition of two numbers of the same sign produces
overflow; addition two numbers of opposite sign cannot
cause overflow.

-3 1101 +5 0101

+6 0110 +6 0110

+3 1 0011 = +3 +11 1011 = -5

-8 1000 +7 0111

-8 1000 +7 0111

-16 1 0000 = 0 +14 1110 = -2

Binary Representation of Decimal Numbers

1100111110019

1011111010008

1010110101117

1001110001106

1000101101015

0111010001004

0110001100113

0101001000102

0100000100011

0011000000000

Excess-32421BCD (8421)Decimal

Digit

Gray Codes

• Sometimes electromechanical applications of

digital systems (machine tools, automotive brake

systems and copiers) require a digital value that

indicates a mechanical position.

• A standard binary code may see more than one bit

change from one position to another, which could

lead to an incorrect reading if mechanical

assembly is imperfect.

Binary Code vs. Gray Code

000

001

010

011100

101

110

111 000

001

011

010110

111

110

100

Binary Code Gray Code

ASCII representation of characters

• ASCII (American Standard Code for Information Interchange) is a

numeric code used to represent characters.

• All characters are represented this way including:

– words (character strings)

– numbers

– punctuation

– control characters

• There are separate values for upper case and lower case characters:

A 65 z 122

B 66 blank 32

Z 90 $ 52

a 97 0 48

b 98 9 57

Control Codes

• ASCII (a 7-bit code) has 27 = 128 values.

• We only need 62 for alphanumeric
characters. Even after accounting for
common punctuation, there are far more
available code values than we need. What
do we use them for?

• Control codes include DEL (for delete),
NUL (for null). STX (Start of Text), CR (for
carriage return), etc.

Error Detection Codes

• An error is a corruption of the data from its

correct state.

• There are several codes that allow use to

detect an error. These include:

– Parity

– CRC

– Checksum

Parity

• Parity is an extra bit appended to our data

which indicates whether the data bits add up

to an even (for even parity) or odd (for odd

parity) value.

Parity Generation

10111

01110

10101

01100

10011

01010

10001

01000

P(even)P(odd)Message (xyz)

Odd Parity
x
y

z

x
y

z

P(odd)

