CSC 344 - Algorithms and Complexity

Lecture \#8 - Random Numbers Extended

Application of Random Numbers

- Simulation
- Simulate natural phenomena
- Sampling
- It is often impractical to examine all possible cases, but a random sample will provide insight into what constitutes typical behavior
- Decision making
- "Many executives make their decisions by flipping a coin..."
- Recreation

Random Numbers in Cryptography

- The keystream in the one-time pad
- The secret key in the DES encryption
- The prime numbers p, q in the RSA encryption
- The private key in DSA
- The initialization vectors (IVs) used in ciphers

Environmental Sources of Randomness

- Radioactive decay http://www.fourmilab.ch/hotbits/
- Radio frequency noise http://www.random.org
- Noise generated by a resistor or diode.
- Canada http://www.tundra.com/ (find the data encryption section, then look under RBG1210. My device is an NM810 which is 2 ? 8 ? RBG1210s on a PC card)
- Colorado http://www.comscire.com/
- Holland
http://valley.interact.nl/av/com/orion/home.html
- Sweden http://www.protego.se

Environmental Sources of Randomness (continued)

- Inter-keyboard timings (watch out for buffering)
- Inter-interrupt timings (for some interrupts)

Combining Sources of Randomness

- Suppose $\mathrm{r}_{1}, \mathrm{r}_{2}, \ldots, \mathrm{r}_{\mathrm{k}}$ are random numbers from different sources. E.g.,
$-\mathrm{r}_{1}=$ from JPEG file
$-r_{2}=$ sample of hip-hop music on radio
$-r_{3}=$ clock on computer
$-\mathrm{b}=\mathrm{r}_{1} \oplus \mathrm{r}_{2} \oplus \cdots \oplus \mathrm{r}_{\mathrm{k}}$
- If any one of $r_{1}, r_{2}, \ldots, r_{k}$ is truly random, then so is b .

Random Number Generators

- Based upon specific mathematical algorithms
- Which are repeatable and sequential

Random

- Truly Random
- Exhibiting true randomness
- Pseudorandom
- Appearance of randomness but having a specific repeatable pattern
- Quasi-random
- Having a set of non-random numbers in a randomized order

Problems

- Difficult to isolate
- Often need to replace current generator
- Require
- Knowledge of current generator
- Sometimes in-depth understanding of random number generators themselves
- Large scale tests cause most problems
- Needing sometimes millions or billions of random numbers

Desirable Properties

- When performing Monte Carlo Simulations
- Attributes of each particle should be independent of those attributes of any other particle
- Fill the entire attribute space in a manner which is consistent with the physics

Random Number Cycle

- Basis
- sequence of pseudorandom integers
- Some exceptions
- Integers ("Fixed")
- Manipulated arithmetically to yield floating point ("real")
- Can be presented in either Integer or Real numbers

Cycle

What Does This Show Us?

- Properties of pseudorandom sequences of integers
- The sequence has a finite number of integers
- The sequence gets traversed in a particular order
- The sequence repeats if the period of the generator is exceeded
"Anyone who considers arithmetic methods of producing random digits is, of course, is in a state of sin."

--John von Neumann

Pseudorandom Numbers

- Contrary to what we may think, clustering of data is entirely natural. Requiring some minimal spacing will make numbers less random.

Pseudorandom Numbers (continued)

- A sequence of numbers looks random if:

1. the probability of x appearing is the same as any other number y
2. the numbers are independent; e.g., 2 will not always be followed by 7 .

- Condition (1) is easy. Condition (2) is never met.

Von Neumann's (Flawed) Method

- Square the number and clip out the middle digits:
$-1234^{2}=01522756 \rightarrow 5227$
$-5227^{2}=27321529 \rightarrow 3215$
$-3215^{2}=10336225 \rightarrow 3362$
$-3362^{2}=11303044 \rightarrow 3030$

Von Neumann's Method (continued)

- 50 trials later:
$-4003^{2}=16024009 \rightarrow 0240$
$-0240^{2}=00057600 \rightarrow 0576$
$-0576^{2}=00331776 \rightarrow 3317$
$-3317^{2}=11002489 \rightarrow 0024$
$-0024^{2}=00000576 \rightarrow 0005$
$-0005^{2}=00000025 \rightarrow 0000$
$-0000^{2}=00000000 \rightarrow 0000$

Von Neumann's Method (continued)

- Choosing a starting value becomes extremely important.
- With a starting value of 1490 , the sequences produces (after 15 cycles) 2100, 4100, 8100, 6100, 2100, ...
- Most middle square generators have short cycles.

