
CSC 344 – Algorithms and 

Complexity

Lecture #8  – Random Numbers –

Extended

Application of Random Numbers

• Simulation

– Simulate natural phenomena

• Sampling

– It is often impractical to examine all possible 

cases, but a random sample will provide insight 

into what constitutes typical behavior

• Decision making

– “Many executives make their decisions by flipping 

a coin…”

• Recreation



Random Numbers in Cryptography 

• The keystream in the one-time pad

• The secret key in the DES encryption

• The prime numbers p, q in the RSA encryption

• The private key in DSA  

• The initialization vectors (IVs) used in ciphers

Environmental Sources of Randomness

• Radioactive decay http://www.fourmilab.ch/hotbits/

• Radio frequency noise http://www.random.org

• Noise generated by a resistor or diode.

– Canada http://www.tundra.com/ (find the data 

encryption section, then look under RBG1210. My 

device is an NM810 which is 2?8? RBG1210s on a 

PC card) 

– Colorado http://www.comscire.com/

– Holland 

http://valley.interact.nl/av/com/orion/home.html

– Sweden http://www.protego.se



Environmental Sources of 

Randomness (continued)

• Inter-keyboard timings (watch out for buffering)

• Inter-interrupt timings (for some interrupts)

Combining Sources of Randomness

• Suppose r1, r2, …, rk are random numbers from 

different sources.  E.g.,

– r1 = from JPEG file

– r2 = sample of hip-hop music on radio

– r3 = clock on computer

– b = r1 ⊕ r2 ⊕ … ⊕ rk

• If any one of r1, r2, …, rk is truly random, then 

so is b.



Random Number Generators

• Based upon specific mathematical algorithms

• Which are repeatable and sequential

Random

• Truly Random

– Exhibiting true randomness

• Pseudorandom

– Appearance of randomness but having a specific 

repeatable pattern

• Quasi-random

– Having a set of non-random numbers in a 

randomized order



Problems

• Difficult to isolate

– Often need to replace current generator

– Require

• Knowledge of current generator

• Sometimes in-depth understanding of random number 
generators themselves

• Large scale tests cause most problems

– Needing sometimes millions or billions of random 
numbers

Desirable Properties

• When performing Monte Carlo Simulations

– Attributes of each particle should be independent 

of those attributes of any other particle

– Fill the entire attribute space in a manner which is 

consistent with the physics



Random Number Cycle

• Basis

– sequence of pseudorandom integers

• Some exceptions

• Integers (“Fixed”)

– Manipulated arithmetically to yield floating point 

(“real”)

• Can be presented in either Integer or Real 

numbers

Cycle



What Does This Show Us?

• Properties of pseudorandom sequences of 

integers 

– The sequence has a finite number of integers 

– The sequence gets traversed in a particular order

– The sequence repeats if the period of the generator 

is exceeded 

"Anyone who considers 

arithmetic methods of 

producing random 

digits is, of course, is in 

a state of sin."

--John von Neumann



Pseudorandom Numbers

• Contrary to what we may think, clustering of 

data is entirely natural.  Requiring some 

minimal spacing will make numbers less

random.

Pseudorandom Numbers (continued)

• A sequence of numbers looks random if:

1. the probability of x appearing is the same as any 

other number y

2. the numbers are independent; e.g., 2 will not 

always be followed by 7.

• Condition (1) is easy.  Condition (2) is never 

met.



Von Neumann's (Flawed) Method

• Square the number and clip out the middle 

digits:

– 12342 = 01522756 → 5227

– 52272 = 27321529 → 3215

– 32152 = 10336225 → 3362

– 33622 = 11303044 → 3030

Von Neumann's Method (continued)

• 50 trials later:

– 40032 = 16024009 → 0240

– 02402 = 00057600 → 0576

– 05762 = 00331776 → 3317

– 33172 = 11002489 → 0024

– 00242 = 00000576 → 0005

– 00052 = 00000025 → 0000

– 00002 = 00000000 → 0000



Von Neumann's Method (continued)

• Choosing a starting value becomes extremely

important.

• With a starting value of 1490, the sequences 

produces (after 15 cycles) 2100, 4100, 8100, 

6100, 2100, ... 

• Most middle square generators have short 

cycles.

Lehmer's Method

• Also known as the Linear Congruential 

Method is a method of choice.

