
CSC 344 – Algorithms and

Complexity

Lecture #9 – Recursive Algorithms

What is Recursion?

• Recursion - when a method calls itself

• Classic example - the factorial function:

n! = 1· 2· 3· · · · · (n-1)· n

• Recursive definition:





−⋅

=

=

elsenfn

n
nf

)1(

0 if1
)(

Recursion – An Example

• As a Java method:
// recursive factorial function

public static int recursiveFactorial(int n) {

if (n == 0)

// basis case

return 1;

else

// recursive case

return n * recursiveFactorial(n- 1);
}

Linear Recursion

• Test for base cases.
– Begin by testing for a set of base cases (there

should be at least one).

– Every possible chain of recursive calls must
eventually reach a base case, and the handling of
each base case should not use recursion.

Linear Recursion (continued)

• Recur once.
– Perform a single recursive call. (This recursive

step may involve a test that decides which of
several possible recursive calls to make, but it
should ultimately choose to make just one of these
calls each time we perform this step.)

– Define each possible recursive call so that it makes
progress towards a base case.

A Simple Example of Linear Recursion

Algorithm LinearSum(A, n):

Input:

A integer array A and an integer
n = 1, such that A has at least
n elements

Output:

The sum of the first n integers
in A

if n = 1 then

return A[0]

else

return LinearSum(A, n - 1) +
A[n - 1]

Example recursion trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer
indices i and j

Output: The reversal of the elements in A
starting at index i and ending at j

if i < j then

Swap A[i] and A[j]

ReverseArray(A, i + 1, j - 1)

return

Defining Arguments for Recursion

• In creating recursive methods, it is important

to define the methods in ways that facilitate

recursion.

• This sometimes requires we define additional

parameters that are passed to the method.

• For example, we defined the array reversal

method as ReverseArray(A, i, j), not

ReverseArray(A).

Computing Powers

• The power function, p(x,n)=xn, can be defined

recursively:

• This leads to an power function that runs in

O(n) time (for we make n recursive calls).

• We can do better than this, however.





−⋅

=

=

else)1,(

0 if1
),(

nxpx

n
nxp

Recursive Squaring

• We can derive a more efficient linearly recursive
algorithm by using repeated squaring:

• For example,

24= 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16

25= 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32

26= 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64

27= 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.









>

>

=

−⋅=

even is 0 if

odd is 0 if

0 if

)2/,(

)2/)1(,(

1

),(
2

2

x

x

x

nxp

nxpxnxp

A Recursive Squaring Method

Algorithm Power(x, n):
Input: A number x and integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y = Power(x, (n - 1)/ 2)
return x · y ·y

else
y = Power(x, n/ 2)
return y · y

Analyzing the Recursive Squaring

Method
Algorithm Power(x, n):

Input: A number x and
integer n = 0

Output: The value xn

if n = 0 then

return 1

if n is odd then

y = Power(x, (n -
1)/ 2)

return x · y · y

else

y = Power(x, n/ 2)

return y · y

Each time we make a recursive

call we halve the value of n;

hence, we make log n recursive

calls. That is, this method runs

in O(log n) time.

It is important that we used a

variable twice here rather than

calling the method twice.

Tail Recursion

• Tail recursion occurs when a linearly
recursive method makes its recursive call as its
last step.

• The array reversal method is an example.

• Such methods can be easily converted to non-
recursive methods (which saves on some
resources).

Tail Recursion

• Example:
Algorithm IterativeReverseArray(A, i, j):

Input: An array A and nonnegative integer
indices i and j

Output: The reversal of the elements in A
starting at index i and ending at j

while i < j do

Swap A[i] and A[j]

i = i + 1

j = j - 1

return

Binary Recursion

• Binary recursion occurs whenever there are

two recursive calls for each non-base case.

• Example: the DrawTicks method for drawing

ticks on an English ruler.

A Binary Recursive Method for Drawing Ticks

// drawOneTick() - draw a tick with no label

public static void drawOneTick(int tickLength) {
drawOneTick(tickLength, - 1);

}

// drawOneTick() - draw one tick with a label

public static void drawOneTick

(int tickLength, int tickLabel) {

for (int i = 0; i < tickLength; i++)

System.out.print("-");

if (tickLabel >= 0)

System.out.print(" " + tickLabel);

System.out.print("\n");

}

public static void drawTicks(int tickLength) {
// draw ticks of given length

if (tickLength > 0) {

// stop when length drops to 0

// recursively draw left ticks

drawTicks(tickLength- 1);

// draw center tick

drawOneTick(tickLength);

// recursively draw right ticks

drawTicks(tickLength- 1);

}

}

//drawRuler() – Draw a ruler

public static void drawRuler

(int nInches, int majorLength) {

// draw tick 0 and its label

drawOneTick(majorLength, 0);

for (int i = 1; i <= nInches; i++) {

// draw ticks for this inch

drawTicks(majorLength- 1);

// draw tick i and its label

drawOneTick(majorLength, i);

}

}

Another Binary Recusive Method

• Problem: add all the numbers in an integer
array A:
Algorithm BinarySum(A, i, n):

Input: An array A and integers i and n

Output: The sum of the n integers in A starting at
index i

if n = 1 then

return A[i]

return BinarySum(A, i, n/ 2) + BinarySum(A, i +
n/ 2, n/ 2)

Example Trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

Computing Fibanacci Numbers

• Fibonacci numbers are defined recursively:

F0 = 0

F1 = 1

Fi = Fi-1
+ Fi-2 for i > 1.

Computing Fibanacci Numbers

• As a recursive algorithm (first attempt):

Algorithm BinaryFib(k):

Input: Nonnegative integer k

Output: The kth Fibonacci number Fk

if k = 1 then

return k

else

return BinaryFib(k - 1) + BinaryFib(k - 2)

Analyzing the Binary Recursion

Fibonacci Algorithm
• Let nk denote number of recursive calls made by

BinaryFib(k). Then
– n0 = 1

– n1 = 1

– n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3

– n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5

– n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9

– n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15

– n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25

– n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41

– n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

• Note that the value at least doubles for every other
value of nk. That is, nk > 2k/2. It is exponential!

A Better Fibonacci Algorithm

• Use linear recursion instead:
Algorithm LinearFibonacci(k):

Input: A nonnegative integer k

Output: Pair of Fibonacci numbers (Fk, Fk-1)

if k = 1 then

return (k, 0)

else

(i, j) = LinearFibonacci(k - 1)

return (i +j, i)

• Runs in O(k) time.

