
CSC 344 – Algorithms and

Complexity

Lecture #8 – Random Numbers –

Extended

Application of Random Numbers

• Simulation

– Simulate natural phenomena

• Sampling

– It is often impractical to examine all possible

cases, but a random sample will provide insight

into what constitutes typical behavior

• Decision making

– “Many executives make their decisions by flipping

a coin…”

• Recreation

Random Numbers in Cryptography

• The keystream in the one-time pad

• The secret key in the DES encryption

• The prime numbers p, q in the RSA encryption

• The private key in DSA

• The initialization vectors (IVs) used in ciphers

Environmental Sources of Randomness

• Radioactive decay http://www.fourmilab.ch/hotbits/

• Radio frequency noise http://www.random.org

• Noise generated by a resistor or diode.

– Canada http://www.tundra.com/ (find the data

encryption section, then look under RBG1210. My

device is an NM810 which is 2?8? RBG1210s on a

PC card)

– Colorado http://www.comscire.com/

– Holland

http://valley.interact.nl/av/com/orion/home.html

– Sweden http://www.protego.se

Environmental Sources of

Randomness (continued)

• Inter-keyboard timings (watch out for buffering)

• Inter-interrupt timings (for some interrupts)

Combining Sources of Randomness

• Suppose r1, r2, …, rk are random numbers from

different sources. E.g.,

– r1 = from JPEG file

– r2 = sample of hip-hop music on radio

– r3 = clock on computer

– b = r1 ⊕ r2 ⊕ … ⊕ rk

• If any one of r1, r2, …, rk is truly random, then

so is b.

Random Number Generators

• Based upon specific mathematical algorithms

• Which are repeatable and sequential

Random

• Truly Random

– Exhibiting true randomness

• Pseudorandom

– Appearance of randomness but having a specific

repeatable pattern

• Quasi-random

– Having a set of non-random numbers in a

randomized order

Problems

• Difficult to isolate

– Often need to replace current generator

– Require

• Knowledge of current generator

• Sometimes in-depth understanding of random number
generators themselves

• Large scale tests cause most problems

– Needing sometimes millions or billions of random
numbers

Desirable Properties

• When performing Monte Carlo Simulations

– Attributes of each particle should be independent

of those attributes of any other particle

– Fill the entire attribute space in a manner which is

consistent with the physics

Random Number Cycle

• Basis

– sequence of pseudorandom integers

• Some exceptions

• Integers (“Fixed”)

– Manipulated arithmetically to yield floating point

(“real”)

• Can be presented in either Integer or Real

numbers

Cycle

What Does This Show Us?

• Properties of pseudorandom sequences of

integers

– The sequence has a finite number of integers

– The sequence gets traversed in a particular order

– The sequence repeats if the period of the generator

is exceeded

"Anyone who considers

arithmetic methods of

producing random

digits is, of course, is in

a state of sin."

--John von Neumann

Pseudorandom Numbers

• Contrary to what we may think, clustering of

data is entirely natural. Requiring some

minimal spacing will make numbers less

random.

Pseudorandom Numbers (continued)

• A sequence of numbers looks random if:

1. the probability of x appearing is the same as any

other number y

2. the numbers are independent; e.g., 2 will not

always be followed by 7.

• Condition (1) is easy. Condition (2) is never

met.

Von Neumann's (Flawed) Method

• Square the number and clip out the middle

digits:

– 12342 = 01522756 → 5227

– 52272 = 27321529 → 3215

– 32152 = 10336225 → 3362

– 33622 = 11303044 → 3030

Von Neumann's Method (continued)

• 50 trials later:

– 40032 = 16024009 → 0240

– 02402 = 00057600 → 0576

– 05762 = 00331776 → 3317

– 33172 = 11002489 → 0024

– 00242 = 00000576 → 0005

– 00052 = 00000025 → 0000

– 00002 = 00000000 → 0000

Von Neumann's Method (continued)

• Choosing a starting value becomes extremely

important.

• With a starting value of 1490, the sequences

produces (after 15 cycles) 2100, 4100, 8100,

6100, 2100, ...

• Most middle square generators have short

cycles.

Lehmer's Method

• Also known as the Linear Congruential

Method is a method of choice.

