# CSC 370 - Computer Organization and Architecture 

Lecture 0: Review of Numeric Representation

## Number Systems - Base 10

The number system that we use is base 10 :

$$
\begin{aligned}
1734 & =1000+700+30+4 \\
& =1 \times 1000+7 \times 100+3 \times 10+4 \times 1 \\
& =1 \times 10^{3}+7 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}
\end{aligned}
$$

$$
\begin{aligned}
724.5 & =7 \times 100+2 \times 10+4 \times 1+5 \times 0.1 \\
& =7 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}+5 \times 10^{-1}
\end{aligned}
$$

Why use base 10 ?

## Number Systems - Base 2

For computers, base 2 is more convenient (why?)

$$
\begin{aligned}
& 10011_{2}=1 \times 16+0 \times 8+0 \times 4+1 \times 2+1 \times 1=19_{10} \\
& 100010_{2}
\end{aligned}=1 \times 32+0 \times 16+0 \times 8+0 \times 4+1 \times 2+0 \times 1=34_{10} .
$$

Example - $\quad 1101011_{2}=$ ?

$$
10110111_{2}=?
$$

$$
10100.1101_{2}=?
$$

## Number Systems - Base 16

Hexadecimal (base 16) numbers are commonly used because it is convert them into binary (base 2 ) and vice versa.

$$
\begin{aligned}
8 \mathrm{CE}_{16} & =8 \times 256+12 \times 16+14 \times 1 \\
& =2048+192+14 \\
& =2254 \\
3 \mathrm{~F} 9 & =3 \times 256+15 \times 16+9 \times 1 \\
& =768+240+9=1017
\end{aligned}
$$

## Number Systems - Base 16 (continued)

Base 2 is easily converted into base 16 :

$$
\begin{aligned}
& 100011001110_{2}=100011001110=8 \text { C E }_{16} \\
& 11101101110101001_{2}=11101101110101001=1 \mathrm{DBA}_{16} \\
& 10110001010000010111_{2}=?_{16} \\
& 101101010010111011_{2}=?_{16}
\end{aligned}
$$

## Number Systems - Base 16 (continued)

Converting base 16 into base 2 works the same way:
$\mathrm{F} 3 \mathrm{~A} 5_{16}=1111001110100101_{2}$
$76 \mathrm{EF}_{16}=0111011011101111_{2}$
$\mathrm{AB} 3 \mathrm{D}_{16}=?_{2}$
15 C. $38_{16}=?_{2}$

## Converting From Decimal to Binary

| 19 |  |
| :--- | :--- |
| 9 R | 1 |
| 4 R | 1 |
| 2 R | 0 |
| 1 R | 0 |
| 0 R | 1 |

## Converting From Decimal to Hexadecimal

16 \begin{tabular}{|r|}

\hline | 237 |
| ---: |
| 0 R | | 13 |
| :--- |
| 14 |

\end{tabular}

## Converting From Decimal to Octal



Binary, Octal, Decimal and Hexadecimal Equivalents

| Binary | Decimal | Octal | Hex. | Binary | Decimal | Octal | Hex. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0 | 0 | 0 | 1000 | 8 | 10 | 8 |
| 0001 | 1 | 1 | 1 | 1001 | 9 | 11 | 9 |
| 0010 | 2 | 2 | 2 | 1010 | 10 | 12 | A |
| 0011 | 3 | 3 | 3 | 1011 | 11 | 13 | B |
| 0100 | 4 | 4 | 4 | 1100 | 12 | 14 | $C$ |
| 0101 | 5 | 5 | 5 | 1101 | 13 | 15 | $D$ |
| 0110 | 6 | 6 | 6 | 1110 | 14 | 16 | E |
| 0111 | 7 | 7 | 7 | 1111 | 15 | 17 | F |

