
CSC 344 – Algorithms and

Complexity

Lecture #7 – Pattern Matching

String (or Pattern) Searching

• Pattern matching is a special case of sequential

searching.

• It has many applications:
– Applications in Computational Biology

– Finding patterns in documents formed using a
large alphabet

– Matching strings of bytes containing a pattern

– grep in unix

Pattern Searching in Computational

Biology

• DNA sequence is a long word (or text) over a
4-letter alphabet

• GTTTGAGTGGTCAGTCTTTTCGTTTCGA
CGGAGCCCCCAATTAATAAACTCATAAG
CAGACCTCAGTTCGCTTAGAGCAGCCG
AAA…..

• Find a Specific pattern W

Pattern Matching in Documents

• There are many places where such matching
appears:
– Word processing – important in trial preparation

– Web searching

– Desktop search (Google, MSN)

Not All Searches Are Text…

• Graphical data

• Machine code

String Matching Preliminaries

• Pattern – the string that we seek.

• Text – the longer string in which we are

searching for the pattern.

• Target – an instance of the pattern within the

text

Brute Force Searching

• A straight-forward example of the "sliding

pattern" model.

1. Place the pattern at the start of the text and wee

whether all the characters match.

2. If they do, the target is found. If not, then stop

comparing after the first mismatch, shift the pattern

one character to the right and try again.

3. Keep trying until the search succeeds or the end of

the pattern extends past the end of the text.

String Matching

abacaabaccabacabaabb

abacab

abacab

abacab

abacab

abacab

abacab

abacab

abacab

abacab

abacab

abacab

• The brute force algorithm

• 22+6=28 comparisons.

Brute Force

• Assume |T| = n and |P| = m

Compare until a match is found. If so return the index where
match occurs

else return -1

Text T

Pattern P

Pattern P

Pattern P

bruteForceSearch()

int bruteForceSearch

(char text[], char pattern[]) {

int offset, //offset in text

pat; //pat is pattern's subscript

int n, m;

m = strlen(pattern);

n = strlen(text);

pat = 0;

offset = 0;

while (pat < m && (pat + offset) < n) {

if (pattern[pat] == text[pat+offset])

pat++;

else {

offset++;

pat = 0;

}

}

if (pat >= m)

return offset;

else

return -1;

}

A Bad Case

00000000000000001

0000-
0000-
0000-
0000-
0000-
0000-
0000-
0000-
0000-
0000-
0000-
0000-
00001

• 60+5 = 65
comparisons are
needed

• How many of
them could be
avoided?

Typical Text Matching
This is a sample sentence

-
-
-
s-
-
-
s-
-
-
-
s-
-
-
-
-
-
-
sente

• 20+5=25
comparisons are
needed

(The match is near the same

point in the target string as the
previous example.)

• In practice, 0≤≤≤≤j≤≤≤≤2

How Bad Is Brute Force?

• Brute force worst case

– O(m · n), n = string length, m = pattern length

– Expensive for long patterns in repetitive text

• How to improve on this?

• Intuition:

– Remember what is learned from previous matches

Finite State Machines (FSM)

• FSM is a computing machine that takes

– A string as an input

– Outputs YES/NO answer

• That is, the machine “accepts” or “rejects” the string

FSM

Input String Yes / No

FSM Model

• Input to a FSM

– Strings built from a fixed alphabet {a,b,c}

– Possible inputs: aa, aabbcc, a etc..

• The Machine

– A directed graph

• Nodes = States of the machine

• Edges = Transition from one state to another

o 1

FSM Model

• Special States

– Start (q0) and Final (or Accepting) (q2)

• Assume the alphabet is {a,b}

– Which strings are accepted by this FSM?

FSM Model

• Exercise: draw a finite automaton that accepts

any string with “even” number of 1’s

• Exercise: draw a finite automaton that accepts

any string with “even” number of consecutive

1’s followed by “odd” number of consecutive

zeros

State Transitions

• Let Q be the set of states and ∑ be the
alphabet. Then the transition function T is
given by

– T: Q x ∑ � Q

• ∑ could be

– {0,1} – binary

– {C,G,T,A} – nucleotide base

– {0,1,2,..,9,a,b,c,d,e,f} – hexadecimal

– etc..

State Transitions (continued)

• Eg: Consider ∑ ={a,b,c} and P=aabc

– set of states are all prefixes of P

– Q = { , a, aa, aab, aabc} or

– Q = {0 1 2 3 4 }

• State transitions T(0,'a') = 1; T(1, 'a') = 2,
etc…

• What about failure transitions?

Failure Transitions

• Where do we go when a

failure occurs?

• P=“aabc”

• Q – current state

• Q’ – next state

• initial state = 0

• end state = 4

• How to store state transition

table?