Lehmer's Method

- Also known as the Linear Congruential Method is a method of choice.
- It uses three integer constants:
$-a$, the multiplier
$-m$, the modulus
$-c$, the increment (sometimes set to 0)
- We generate the next number:

$$
x_{n+1}=\left(a x_{n}+c\right) \bmod m
$$

Linear Congruential Method

- We can rewrite

$$
x_{n+1}=\left(a x_{n}+c\right) \bmod m
$$

as a linear congruence. It can only be true if $a x_{n}+c=q m+x_{n+l}$, where q is an integer

First try - rand ()

```
// rand() - Random Number Generator
// First try
void rand(int &x) {
        // Or some other suitable values
            const int m = 32;
            const int a = 25;
            const int c = 7;
            x = (x*a + c) % m;
}
```


rand () (continued)

- The random number from one run becomes the seed for the next run.
- Procedures like randomize() use the clock and calendar to produce a seed based on data and time - far more likely to be unique.
- The success of this method is entirely dependent on finding the right values of m, a and c.

rand () (continued)

- The period is at most m. If we pick the wrong a, the period may be less than m.
- Knuth points out that $a=c=1$ will produce a sequence with a period of m which is anything but random.

rand () (continued)

- Knuth gives the following conditions for a period of m :
$-c$ must be relatively prime to m
$-(a-1)$ must be divisible by every prime factor of m E.g., if m is a multiple of $4,(a-1)$ must also be a multiple of 4 .

rand () (continued)

- Park and Miller suggest:
$-m=2^{31}-1=2,147,483,647$
$-a=16,807$ (or 48, 271)
$-c=0$

Implementation

- Since the multiplier and intermediate results are large, we need an oversized data type (such as long int) and we have to recognize that with overflow, our result may be negative.
- We need to be able to save the seed between calls. A static type as in C or FORTRAN should be used to store the seed.
- For a portable generator to avoid overflows, there must be a way to save intermediate results within the int data type.

Implementation (continued)

- Scharge's method based on Park and Miller starts with two numbers p and q such that $p=m \operatorname{div} a \quad$ and $\quad q=m \bmod a$
- If we choose a suitable m and a, we can guarantee that $q<p$.

Proof Of Our Computation

$$
\begin{aligned}
\mathrm{x}_{\mathrm{n}+1}= & \mathrm{ax}_{\mathrm{n}} \bmod \mathrm{~m} \\
= & \mathrm{ax}_{\mathrm{n}}-\mathrm{m}\left(\mathrm{ax}_{\mathrm{n}} / \mathrm{m}\right) \\
& \quad \text { Calculating mod on some systems }
\end{aligned}
$$

Let $p=m / a \quad \& \quad q=m \% a \quad \Rightarrow \quad m=a p+q$

Proof Of Our Computation (continued)

$$
\begin{aligned}
& x_{n+1}=a\left(x_{n} \% p\right)=q\left(x_{n} / p\right) \\
& \quad+m\left[\left(x_{n} / p\right)-a x_{n} / m\right.
\end{aligned}
$$

We can prove this by

$$
\begin{aligned}
a\left(x_{n} \% p\right)-q\left(x_{n} / p\right) & =a x_{n}-a p\left(x_{n} / p\right)-q\left(x_{n} / p\right) \\
& =a x_{n}-(a p+q)\left(x_{n} / p\right) \\
& =a x_{n}-m\left(x_{n} / p\right)
\end{aligned}
$$

Proof Of Our Computation (continued)

Substitution gives:
$x_{n+1}=a x_{n}-m\left(x_{n} / p\right)+m\left(x_{n} / p\right)-m\left(a x_{n} / m\right)$
$x_{n+1}=f\left(x_{n}\right)+m g\left(x_{n}\right)$
where $f\left(x_{n}\right)=a\left(x_{n} \% p\right)-q\left(x_{n} / p\right)$
$g\left(x_{n}\right)=\left(x_{n} / p\right)-\left(a x_{n} / m\right)$
f and g cannot overflow!!

parkm.cc

\#include <iostream>
using namespace std;
long $p, q ; \quad / /$ Two values that we will need
// Initialized the random number generator's values void randinit (void);
// The random number generator
void rand(int \&x);

```
int main(void) {
    // 91331 is a large prime
    int i, x = 91331;
    //Initialize the random number generator
    randinit();
    // Start calculating and printing random numbers
    cout << "x = " << x << endl;
    for (i = 0; i < 100; i++) {
        rand(x);
        cout << "x = " << x << endl;
        }
        return(0);
}
```

```
const long m = 65536L*65536L-1L; // 2^31-1
const long a = 18397L; // A large prime number
// randinit() - Initialize p snd q
void randinit(void) {
    p = m / a;
    q = m % a;
}
```

```
// rand() - We do the calculation in stages
// to avoid overflow
void rand(int &x) {
long d, e, f;
d = x / p;
e = x % q;
f = a * e - q * d;
if (f > 0)
    x = f;
else
    x = f +m;
}
```


Lattice Problem

- If $\mathrm{m}=32, \mathrm{c}=7$ and $\mathrm{a}=25$, we will get:
- 7, 22, 13, 12, 19, 2, 25, 24, 31, 14, 5, 4, 11, 26, $17,16,23,6,29,28,3,18,9,8,15,30,21,20$, $27,10,11,0,7$
- While it may LOOK random, it REALLY isn't.
- This becomes apparent when you graph $\mathrm{x}_{\mathrm{n}+1}$ vs X_{n}

frand ()

```
// frand() - A random floating point generator
float frand(int &x) {
    long d, e, f;
    d = x / p;
    e = x % q;
    f = a * e - q * d;
    if (f > 0)
        x = f;
    else
        x = f + m;
    return ((float)x / m);
```

