
CSC 344 – Algorithms and 

Complexity

Lecture #6 – Greedy Algorithms

Optimization Problems

• An optimization problem is the problem of 

finding the best solution from all feasible 

solutions

• Shortest path is an example of an optimization 

problem:  we wish to find the path with lowest 

weight.

• What is the general character of an 

optimization problem?



Optimization Problems

• Ingredients:

– Instances: The possible inputs to the problem. 

– Solutions for Instance: Each instance has an exponentially 

large set of valid solutions. 

– Cost of Solution: Each solution has an easy-to-compute 

cost or value. 

• Specification

– Preconditions: The input is one instance.

– Postconditions: A valid solution with optimal cost. 

(minimum or maximum)

Greedy Solutions to Optimization 

Problems
• Every two-year-old knows the 

greedy algorithm.

• In order to get what you want, 
just start grabbing what looks 
best.

• Surprisingly, many important 
and practical optimization 
problems can be solved this 
way.



Greedy Algorithms

• A greedy algorithm always makes the choice 

that looks best at the moment

• My everyday examples: 

– Driving in Los Angeles, New York, or Boston.

– Playing cards

– Invest on stocks

– Choose a university

A Simple Example

• Problem: Pick k numbers out of n numbers 

such that the sum of these k numbers is the 

largest.

• Algorithm:

FOR i = 1 to k

Pick out the largest number and 

Delete this number from the input.

ENDFOR



Shortest Paths On A Special Graph

• Problem:  Find a shortest path from v0 to v3.

• The greedy method can solve this problem.

• The shortest path:  1 + 2 + 4 = 7.

Greedy Algorithms

• The hope - a locally optimal choice will lead to 

a globally optimal solution

– For some problems, it works

– Greedy algorithms tend to be easier to code



Example - Making Change

• Problem - Find the minimum # of quarters, 

dimes, nickels, and pennies that total to a given 

amount.

• Commit to the object that looks the "best."

• Must prove that this locally greedy choice 

does not have negative global consequences.

Making Change

• Instance - A drawer full of coins and an amount of 

change to return

• Solutions for Instance - A subset of the coins in the 

drawer that total the amount

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢



Making Change (continued)

• Cost of Solution: 

– The number of coins in the solution = 14

• Solutions for Instance: 

– A subset of the coins that total the amount.

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

A Hard "Making Change" Example

• Problem - Find the minimum # of 4-, 3-, and 

1-cent coins to make up 6 cents. 

• Greedy Choice - Start by grabbing a 4-cent 

coin.

• Consequences: 

4+1+1 = 6   mistake 

3+3=6          better

• Greedy Algorithm does not work!



When Do Greedy Algorithms Work?

• Greedy Algorithms are easy to understand and 

to code, but do they work? 

• For most optimization problems, all greedy 

algorithms tried do not work (i.e. yield sub-

optimal solutions)  

• But some problems can be solved optimally by 

a greedy algorithm. 

• The proof that they work, however, is subtle. 

Minimum Spanning Trees

• Example Problem: 

– You are planning a new terrestrial telecommunications 

network to connect a number of remote mountain villages 

in a developing country.  

– The cost of building a link between pairs of neighboring 

villages (u,v) has been estimated: w(u,v).

– You seek the minimum cost design that ensures each 

village is connected to the network.

– The solution is called a minimum spanning tree (MST).



Minimum Spanning Trees

• The problem is defined for any undirected, connected, 

weighted graph.

• The weight of a subset T of a weighted graph is defined as:

w(T) = ∑
(u, v)∈T 

w(u, v)

• Thus the MST is the spanning tree T that minimizes w(T)

Building the Minimum Spanning Tree

• Iteratively construct the set of edges A in the MST.

• Initialize A to {}

• As we add edges to A, maintain a Loop Invariant:

– A is a subset of some MST

– Maintain loop invariant and make progress by only 

adding safe edges.

– An edge (u,v) is called safe for A iff A∪({u,v}) is 

also a subset of some MST. 



Finding A Safe Edge

• Idea:  Every 2 disjoint subsets of vertices must be connected 

by at least one edge.

• Which one should we choose?

Some Definitions

• A cut (S,V-S) is a partition of vertices into disjoint sets S and 

V-S.

• Edge (u,v)∈E crosses cut (S, V-S) if one endpoint is in S and 

the other is in V-S.

• A cut respects a set of edges A iff no edge in A crosses the cut.

• An edge is a light edge crossing a cut iff its weight is 

minimum over all edges crossing the cut.

A



Kruskal’s Algorithm for computing MST

• Starts with each vertex being its own component.

• Repeatedly merges two components into one by 

choosing the light edge that crosses the cut between 

them.