– as a matrix

Q ∑ Q’

0 a

{b,c}

1

0

1 a

{b,c}

2

0

2 b

a

c

3

2

0

3 c

a

b

4

1

0

Using Finite State Machines in

Pattern Matching

• Consider the alphabet {a,b,c}

• Suppose we are looking for pattern “aabc”

• Construct a finite automaton for “aabc” as follows

0Start 1 2 3 4
a a b c

b|c

b|c
c

a

b

a

The Big Idea – The Knuth – Morris-

Pratt (KMP) Algorithm

• Retain information from prior attempts.

• Compute in advance how far to jump in P

when a match fails.

– Suppose the match fails at P[j] ≠≠≠≠ T[i+j].

– Then we know that

P[0 .. j-1] = T[i .. i+j-1].

The Big Idea – The Knuth – Morris-

Pratt Algorithm

• We must next try P[0] ?= T[i+1].

– But we know T[i+1]=P[1]

– What if we compare: P[1]?= P[0]

• If so, increment j by 1. No need to look at T.

– What if P[1]=P[0] and P[2]=P[1]?

• Then increment j by 2. Again, no need to look

at T.

• In general, we can determine how far to jump

without any knowledge of T!

Implementing KMP

• Never decrement i, ever.

– Comparing
T[i] with P[j].

• Compute a table f of how far to jump j
forward when a match fails.

– The next match will compare
T[i] with P[f[j-1]]

• Do this by matching P against itself in all
positions.

Building the Table for f

• P = 1010011

• Find self-overlaps

Table for the Failure Function f

Prefix Overlap j f

1 . 1 0

10 . 2 0

101 1 3 1

1010 10 4 2

10100 . 5 0

101001 1 6 1

1010011 1 7 1

What f Means

• If f is zero, there is no self-match.

– Set j=0

– Do not change i.

• The next match is

T[i] ?= P[0]

What f Means

• f being non-zero implies there is a self-match.

E.g., f=2 means

P[0..1] = P[j-2..j-1]

• Hence must start new comparison at j-2,
since we know T[i-2..i-1] = P[0..1]

What f Means

In general:

– Set j=f[j-1]

– Do not change i.

• The next match is

T[i] ?= P[f[j-1]]

Favorable Conditions

• P = 1234567

• Find self-overlaps

Prefix Overlap j f

1 . 1 0

12 . 2 0

123 . 3 0

1234 . 4 0

12345 . 5 0

123456 . 6 0

1234567 . 7 0

Mixed Conditions

• P = 1231234

• Find self-overlaps

Prefix Overlap j f

1 . 1 0

12 . 2 0

123 . 3 0

1231 1 4 1

12312 12 5 2

123123 123 6 3

1231234 . 7 0

Mixed Conditions

• P = 1111110

• Find self-overlaps

Prefix Overlap j f

1 . 1 0

11 1 2 1

111 11 3 2

1111 111 4 3

11111 1111 5 4

111111 11111 6 5

1111110 . 7 0

kmpSearch()

// kmpSearch() – the Knuth-Moore-Pratt Algorithm

int StringSearch::kmpSearch(char text[],

char pattern[]) {

int n, m;

int i, j;

int f[patternStringLength];

n = strlen(text);

m = strlen(pattern);

// Compute Table F for Pattern P

kmpMakeTable(f, m, n, pattern);

i = j = 0;

// As long as you're still in the string

while(i < n) {

if(pattern[j] == text[i]) {

// You've reached the end of the

// pattern

if (j == m-1)

return (i - m + 1);

i++; j++;

}

// No match – check the failure table to see

// where to go

else if (j > 0)

j=f[j-1];

else

i++;

}

}

kmpMakeTable()

// kmpMakeTable() – Building the Failure Table

void StringSearch::kmpMakeTable(int f[], int m,

int n, char pattern[]) {

int i, j;

// Define a table f of size m

f[0] = 0;

i = 1; j = 0;

while(i<m) {

// compare P[i] and P[j];

if(pattern[j] == pattern[i]) {

// They match; continue

f[i] = j+1;

i++; j++;

}

else if (j>0)

j = f[j-1];

else {

f[i] = 0;

i++;

}

}

}

Baeza-Yates – Gonnet (BYG)

Algorithm

• Published by Ricardo Baeza-Yates and Gaston

Gonnet in 1992.

• The BYG (or Bitap) algorithm uses an array of

bit vectors (one for each character0 to serve as

bit masks.

