CSC 344 - Algorithms and Complexity

Lecture \#7 - Pattern Matching

String (or Pattern) Searching

- Pattern matching is a special case of sequential searching.
- It has many applications:
- Applications in Computational Biology
- Finding patterns in documents formed using a large alphabet
- Matching strings of bytes containing a pattern
- grep in unix

Pattern Searching in Computational
 Biology

- DNA sequence is a long word (or text) over a 4-letter alphabet
- GTTTGAGTGGTCAGTCTTTTCGTTTCGA CGGAGCCCCCAATTAATAAACTCATAAG CAGACCTCAGTTCGCTTAGAGCAGCCG AAA.....
- Find a Specific pattern W

Pattern Matching in Documents

- There are many places where such matching appears:
- Word processing - important in trial preparation
- Web searching
- Desktop search (Google, MSN)

Not All Searches Are Text...

- Graphical data
- Machine code

String Matching Preliminaries

- Pattern - the string that we seek.
- Text - the longer string in which we are searching for the pattern.
- Target - an instance of the pattern within the text

Brute Force Searching

- A straight-forward example of the "sliding pattern" model.

1. Place the pattern at the start of the text and wee whether all the characters match.
2. If they do, the target is found. If not, then stop comparing after the first mismatch, shift the pattern one character to the right and try again.
3. Keep trying until the search succeeds or the end of the pattern extends past the end of the text.

String Matching

- The brute force algorithm
- 22+6=28 comparisons.

Brute Force

- Assume $|\mathrm{T}|=\mathrm{n}$ and $|\mathrm{P}|=\mathrm{m}$

Pattern P
Pattern P
Pattern P

Compare until a match is found. If so return the index where match occurs
else return -1

bruteForceSearch ()

```
int bruteForceSearch
            (char text[], char pattern[]) {
        int offset, //offset in text
            pat; //pat is pattern's subscript
        int n, m;
        m = strlen(pattern);
        n = strlen(text);
        pat = 0;
        offset = 0;
```

```
while (pat < m && (pat + offset) < n) {
    if (pattern[pat] == text[pat+offset])
                        pat++;
        else {
                        offset++;
                        pat = 0;
        }
        }
        if (pat >= m)
        return offset;
        else
            return -1;
```

 \}

A Bad Case

- $60+5=65$ comparisons are needed
- How many of them could be avoided?

How Bad Is Brute Force?

- Brute force worst case
$-O(m \cdot n), n=$ string length, $m=$ pattern length
- Expensive for long patterns in repetitive text
- How to improve on this?
- Intuition:
- Remember what is learned from previous matches

Finite State Machines (FSM)

- FSM is a computing machine that takes
- A string as an input
- Outputs YES/NO answer
- That is, the machine "accepts" or "rejects" the string

FSM Model

- Input to a FSM
- Strings built from a fixed alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Possible inputs: aa, aabbcc, a etc..
- The Machine
- A directed graph
- Nodes = States of the machine
- Edges $=$ Transition from one state to another

FSM Model

- Special States
- Start (q0) and Final (or Accepting) (q2)
- Assume the alphabet is $\{a, b\}$
- Which strings are accepted by this FSM?

FSM Model

- Exercise: draw a finite automaton that accepts any string with "even" number of 1 's
- Exercise: draw a finite automaton that accepts any string with "even" number of consecutive 1's followed by "odd" number of consecutive zeros

State Transitions

- Let Q be the set of states and \sum be the alphabet. Then the transition function T is given by

$$
-\mathrm{T}: \mathrm{Q} \times \sum \rightarrow \mathrm{Q}
$$

- \sum could be
- $\{0,1\}$ - binary
- \{C,G,T,A $\}$ - nucleotide base
- $\{0,1,2, . ., 9, a, b, c, d, e, f\}$ - hexadecimal
- etc..

State Transitions (continued)

- Eg: Consider $\sum=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{P}=\mathrm{aabc}$
- set of states are all prefixes of P
$-Q=\{$, $a, a a, a a b, a a b c\}$ or
$-\mathrm{Q}=\left\{\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right\}$
- State transitions $T\left(0,{ }^{\prime} \mathrm{a}^{\prime}\right)=1 ; \mathrm{T}\left(1,{ }^{\prime} \mathrm{a}^{\prime}\right)=2$, etc...
- What about failure transitions?

Failure Transitions

- Where do we go when a failure occurs?
- P="aabc"
- Q - current state
- Q' - next state
- initial state $=0$
- end state $=4$
- How to store state transition table?
- as a matrix

Q	\sum	Q
0	a	1
	$\{\mathrm{~b}, \mathrm{c}\}$	0
1	a	2
	$\{\mathrm{~b}, \mathrm{c}\}$	0
2	b	3
	a	2
	c	0
3	c	4
	a	1
	b	0

Using Finite State Machines in Pattern Matching

- Consider the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- Suppose we are looking for pattern "aabc"
- Construct a finite automaton for "aabc" as follows