• It uses three integer constants:

– a, the multiplier

– m, the modulus

– c, the increment (sometimes set to 0)

• We generate the next number:

xn+1 = (axn + c) mod m



Linear Congruential Method

• We can rewrite

xn+1 = (axn + c) mod m

as a linear congruence.  It can only be true if

axn + c = qm + xn+1, where q is an integer

First try – rand()

// rand() - Random Number Generator

// First try

void    rand(int &x)    {

// Or some other suitable values

const int m = 32;

const int a = 25;

const int c = 7;

x = (x*a + c) % m;

}



rand() (continued)

• The random number from one run becomes the 

seed for the next run.

• Procedures like randomize() use the clock and 

calendar to produce a seed based on data and 

time – far more likely to be unique.

• The success of this method is entirely 

dependent on finding the right values of m, a

and c.

rand() (continued)

• The period is at most m.  If we pick the wrong 

a, the period may be less than m.

• Knuth points out that a = c = 1 will produce a 

sequence with a period of m which is anything 

but random.



rand() (continued)

• Knuth gives the following conditions for a 

period of m:

– c must be relatively prime to m

– (a-1) must be divisible by every prime factor of m 

E.g., if m is a multiple of 4, (a-1) must also be a 

multiple of 4.

rand() (continued)

• Park and Miller suggest:

– m = 231 -1 = 2, 147, 483, 647

– a = 16, 807 (or 48, 271)

– c = 0



Implementation

• Since the multiplier and intermediate results are large, 

we need an oversized data type (such as long int) 

and we have to recognize that with overflow, our 

result may be negative.

• We need to be able to save the seed between calls.  A 
static type as in C or FORTRAN should be used 

to store the seed.

• For a portable generator to avoid overflows, there 

must be a way to save intermediate results within the 
int data type.

Implementation (continued)

• Scharge's method based on Park and Miller 

starts with two numbers p and q such that

p = m div a     and     q = m mod a

• If we choose a suitable m and a, we can 

guarantee that q < p.



Proof Of Our Computation

xn+1 = axn mod m

= axn – m(axn / m)

Calculating mod on some systems

Let p = m / a   &  q = m % a     ⇒ m = ap + q

Proof Of Our Computation (continued)

xn+1 = a (xn % p) = q(xn / p)

+ m[(xn/p) – axn / m

We can prove this by

a (xn % p) – q(xn / p) = axn – ap(xn/p) – q(xn /p)

= axn – (ap+q) (xn / p)

= axn – m (xn / p)



Proof Of Our Computation (continued)

Substitution gives:

xn+1 = axn – m(xn /p) + m(xn / p) – m (axn / m)

xn+1 = f(xn) + mg(xn)

where f(xn) = a(xn % p) – q(xn / p)

g(xn) = (xn / p) – (axn / m)

f and g cannot overflow!!

parkm.cc

#include        <iostream>

using namespace std;

long    p, q;   // Two values that we will need

// Initialized the random number generator's values

void    randinit(void); 

// The random number generator

void    rand(int &x);   



int main(void)      {

// 91331 is a large prime

int i, x = 91331;   

//Initialize the random number generator

randinit();

// Start calculating and printing random numbers

cout << "x  = " << x << endl;

for (i = 0;  i < 100; i++)      {

rand(x);

cout << "x  = " << x << endl;

}

return(0);

}

const long  m = 65536L*65536L-1L;   // 2^31-1

const long  a = 18397L;      // A large prime number

// randinit() - Initialize p snd q

void    randinit(void)  {

p = m / a;

q = m % a;

}



// rand() - We do the calculation in stages

//          to avoid overflow

void    rand(int &x)    {

long    d, e, f;

d = x / p;

e = x % q;

f = a * e - q * d;

if (f > 0)

x = f;

else

x = f + m;

}

Lattice Problem

• If m = 32, c = 7 and a = 25, we will get:

• 7, 22, 13, 12, 19, 2, 25, 24, 31, 14, 5, 4, 11, 26, 

17, 16, 23, 6, 29, 28, 3, 18, 9, 8, 15, 30, 21, 20, 

27, 10, 11, 0,  7

• While it may LOOK random, it REALLY isn't.

• This becomes apparent when you graph xn+1 vs 

xn



frand()

// frand() - A random floating point generator

float   frand(int &x)   {

long    d, e, f;

d = x / p;

e = x % q;

f = a * e - q * d;

if (f > 0)

x = f;

else

x = f + m;

return ((float)x / m);


