CSC 344 - Algorithms and Complexity

Lecture \#9 - Recursive Algorithms

What is Recursion?

- Recursion - when a method calls itself
- Classic example - the factorial function:

$$
n!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n
$$

- Recursive definition:

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
n \cdot f(n-1) & \text { else }
\end{array}\right.
$$

Recursion - An Example

- As a Java method:

```
// recursive factorial function
public static int recursiveFactorial(int n) {
    if (n == 0)
            // basis case
            return 1;
    else
            // recursive case
            return n * recursiveFactorial(n- 1);
    }
```


Linear Recursion

- Test for base cases.
- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

Linear Recursion (continued)

- Recur once.

- Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
- Define each possible recursive call so that it makes progress towards a base case.

A Simple Example of Linear Recursion

Algorithm LinearSum (A, n) : Input:
A integer array A and an integer $n=1$, such that A has at least n elements
Output:
The sum of the first n integers in A
if $n=1$ then
return $A[0]$
else
return $\operatorname{LinearSum}(A, n-1)+$ $A[n-1]$

Example recursion trace:

Reversing an Array

Algorithm ReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j
if $i<j$ then
Swap $A[i]$ and $A[j]$
Reverse $\operatorname{Array}(A, i+1, j-1)$
return

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as Reverse $\operatorname{Array}(A, i, j)$, not Reverse $\operatorname{Array}(A)$.

Computing Powers

- The power function, $p(x, n)=x^{n}$, can be defined recursively:

$$
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
x \cdot p(x, n-1) & \text { else }
\end{array}\right.
$$

- This leads to an power function that runs in $\mathrm{O}(\mathrm{n})$ time (for we make n recursive calls).
- We can do better than this, however.

Recursive Squaring

- We can derive a more efficient linearly recursive algorithm by using repeated squaring:

$$
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } x=0 \\
x \cdot p(x,(n-1) / 2)^{2} & \text { if } x>0 \text { is odd } \\
p(x, n / 2)^{2} & \text { if } x>0 \text { is even }
\end{array}\right.
$$

- For example,

$$
\begin{aligned}
& 2^{4}=2^{(4 / 2) 2}=\left(2^{4 / 2}\right)^{2}=\left(2^{2}\right)^{2}=4^{2}=16 \\
& 2^{5}=2^{1+(4 / 2) 2}=2\left(2^{4 / 2}\right)^{2}=2\left(2^{2}\right)^{2}=2\left(4^{2}\right)=32 \\
& 2^{6}=2^{(6 / 2) 2}=\left(2^{6 / 2}\right)^{2}=\left(2^{3}\right)^{2}=8^{2}=64 \\
& 2^{7}=2^{1+(6 / 2) 2}=2\left(2^{6 / 2}\right)^{2}=2\left(2^{3}\right)^{2}=2\left(8^{2}\right)=128 .
\end{aligned}
$$

A Recursive Squaring Method

Algorithm $\operatorname{Power}(x, n)$:
Input: A number x and integer $n=0$
Output: The value x^{n}
if $n=0 \quad$ then return 1
if n is odd then
$y=\operatorname{Power}(x,(n-1) / 2)$
return $x \cdot y \cdot y$
else

$$
y=\operatorname{Power}(x, n / 2)
$$

return $y \cdot y$

Analyzing the Recursive Squaring Method

Algorithm Power (x, n) :
Input: A number x and integer $n=0$
Output: The value x^{n}
if $n=0 \quad$ then
return 1
if n is odd then
$y=\operatorname{Power}(x,(n-$
1)/2)
return $x \cdot y \cdot y$
else
$y=\operatorname{Power}(x, n / 2)$

Each time we make a recursive call we halve the value of n; hence, we make log n recursive calls. That is, this method runs in $O(\log n)$ time.

It is important that we used a variable twice here rather than calling the method twice.
return $y \cdot y$

Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to nonrecursive methods (which saves on some resources).

Tail Recursion

- Example:

Algorithm IterativeReverseArray (A, i, j) : Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j while $i<j$ do
Swap $A[i]$ and $A[j]$
$i=i+1$
$j=j-1$
return

Binary Recursion

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example: the DrawTicks method for drawing ticks on an English ruler.


```
    A Binary Recursive Method for Drawing Ticks
// drawOneTick() - draw a tick with no label
public static void drawOneTick(int tickLength) {
    drawOneTick(tickLength, - 1);
}
// drawOneTick() - draw one tick with a label
public static void drawOneTick
            (int tickLength, int tickLabel) {
        for (int i = 0; i < tickLength; i++)
            System.out.print("-");
        if (tickLabel >= 0)
            System.out.print(" " + tickLabel);
    System.out.print("\n");
}
```

```
public static void drawTicks(int tickLength) {
        // draw ticks of given length
            if (tickLength > 0) {
            // stop when length drops to 0
            // recursively draw left ticks
            drawTicks(tickLength- 1);
            // draw center tick
            drawOneTick(tickLength);
            // recursively draw right ticks
            drawTicks(tickLength- 1);
        }
}
```

```
//drawRuler() - Draw a ruler
public static void drawRuler
    (int nInches, int majorLength) {
    // draw tick O and its label
    drawOneTick(majorLength, 0);
    for (int i = 1; i <= nInches; i++) {
        // draw ticks for this inch
        drawTicks(majorLength- 1);
        // draw tick i and its label
        drawOneTick(majorLength, i);
    }
}
```


Another Binary Recusive Method

- Problem: add all the numbers in an integer array A:
Algorithm BinarySum (A, i, n) :
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i
if $n=1$ then
return $A[i]$
return $\operatorname{BinarySum}(A, i, n / 2)+\operatorname{BinarySum}(A, i+$ $n / 2, n / 2$)

Example Trace:

Computing Fibanacci Numbers

- Fibonacci numbers are defined recursively:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2} \quad \text { for } i>1 .
\end{aligned}
$$

Computing Fibanacci Numbers

- As a recursive algorithm (first attempt): Algorithm BinaryFib(k):

Input: Nonnegative integer k
Output: The k th Fibonacci number F_{k}
if $k=1$ then
return k
else
return $\operatorname{BinaryFib}(k-1)+\operatorname{BinaryFib}(k-2)$

Analyzing the Binary Recursion Fibonacci Algorithm

- Let n_{k} denote number of recursive calls made by BinaryFib(k). Then
$-n_{0}=1$
$-n_{1}=1$
$-n_{2}=n_{1}+n_{0}+1=1+1+1=3$
$-n_{3}=n_{2}+n_{1}+1=3+1+1=5$
$-n_{4}=n_{3}+n_{2}+1=5+3+1=9$
$-n_{5}=n_{4}+n_{3}+1=9+5+1=15$
$-n_{6}=n_{5}+n_{4}+1=15+9+1=25$
$-n_{7}=n_{6}+n_{5}+1=25+15+1=41$
$-n_{8}=n_{7}+n_{6}+1=41+25+1=67$.
- Note that the value at least doubles for every other value of n_{k}. That is, $n_{k}>2^{k / 2}$. It is exponential!

A Better Fibonacci Algorithm

- Use linear recursion instead:

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers $\left(F_{k}, F_{k-1}\right)$
if $k=1$ then
return ($k, 0$)
else
$(i, j)=$ LinearFibonacci $(k-1)$
return $(i+j, i)$

- Runs in $O(k)$ time.

