CSC 344 — Algorithms and
Complexity

Lecture #6 — Greedy Algorithms

Optimization Problems

* An optimization problem is the problem of
finding the best solution from all feasible
solutions

* Shortest path is an example of an optimization
problem: we wish to find the path with lowest
weight.

* What 1s the general character of an
optimization problem?

Optimization Problems

* Ingredients:
— Instances: The possible inputs to the problem.

— Solutions for Instance: Each instance has an exponentially
large set of valid solutions.

— Cost of Solution: Each solution has an easy-to-compute
cost or value.
* Specification
— Preconditions: The input is one instance.

— Postconditions: A valid solution with optimal cost.
(minimum or maximum)

Greedy Solutions to Optimization
Problems

* Every two-year-old knows the
greedy algorithm.

* In order to get what you want,
just start grabbing what looks
best.

 Surprisingly, many important
and practical optimization
problems can be solved this
way.

Greedy Algorithms

* A greedy algorithm always makes the choice
that looks best at the moment

* My everyday examples:
— Driving in Los Angeles, New York, or Boston.
— Playing cards
— Invest on stocks

— Choose a university

A Simple Example

* Problem: Pick k numbers out of n numbers
such that the sum of these k numbers is the
largest.

* Algorithm:

FORi=1tok
Pick out the largest number and

Delete this number from the input.
ENDFOR

Shortest Paths On A Special Graph

* Problem: Find a shortest path from vO to v3.
* The greedy method can solve this problem.
e The shortest path: 1 +2+4="7.

Greedy Algorithms

» The hope - a locally optimal choice will lead to
a globally optimal solution
— For some problems, it works

— Greedy algorithms tend to be easier to code

Example - Making Change

* Problem - Find the minimum # of quarters,
dimes, nickels, and pennies that total to a given
amount.

* Commit to the object that looks the "best."

* Must prove that this locally greedy choice
does not have negative global consequences.

Making Change

e Instance - A drawer full of coins and an amount of
change to return

e Solutions for Instance - A subset of the coins in the
drawer that total the amount

Amount = 92¢

og¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢
10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10°¢ 10¢ 10¢
5e 5¢ 5¢ 5¢ 56 5¢ 5¢ 5¢ 5¢ B¢
1¢ 1¢ q¢ ¢ q¢ ¢ q¢ 1¢ 1¢ q¢

Making Change (continued)

e Cost of Solution:
— The number of coins in the solution = 14

e Solutions for Instance:
— A subset of the coins that total the amount.

Amount = 92¢

o5e 25¢ (25¢) 25¢ 25¢(259 25¢ 25¢ 25¢ 25¢
10¢ 10¢ 10¢(109 10¢ 10¢ 10¢ 10° 10¢ (10¢
e (5¢) 5¢ 5e (5¢) 5¢ 5¢(5% 5¢ 5¢
1¢) 1¢ (1)) 1¢ (QeA e 1¢) 1¢

A Hard "Making Change" Example

Problem - Find the minimum # of 4-, 3-, and
I-cent coins to make up 6 cents.

Greedy Choice - Start by grabbing a 4-cent
coin.

* Consequences:
4+1+1 =6 mistake
3+3=6 better

Greedy Algorithm does not work!

When Do Greedy Algorithms Work?

Greedy Algorithms are easy to understand and
to code, but do they work?

For most optimization problems, all greedy
algorithms tried do not work (i.e. yield sub-
optimal solutions)

But some problems can be solved optimally by
a greedy algorithm.

The proof that they work, however, is subtle.

Minimum Spanning Trees

 Example Problem:

— You are planning a new terrestrial telecommunications
network to connect a number of remote mountain villages
in a developing country.

— The cost of building a link between pairs of neighboring
villages (u,v) has been estimated: w(u,v).

— You seek the minimum cost design that ensures each
village is connected to the network.

— The solution is called a minimum spanning tree (MST).

Minimum Spanning Trees

* The problem is defined for any undirected, connected,
weighted graph.

* The weight of a subset T of a weighted graph is defined as:
w(l) =2, yerW: v)

* Thus the MST is the spanning tree T that minimizes w(T)

Building the Minimum Spanning Tree

« [teratively construct the set of edges A in the MST.

 Initialize A to {}

* As we add edges to A, maintain a Loop Invariant:
— A is a subset of some MST

— Maintain loop invariant and make progress by only
adding safe edges.

— An edge (u,v) is called safe for A iff Au({u,v}) is
also a subset of some MST.

Finding A Safe Edge

* Idea: Every 2 disjoint subsets of vertices must be connected
by at least one edge.

e Which one should we choose?

Some Definitions

* Acut (S,V-S) is a partition of vertices into disjoint sets S and
V-S.

* Edge (u,v)€E crosses cut (S, V-S) if one endpoint is in S and
the other is in V-S.

* Acutrespects a set of edges A iff no edge in A crosses the cut.

* An edge is a light edge crossing a cut iff its weight is
minimum over all edges crossing the cut.

Kruskal’s Algorithm for computing MST

 Starts with each vertex being its own component.

* Repeatedly merges two components into one by
choosing the light edge that crosses the cut between
them.

* Scans the set of edges in monotonically increasing
order by weight (greedy).

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

g ¥

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Finished!

Prim’s Algorithm for Computing MST

* Build one tree A
 Start from arbitrary root r

* At each step, add light edge connecting VA to V- VA
(greedy)

[Edges of A are shaded.]

Prim’s Algorithm: Example

\ “ \ L)
4 /v /"‘f*‘ .