## 2s Complement Representation

- In 2 s complement representation, we subtract the absolute value from $2^{\mathrm{n}}$ :

$$
\begin{array}{r}
100000000 \\
\begin{aligned}
00000110 \\
\hline 11111010
\end{aligned} \\
-6 \\
++13 \\
\hline+7
\end{array}
$$

## 2s Complement Representation (continued)

- The 2 s complement representation can also be found by reversing the bits (into 1 s complement) and then adding 1 :
$6=>00000110=>11111001$

$$
+\frac{1}{11111010}
$$

$43=>00101011=>11010100$
$+\frac{1}{11010101}$

## Overflow

- If an addition operation produces a result that exceeds our number system's range, overflow has occurred.
- Addition of two numbers of the same sign produces overflow; addition two numbers of opposite sign cannot cause overflow.

| -3 | 1101 | +5 | 0101 |  |
| :---: | :---: | :---: | :---: | :---: |
| +6 | 0110 | +6 | 0110 |  |
| +3 | $1 \longdiv { 0 0 1 1 } = + 3$ |  | +11 | $\overline{1011}=-5$ |
| -8 | 1000 |  | +7 | 0111 |
| -8 | 1000 |  | +7 | 0111 |
| -16 | $10000=0$ |  | $+14$ | $1110=-2$ |

Binary Representation of Decimal Numbers

| $\frac{\text { Decimal }}{\text { Digit }}$ | $\underline{\text { BCD (8421) }}$ | $\underline{\mathbf{2 4 2 1}}$ | $\underline{\text { Excess-3 }}$ |
| :---: | :--- | :--- | :--- |
| 0 | 0000 | 0000 | 0011 |
| 1 | 0001 | 0001 | 0100 |
| 2 | 0010 | 0010 | 0101 |
| 3 | 0011 | 0011 | 0110 |
| 4 | 0100 | 0100 | 0111 |
| 5 | 0101 | 1011 | 1000 |
| 6 | 0110 | 1100 | 1001 |
| 7 | 0111 | 1101 | 1010 |
| 8 | 1000 | 1110 | 1011 |
| 9 | 1001 | 1111 | 1100 |

## Gray Codes

- Sometimes electromechanical applications of digital systems (machine tools, automotive brake systems and copiers) require a digital value that indicates a mechanical position.
- A standard binary code may see more than one bit change from one position to another, which could lead to an incorrect reading if mechanical assembly is imperfect.


## Binary Code vs. Gray Code



Binary Code


Gray Code

## ASCII representation of characters

- ASCII (American Standard Code for Information Interchange) is a numeric code used to represent characters.
- All characters are represented this way including:
- words (character strings)
- numbers
- punctuation
- control characters
- There are separate values for upper case and lower case characters:

| A | 65 | z | 122 |
| :--- | :--- | :--- | :--- |
| B | 66 | blank | 32 |
| Z | 90 | $\$$ | 52 |
| a | 97 | 0 | 48 |
| b | 98 | 9 | 57 |

## Control Codes

- ASCII (a 7-bit code) has $2^{7}=128$ values.
- We only need 62 for alphanumeric characters. Even after accounting for common punctuation, there are far more available code values than we need. What do we use them for?
- Control codes include DEL (for delete), NUL (for null). STX (Start of Text), CR (for carriage return), etc.


## Error Detection Codes

- An error is a corruption of the data from its correct state.
- There are several codes that allow use to detect an error. These include:
- Parity
- CRC
- Checksum


## Parity

- Parity is an extra bit appended to our data which indicates whether the data bits add up to an even (for even parity) or odd (for odd parity) value.


## Parity Generation

| Message (xyz) | $\underline{\text { P(odd) }}$ | P(even) |
| :---: | :---: | :---: |
| 000 | 1 | 0 |
| 001 | 0 | 1 |
| 010 | 1 | 0 |
| 011 | 0 | 1 |
| 100 | 1 | 0 |
| 101 | 0 | 1 |
| 110 | 1 | 0 |
| 111 | 0 | 1 |

## Odd Parity