• Each position in the bit map corresponds to a

character in "alphabet"; the vectors are as long

as the pattern

Example – Searching for states

654321

a 111011

b 111111

c 111111

d 111111

e 101111

f 111111

… …

r 111111

s 011110

t 110101

u 111111

…

Using The Mask for misstates

111111
111111

011110
011110

011110

110101

110101
111011

101111

misstates

Using The Mask for misstakes

111111
111111

011110
011110

011110

110101

111101
111011

101111

misstakes

bygSearch()

int StringSearch::bygSearch(char text[],

char pattern[]) {

int m = strlen(pattern);

unsigned long R;

unsigned long pattern_mask[CHAR_MAX+1];

int i;

if (pattern[0] == '\0') return 0;

if (m > 31) return -2;

/* Initialize the bit array R */

R = ~1;

/* Initialize the pattern bitmasks */

for (i = 0; i <= CHAR_MAX; ++i)

pattern_mask[i] = ~0;

for (i = 0; i < m; ++i)

pattern_mask[pattern[i]] &= ~(1UL << i);

for (i = 0; text[i] != '\0'; ++i) {

/* Update the bit array */

R |= pattern_mask[text[i]];

R <<= 1;

if (0 == (R & (1UL << m)))

return (i - m) + 1;

}

return -1;

}

Efficiency of BYG Search

• The efficiency is Θ(n), which is the length of

the text string. Each pass through the target is

a constant multiplier.

Boyer-Moore Algorithm

• 3 main ideas

– Right to left scan

– Bad character rule

– Good suffix rule

Substring Search Right to Left

i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

text→ F I N D I N A H A Y S T A C K N E E D L E I N

0 5 N E E D L E← pattern

5 5 N E E D L E

11 4 N E E D L E

15 0 N E E D L E

Skip Table

N E E D L E

c 0 1 2 3 4 5 right[c]

A -1 -1 -1 -1 -1 -1 -1 -1

B -1 -1 -1 -1 -1 -1 -1 -1

C -1 -1 -1 -1 -1 -1 -1 -1

D -1 -1 -1 -1 3 3 3 3

E -1 -1 1 2 2 2 5 5

… -1

L -1 -1 -1 -1 -1 4 4 4

M -1 -1 -1 -1 -1 -1 -1 -1

N -1 -1 0 0 0 0 0 0

… -1

The Bad Character Rule (BCR)

• On a mismatch between the pattern and the

text, we can shift the pattern by more than one

place.

Sublinearity!
ddbbacdcbaabcddcdaddaaabcbcb

acabc

Summarizing the Bad Character Rule

• On a mismatch, shift the pattern to the right until the
first occurrence of the mismatched char in P.

• Still O(n m) worst case running time:

T: aaaaaaaaaaaaaaaaaaaaaaaaa

P: abaaaa

The Good Suffix Rule (GSR)

• We want to use the knowledge of the matched

characters in the pattern’s suffix.

• If we matched S characters in T, what is (if

exists) the smallest shift in P that will align a

sub-string of P of the same S characters ?

GSR - Example

• Example 1 – how much to move:

↓

T: bbacdcbaabcddcdaddaaabcbcb

P: cabbabdbab

cabbabdbab

GSR - Example

• Example 2 – what if there is no alignment:

↓

T: bbacdcbaabcbbabdbabcaabcbcb

P: bcbbabdbabc

bcbbabdbabc

GSR – Detailed

• We mark the matched sub-string in T with t

and the mismatched char with x

• In case of a mismatch: shift right until the first

occurrence of t in P such that the next char y in

P holds y≠x

• Otherwise, shift right to the largest prefix of P

that aligns with a suffix of t.

Boyer Moore Algorithm

Preprocess(P)

k := n

while (k ≤ m) do

– Match P and T from right to left starting at k

– If a mismatch occurs: shift P right (advance k) by
max(good suffix rule, bad char rule).

– else, print the occurrence and shift P right (advance k)
by the good suffix rule.

Algorithm Correctness

• The bad character rule shift never misses a

match

• The good suffix rule shift never misses a

match

boyerMooreSearch()

int boyerMooreSearch(char text[], char pattern[]) {

const int R = 256; // Size of the

// character set

int right[R];

int m, n; // size of the pattern and

// text respectively

int skip;

m = strlen(pattern);

n = strlen(text);

// Create the skip table

// -1 means the character is not in the

// pattern

for (int c = 0; c < R; c++)

right[c] = -1;

// Rightmost position for characters in the

// pattern

for (int j = 0; j < m; j++)

right[pattern[j]] = j;

for (int i = 0; i <= n - m; i +=skip) {

// Does the pattern match the text at

// position i?

skip = 0;

for (int j = m - 1; j >= 0; --j)

if (pattern[j] != text[i+j]) {

skip = j - right[text[i+j]];

if (skip < 1)

// Found it

skip = 1;

break;

}

if (skip == 0)

return i;

}

// Didn't find it

return -1;

}