• It uses three integer constants:

– a, the multiplier

– m, the modulus

– c, the increment (sometimes set to 0)

• We generate the next number:

xn+1 = (axn + c) mod m

Linear Congruential Method

• We can rewrite

xn+1 = (axn + c) mod m

as a linear congruence. It can only be true if

axn + c = qm + xn+1, where q is an integer

First try – rand()

// rand() - Random Number Generator

// First try

void rand(int &x) {

// Or some other suitable values

const int m = 32;

const int a = 25;

const int c = 7;

x = (x*a + c) % m;

}

rand() (continued)

• The random number from one run becomes the

seed for the next run.

• Procedures like randomize() use the clock and

calendar to produce a seed based on data and

time – far more likely to be unique.

• The success of this method is entirely

dependent on finding the right values of m, a

and c.

rand() (continued)

• The period is at most m. If we pick the wrong

a, the period may be less than m.

• Knuth points out that a = c = 1 will produce a

sequence with a period of m which is anything

but random.

rand() (continued)

• Knuth gives the following conditions for a

period of m:

– c must be relatively prime to m

– (a-1) must be divisible by every prime factor of m

E.g., if m is a multiple of 4, (a-1) must also be a

multiple of 4.

rand() (continued)

• Park and Miller suggest:

– m = 231 -1 = 2, 147, 483, 647

– a = 16, 807 (or 48, 271)

– c = 0

Implementation

• Since the multiplier and intermediate results are large,

we need an oversized data type (such as long int)

and we have to recognize that with overflow, our

result may be negative.

• We need to be able to save the seed between calls. A
static type as in C or FORTRAN should be used

to store the seed.

• For a portable generator to avoid overflows, there

must be a way to save intermediate results within the
int data type.

Implementation (continued)

• Scharge's method based on Park and Miller

starts with two numbers p and q such that

p = m div a and q = m mod a

• If we choose a suitable m and a, we can

guarantee that q < p.

Proof Of Our Computation

xn+1 = axn mod m

= axn – m(axn / m)

Calculating mod on some systems

Let p = m / a & q = m % a ⇒ m = ap + q

Proof Of Our Computation (continued)

xn+1 = a (xn % p) = q(xn / p)

+ m[(xn/p) – axn / m

We can prove this by

a (xn % p) – q(xn / p) = axn – ap(xn/p) – q(xn /p)

= axn – (ap+q) (xn / p)

= axn – m (xn / p)

Proof Of Our Computation (continued)

Substitution gives:

xn+1 = axn – m(xn /p) + m(xn / p) – m (axn / m)

xn+1 = f(xn) + mg(xn)

where f(xn) = a(xn % p) – q(xn / p)

g(xn) = (xn / p) – (axn / m)

f and g cannot overflow!!

parkm.cc

#include <iostream>

using namespace std;

long p, q; // Two values that we will need

// Initialized the random number generator's values

void randinit(void);

// The random number generator

void rand(int &x);

int main(void) {

// 91331 is a large prime

int i, x = 91331;

//Initialize the random number generator

randinit();

// Start calculating and printing random numbers

cout << "x = " << x << endl;

for (i = 0; i < 100; i++) {

rand(x);

cout << "x = " << x << endl;

}

return(0);

}

const long m = 65536L*65536L-1L; // 2^31-1

const long a = 18397L; // A large prime number

// randinit() - Initialize p snd q

void randinit(void) {

p = m / a;

q = m % a;

}

// rand() - We do the calculation in stages

// to avoid overflow

void rand(int &x) {

long d, e, f;

d = x / p;

e = x % q;

f = a * e - q * d;

if (f > 0)

x = f;

else

x = f + m;

}

Lattice Problem

• If m = 32, c = 7 and a = 25, we will get:

• 7, 22, 13, 12, 19, 2, 25, 24, 31, 14, 5, 4, 11, 26,

17, 16, 23, 6, 29, 28, 3, 18, 9, 8, 15, 30, 21, 20,

27, 10, 11, 0, 7

• While it may LOOK random, it REALLY isn't.

• This becomes apparent when you graph xn+1 vs

xn

frand()

// frand() - A random floating point generator

float frand(int &x) {

long d, e, f;

d = x / p;

e = x % q;

f = a * e - q * d;

if (f > 0)

x = f;

else

x = f + m;

return ((float)x / m);