The Big Idea - The Knuth - MorrisPratt (KMP) Algorithm

- Retain information from prior attempts.
- Compute in advance how far to jump in P when a match fails.
- Suppose the match fails at $P[j] \neq T[i+j]$.
- Then we know that

$$
P[0 . . j-1]=T[i \quad . . i+j-1] .
$$

The Big Idea - The Knuth - MorrisPratt Algorithm

- We must next try $\mathbf{P}[0] \quad ?=T[i+1]$.
- But we know $T[i+1]=P[1]$
- What if we compare: $\mathrm{P}[1]$? $=\mathrm{P}[0]$
- If so, increment \mathbf{j} by $\mathbf{1}$. No need to look at \mathbf{T}.
- What if $P[1]=P[0]$ and $P[2]=P[1]$?
- Then increment \mathbf{j} by 2. Again, no need to look at T .
- In general, we can determine how far to jump without any knowledge of \mathbf{T} !

Implementing KMP

- Never decrement i, ever.
- Comparing
$\mathbf{T}[\mathrm{i}]$ with $\mathrm{P}[\mathbf{j}]$.
- Compute a table \mathbf{f} of how far to jump \mathbf{j} forward when a match fails.
- The next match will compare $\mathbf{T}[\mathbf{i}]$ with $\mathbf{P}[\mathbf{f}[\mathbf{j}-1]]$
- Do this by matching \mathbf{P} against itself in all positions.

Building the Table for \mathbf{f}

- $\mathrm{P}=1010011$
- Find self-overlaps

Table for the Failure Function \mathbf{f}

Prefix	Overlap	j	f
1	-	1	0
10	.	2	0
101	$\mathbf{1}$	3	1
1010	$\mathbf{1 0}$	4	2
10100	.	5	0
101001	$\mathbf{1}$	6	1
$101001 \mathbf{1}$	$\mathbf{1}$	7	1

What \mathbf{f} Means

- If \mathbf{f} is zero, there is no self-match.
- Set $\mathbf{j}=0$
- Do not change i.
- The next match is

T[i] ?= P[0]

What \mathbf{f} Means

- \mathbf{f} being non-zero implies there is a self-match.
E.g., $\mathrm{f}=2$ means
$P[0 . .1]=P[j-2 . . j-1]$
- Hence must start new comparison at $\mathbf{j}-2$, since we know $\mathrm{T}[\mathrm{i}-2 . . \mathrm{i}-1]=\mathrm{P}[0 . .1]$

What $£$ Means

In general:
-Set $j=f[j-1]$

- Do not change \mathbf{i}.
- The next match is

$$
T[i] \quad ?=\quad P[f[j-1]]
$$

Favorable Conditions

- $\mathrm{P}=1234567$
- Find self-overlaps

Prefix	Overlap	j	f
1	.	1	0
12	.	2	0
123	.	3	0
1234	.	4	0
12345	.	5	0
123456	.	6	0
1234567	.	7	0

Mixed Conditions

- $\mathrm{P}=1231234$
- Find self-overlaps

Prefix	Overlap	j	\mathbf{f}
1	-	1	0
12	-	2	0
123	-	3	0
1231	$\mathbf{1}$	4	1
12312	12	5	2
123123	123	6	3
1231234	.	7	0

Mixed Conditions

- $\mathrm{P}=1111110$
- Find self-overlaps

Prefix	Overlap	j	f
1	-	1	0
11	$\mathbf{1}$	2	1
111	11	3	2
1111	111	4	3
11111	1111	5	4
111111	11111	6	5
1111110	.	7	0

kmpSearch ()

// kmpSearch() - the Knuth-Moore-Pratt Algorithm
int StringSearch: :kmpSearch (char text[], char pattern[]) \{
int $n, m ;$
int i, j;
int $f[p a t t e r n S t r i n g L e n g t h] ;$
$\mathrm{n}=$ strlen (text);
m = strlen (pattern);
// Compute Table F for Pattern P
kmpMakeTable(f, m, n, pattern);
$i=j=0 ;$

```
        // As long as you're still in the string
        while(i < n) {
        if(pattern[j] == text[i]) {
            // You've reached the end of the
            // pattern
            if (j == m-1)
                    return (i - m + 1);
                    i++; j++;
            }
        // No match - check the failure table to see
        // where to go
        else if (j > 0)
            j=f[j-1];
        else
            i++;
        }
}
```


kmpMakeTable()

// kmpMakeTable() - Building the Failure Table
void StringSearch: :kmpMakeTable(int $f[]$, int m,
int n, char pattern[]) \{
int i, j;
// Define a table f of size m
$\mathrm{f}[0]=0$;
i $=1$; $j=0$;
while (i<m) \{
// compare P[i] and P[j];
if(pattern[j] == pattern[i]) \{
// They match; continue
f[i] = j+1;
i++; j++;
\}

```
            else if (j>0)
        j = f[j-1];
            else {
            f[i] = 0;
                        i++;
            }
    }
}
```


Baeza-Yates - Gonnet (BYG)
 Algorithm

- Published by Ricardo Baeza-Yates and Gaston Gonnet in 1992.
- The BYG (or Bitap) algorithm uses an array of bit vectors (one for each character0 to serve as bit masks.
- Each position in the bit map corresponds to a character in "alphabet"; the vectors are as long as the pattern

