CSC 370 - Computer Organization and Architecture

Lecture 0: Review of Numeric Representation

Number Systems - Base 10 The number system that we use is base 10: 1734 = 1000 + 700 + 30 + 4 = 1x1000 + 7x100 + 3x10 + 4x1 $= 1x10^{3} + 7x10^{2} + 3x10^{1} + 4x10^{0}$ 724.5 = 7x100 + 2x10 + 4x1 + 5x0.1 $= 7x10^{2} + 2x10^{1} + 4x10^{0} + 5x10^{-1}$ Why use base 10?


```
Base 2 is easily converted into base 16:

100011001110_2 = 1000 \ 1100 \ 1110 = 8 \text{ C E}_{16}

1110110110101001_2 = 1 \ 1101 \ 1011 \ 1010 \ 1001 = 1 \text{ D B A 9}_{16}

10110001010000010111_2 = ?_{16}

101101010010111011_2 = ?_{16}
```


Binarv	Decimal	Octal	Hex.	Binary	Decimal	Octal	Hex.
0000	0	0	0	1000	8	10	8
0001	1	1	1	1001	9	11	9
0010	2	2	2	1010	10	12	А
0011	3	3	3	1011	11	13	В
0100	4	4	4	1100	12	14	С
0101	5	5	5	1101	13	15	D
0110	6	6	6	1110	14	16	Е
0111	7	7	7	1111	15	17	F

	Ov	erflo	W	
 If an add number s Addition overflow cause over 	ition operation pr ystem's range, <u>o</u> of two numbers o ; addition two nu erflow.	oduces verflov of the s mbers	s a result <u>v</u> has oc same sig of oppo	t that exceeds our curred. n produces site sign cannot
-3	1101	+5	0101	
+6	0110	+6	0110	
+3	$1 \ 0011 = +3$		+11	1011 = -5
-8	1000		+7	0111
-8	1000		+7	0111
	1 0000 0		$\pm 1/$	1110 - 2

Dinary F	Representation	n of Decii	mal Numbers
<u>Decimal</u> <u>Digit</u>	<u>BCD (8421)</u>	<u>2421</u>	Excess-3
0	0000	0000	0011
1	0001	0001	0100
2	0010	0010	0101
3	0011	0011	0110
4	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

Gray Codes

- Sometimes electromechanical applications of digital systems (machine tools, automotive brake systems and copiers) require a digital value that indicates a mechanical position.
- A standard binary code may see more than one bit change from one position to another, which could lead to an incorrect reading if mechanical assembly is imperfect.

Error Detection Codes

- An error is a corruption of the data from its correct state.
- There are several codes that allow use to detect an error. These include:
 - Parity
 - CRC
 - Checksum

Parity

• Parity is an extra bit appended to our data which indicates whether the data bits add up to an even (for even parity) or odd (for odd parity) value.

Message (xyz)	<u>P(odd)</u>	P(even)
000	1	0
001	0	1
010	1	0
011	0	1
100	1	0
101	0	1
110	1	0
111	0	1