Q " 3 14 [e)

"=

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Finished!

An Activity Selection Problem
(Conference Scheduling Problem)

Input: A set of activities S = {a,,..., a,}
Each activity has start time and a finish time
—a=(s;,f})

Two activities are compatible if and only if
their interval does not overlap

Output: a maximum-size subset of mutually
compatible activities

The Activity Selection Problem

Here are a set of start and finish times

i1 2 3 4 5 6 7 8 9 10 11
511 3 0 5 3 5 6 8 8 2 12
fil4 5 6 7 8 9 10 11 12 13 14

What is the maximum number of activities that can be
completed?
* {as, ay, a;,} can be completed

* Butsocan {a, a,, ag-a;;} which is a larger set

* But it is not unique, consider {a,, a,, ag-a;; }

Interval Representation

i1 2 3 4 5 6 7 8 9 10 11
11 3 0 5 3 5 6 8 &8 2 12
fil4 5 6 7 8 9 0 11 12 13 W4
< >
—
«#
< >

A
v

'
v

A
v

a
v

A

>

< »
« »

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v

'

v

A

\ 4

A

'

v

A

v

a

v

a

v

A

o
»

P o
< »

7 8 9

10 11 12 13 14 15

— = P
«#
e |
<
= = == P
< >

< |[—>

4

5 6

7 8 9

10 11 12 13 14 15

a
\ 4

'
v

a
v

v

a

A
N

-« |—>

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Early Finish Greedy

» Select the activity with the earliest finish

e Eliminate the activities that could not be
scheduled

* Repeat!

'
v

A

\ 4

A

'

v

A

v

a

v

a

v

A

o
»

-
<

[
»

7 8 9

10 11 12 13 14 15

A

v

A

v

'

v

a

a

v

>

P »
« »

3 4 5 6

7 8 9

10 11 12 13 14 15

P »
<« »
P [
<« »
> [
< »
‘ll lllll (YRR RN EEEEf e EEEEgEEEEEEEE lllllll>

-
<

[
»

2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
v

a
v

‘ll lllll EEEEfpEE EEEEpgE NN EEEEpEEEEEEEE lllllll»

P »
« »

2 3 4 5 6 7 8 9 10 11 12 13 14 15

- »
« »
Enpnnnn EEEEfpEE N EEEEgE [EEEERRRRILNNY] lllllll>
- [
< »

3 4 5 6 7 8 9 10 11 12 13 14 15

X
v

EmpEnnn EEEEfpEE EEEEpgE NN EEEEpEEEEEEEE lllllll>

P »
« »

34 5 6 7 8 9 10 11 12 13 14 15

7)
v

- |—>

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Why It Is Greedy?

* Greedy in the sense that it leaves as much
opportunity as possible for the remaining
activities to be scheduled.

* The greedy choice is the one that maximizes
the amount of unscheduled time remaining.

Knapsack Problem

There are n different items in a store

Item i :
— weighs w; pounds
— worth $v,

A thief breaks in
* Can carry up to W pounds in his knapsack

What should he take to maximize the value of
his haul?

0-1 vs. Fractional Knapsack

* 0-1 Knapsack Problem:

— The items cannot be divided

— Thief must take entire item or leave it behind
* Fractional Knapsack Problem:

— Thief can take partial items

— For instance, items are liquids or powders

— Solvable with a greedy algorithm...

Greedy Fractional Knapsack Algorithm

* Sort items in decreasing order of value per
pound

e While still room in the knapsack (limit of W
pounds) do
— Consider next item in sorted list
— Take as much as possible (all there is or as much as

will fit)
* O(n log n) running time (for the sort)

Greedy 0-1 Knapsack Algorithm?

* 3 items:
— Item 1 weighs 10 Ibs, worth $60 ($6/1b)
— Item 2 weighs 20 lbs, worth $100 ($5/1b)
— Item 3 weighs 30 lbs, worth $120 ($4/1b)

* Knapsack can hold 50 lbs

* Greedy strategy: e
— Take item 1 ‘ I
— Take item 2

— No room for item 3

0-1 Knapsack Problem

e Taking item 1 is a big mistake globally
although looks good locally

e Use dynamic programming to solve this in
pseudo-polynomial time

Huffman’s Algorithm

* Huffman’s algorithm places the characters on a
priority queue, removing the two least
frequently appearing characters (or
combination of characters), merging them and
placing this node on the priority tree.

* The node is linked to the two nodes from
which i1t came.

Huffman Tree

G Ced
Cre D220 s > Card

@ Priority Queue
E, 25

Huffman Tree

CussD

Huffman Tree

Gz Can D

o> Cos D Cerd

o> Cae
T G

Priority Queue
E, 25
I, 15
A, 15
D, 12
HFB, 11
C, 7
G, 6

Huffman Tree

Priority Queue

E, 25
1,15

A, 15
GC, 13
D, 12
HFB, 11

Huffman Tree

@ ¢ Priority Queue

E, 25
HFBD, 23

1,15
A, 15

GC, 13

Huffman Tree

@ @ Priority Queue

GCA, 28

E, 25
HFBD, 23

1,15

Huffman Tree

Priority Queue
IHFBD, 38

GCA, 28
E, 25

IHFBD, 38

Huffman Tree

Priorit
EGCA, 53
IHFBD, 38

ucue

Huffman Tree

IHFBD, 38

Priority Queue

IHFBDEGCA, 91

Huffman Codes

E, 10
H, 01000