• Scans the set of edges in monotonically increasing 

order by weight (greedy).

Kruskal’s Algorithm:  Example
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Kruskal’s Algorithm:  Example

Finished!

Prim’s Algorithm for Computing MST

• Build one tree A

• Start from arbitrary root r

• At each step, add light edge connecting VA to V- VA 

(greedy)



Prim’s Algorithm:  Example
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Prim’s Algorithm:  Example

Prim’s Algorithm:  Example

Finished!



An Activity Selection Problem

(Conference Scheduling Problem)

• Input: A set of activities S = {a1,…, an}

• Each activity has start time and a finish time

– ai=(si, fi)

• Two activities are compatible if and only if 
their interval does not overlap

• Output: a maximum-size subset of mutually 
compatible activities

The Activity Selection Problem

• Here are a set of start and finish times

• What is the maximum number of activities that can be 

completed?

• {a3, a9, a11} can be completed

• But so can {a1, a4, a8’ a11} which is a larger set

• But it is not unique, consider {a2, a4, a9’ a11} 



Interval Representation

0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15



0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15

0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15



0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15

Early Finish Greedy

• Select the activity with the earliest finish

• Eliminate the activities that could not be 

scheduled

• Repeat!



0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15

0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15



0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15

0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15



0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15

0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15



0     1    2     3     4     5     6     7    8     9    10   11   12   13   14   15

Why It Is Greedy?

• Greedy in the sense that it leaves as much 

opportunity as possible for the remaining 

activities to be scheduled.

• The greedy choice is the one that maximizes 

the amount of unscheduled time remaining.



Knapsack Problem

• There are n different items in a store

• Item i :

– weighs wi pounds

– worth $vi

• A thief breaks in 

• Can carry up to W pounds in his knapsack

• What should he take to maximize the value of 

his haul?

0-1 vs. Fractional Knapsack

• 0-1 Knapsack Problem:

– The items cannot be divided

– Thief must take entire item or leave it behind

• Fractional Knapsack Problem:

– Thief can take partial items

– For instance, items are liquids or powders

– Solvable with a greedy algorithm…



Greedy Fractional Knapsack Algorithm

• Sort items in decreasing order of value per 

pound

• While still room in the knapsack (limit of W 

pounds) do

– Consider next item in sorted list

– Take as much as possible (all there is or as much as 

will fit)

• O(n log n) running time (for the sort)

Greedy 0-1 Knapsack Algorithm?

• 3 items:

– Item 1 weighs 10 lbs, worth $60 ($6/lb)

– Item 2 weighs 20 lbs, worth $100 ($5/lb)

– Item 3 weighs 30 lbs, worth $120 ($4/lb)

• Knapsack can hold 50 lbs

• Greedy strategy:

– Take item 1

– Take item 2

– No room for item 3



0-1 Knapsack Problem

• Taking item 1 is a big mistake globally 

although looks good locally

• Use dynamic programming to solve this in 

pseudo-polynomial time

Huffman’s Algorithm

• Huffman’s algorithm places the characters on a 

priority queue, removing the two least 

frequently appearing characters (or 

combination of characters), merging them and 

placing this node on the priority tree.

• The node is linked to the two nodes from 

which it came.



Huffman Tree

I, 15 E, 25

D, 12

A, 15

B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

G,  6

F,  4

E, 25
I, 15
A, 15
D, 12
C,  7

B,  6

H,  1

Huffman Tree

I, 15 E, 25

D, 12

A, 15

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

G,  6

HF,  5

E, 25
I, 15
A, 15
D, 12
C,  7

B,  6



Huffman Tree

I, 15 E, 25

HFB, 11 D, 12

A, 15

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

G,  6

HFB, 11

E, 25
I, 15
A, 15
D, 12

C,  7

Huffman Tree

I, 15 E, 25

HFB, 11 D, 12

A, 15

GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GC, 13

HFB, 11

E, 25
I, 15
A, 15

D, 12



Huffman Tree

I, 15 HFBD, 23 E, 25

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GC, 13

HFBD, 23
E, 25

I, 15

A, 15

Huffman Tree

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GCA, 28

HFBD, 23
E, 25

I, 15



Huffman Tree

IHFBD, 38

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GCA, 28

IHFBD, 38

E, 25

Huffman Tree

IHFBD, 38 EGCA, 53

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

EGCA, 53

IHFBD, 38



Huffman Tree

IHFBDEGCA, 91

IHFBD, 38 EGCA, 53

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

IHFBDEGCA, 91

Huffman Codes

IHFBDEGCA, 91

IHFBD, 38 EGCA, 53

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

A, 111

E, 10

H, 01000

1

1

1

0

0

1

0

0

0