Example - Searching for states

	654321
a	111011
b	111111
c	111111
d	111111
e	101111
f	111111
..	\ldots
r	111111
s	011110
t	110101
u	111111

Using The Mask for misstates

Using The Mask for misstakes

bygSearch ()

```
int StringSearch::bygSearch(char text[],
                char pattern[]) {
    int m = strlen(pattern);
    unsigned long R;
    unsigned long pattern_mask[CHAR_MAX+1];
    int i;
    if (pattern[0] == '\0') return 0;
    if (m > 31) return -2;
    /* Initialize the bit array R */
    R = ~1;
```

```
    /* Initialize the pattern bitmasks */
    for (i = 0; i <= CHAR_MAX; ++i)
        pattern_mask[i] = ~0;
        for (i = 0; i < m; ++i)
        pattern_mask[pattern[i]] &= ~(1UL << i);
        for (i = 0; text[i] != '\0'; ++i) {
        /* Update the bit array */
        R |= pattern_mask[text[i]];
        R <<= 1;
        if (0 == (R & (1UL << m)))
            return (i - m) + 1;
        }
        return -1;
}
```


Efficiency of BYG Search

- The efficiency is $\Theta(n)$, which is the length of the text string. Each pass through the target is a constant multiplier.

Boyer-Moore Algorithm

- 3 main ideas
- Right to left scan
- Bad character rule
- Good suffix rule

Substring Search Right to Left

ij 012345678910111213141516171819202122 $t e x t \rightarrow$ F I ND I NA HAYS T A C K N E E D L E I N 05 N EED L E \leftarrow pattern
55 NEED L E
114
150
N E EDLE
NEEDLE

Skip Table

		N	E	E	D	L	E	
c		0	1	2	3	4	5	right[c]
A	-1	-1	-1	-1	-1	-1	-1	-1
B	-1	-1	-1	-1	-1	-1	-1	-1
C	-1	-1	-1	-1	-1	-1	-1	-1
D	-1	-1	-1	-1	3	3	3	3
E	-1	-1	1	2	2	2	$\mathbf{5}$	5
..								-1
L	-1	-1	-1	-1	-1	4	4	4
M	-1	-1	-1	-1	-1	-1	-1	-1
N	-1	-1	$\mathbf{0}$	0	0	0	0	0
I.								-1

The Bad Character Rule (BCR)

- On a mismatch between the pattern and the text, we can shift the pattern by more than one place.

Sublinearity!

ddbbacdcbaabcddcdaddaaabcbcb acabc

Summarizing the Bad Character Rule

- On a mismatch, shift the pattern to the right until the first occurrence of the mismatched char in P.
- Still O(n m) worst case running time:

T: aaaaaaaaaaaaaaaaaaaaaaaaa
P: abaaaa

The Good Suffix Rule (GSR)

- We want to use the knowledge of the matched characters in the pattern's suffix.
- If we matched S characters in T , what is (if exists) the smallest shift in P that will align a sub-string of P of the same S characters ?

GSR - Example

- Example 1 - how much to move:
\downarrow
T: bbacdcbaabcddcdaddaaabcbcb
P: cabbabdbab cabbabdbab

GSR - Example

- Example 2 - what if there is no alignment:

T: bbacdcbaabcbbabdbabcaabcbcb
P: bcbbabdbabc bcbbabdbabc

GSR - Detailed

- We mark the matched sub-string in T with t and the mismatched char with x
- In case of a mismatch: shift right until the first occurrence of t in P such that the next char y in P holds $y \neq x$
- Otherwise, shift right to the largest prefix of P that aligns with a suffix of t.

Boyer Moore Algorithm

Preprocess(P)
$\mathrm{k}:=\mathrm{n}$
while ($k \leq m$) do

- Match P and T from right to left starting at k
- If a mismatch occurs: shift P right (advance k) by max (good suffix rule, bad char rule).
- else, print the occurrence and shift P right (advance k) by the good suffix rule.

Algorithm Correctness

- The bad character rule shift never misses a match
- The good suffix rule shift never misses a match

boyerMooreSearch ()

int boyerMooreSearch (char text[], char pattern[]) \{

```
const int R = 256; // Size of the
    // character set
    int right[R];
    int m, n; // size of the pattern and
                                    // text respectively
    int skip;
    m = strlen(pattern);
    n = strlen (text);
    // Create the skip table
    // -1 means the character is not in the
    // pattern
```

```
for (int c = 0; c < R; c++)
right[c] = -1;
// Rightmost position for characters in the
// pattern
for (int j = 0; j < m; j++)
        right[pattern[j]] = j;
for (int i = 0; i <= n - m; i +=skip) {
        // Does the pattern match the text at
        // position i?
        skip = 0;
        for (int j = m - 1; j >= 0; --j)
            if (pattern[j] != text[i+j]) {
                skip = j - right[text[i+j]];
```

```
            if (skip < 1)
                                    // Found it
                                    skip = 1;
                                break;
}
if (skip == 0 )
    return i;
        }
        // Didn't find it
        return -1;
```

\}

