
CSC 344 – Algorithms and

Complexity

Lecture #6 – Greedy Algorithms

Optimization Problems

• An optimization problem is the problem of

finding the best solution from all feasible

solutions

• Shortest path is an example of an optimization

problem: we wish to find the path with lowest

weight.

• What is the general character of an

optimization problem?

Optimization Problems

• Ingredients:

– Instances: The possible inputs to the problem.

– Solutions for Instance: Each instance has an exponentially

large set of valid solutions.

– Cost of Solution: Each solution has an easy-to-compute

cost or value.

• Specification

– Preconditions: The input is one instance.

– Postconditions: A valid solution with optimal cost.

(minimum or maximum)

Greedy Solutions to Optimization

Problems
• Every two-year-old knows the

greedy algorithm.

• In order to get what you want,
just start grabbing what looks
best.

• Surprisingly, many important
and practical optimization
problems can be solved this
way.

Greedy Algorithms

• A greedy algorithm always makes the choice

that looks best at the moment

• My everyday examples:

– Driving in Los Angeles, New York, or Boston.

– Playing cards

– Invest on stocks

– Choose a university

A Simple Example

• Problem: Pick k numbers out of n numbers

such that the sum of these k numbers is the

largest.

• Algorithm:

FOR i = 1 to k

Pick out the largest number and

Delete this number from the input.

ENDFOR

Shortest Paths On A Special Graph

• Problem: Find a shortest path from v0 to v3.

• The greedy method can solve this problem.

• The shortest path: 1 + 2 + 4 = 7.

Greedy Algorithms

• The hope - a locally optimal choice will lead to

a globally optimal solution

– For some problems, it works

– Greedy algorithms tend to be easier to code

Example - Making Change

• Problem - Find the minimum # of quarters,

dimes, nickels, and pennies that total to a given

amount.

• Commit to the object that looks the "best."

• Must prove that this locally greedy choice

does not have negative global consequences.

Making Change

• Instance - A drawer full of coins and an amount of

change to return

• Solutions for Instance - A subset of the coins in the

drawer that total the amount

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

Making Change (continued)

• Cost of Solution:

– The number of coins in the solution = 14

• Solutions for Instance:

– A subset of the coins that total the amount.

25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢ 25¢

10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢

1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢

Amount = 92¢

A Hard "Making Change" Example

• Problem - Find the minimum # of 4-, 3-, and

1-cent coins to make up 6 cents.

• Greedy Choice - Start by grabbing a 4-cent

coin.

• Consequences:

4+1+1 = 6 mistake

3+3=6 better

• Greedy Algorithm does not work!

When Do Greedy Algorithms Work?

• Greedy Algorithms are easy to understand and

to code, but do they work?

• For most optimization problems, all greedy

algorithms tried do not work (i.e. yield sub-

optimal solutions)

• But some problems can be solved optimally by

a greedy algorithm.

• The proof that they work, however, is subtle.

Minimum Spanning Trees

• Example Problem:

– You are planning a new terrestrial telecommunications

network to connect a number of remote mountain villages

in a developing country.

– The cost of building a link between pairs of neighboring

villages (u,v) has been estimated: w(u,v).

– You seek the minimum cost design that ensures each

village is connected to the network.

– The solution is called a minimum spanning tree (MST).

Minimum Spanning Trees

• The problem is defined for any undirected, connected,

weighted graph.

• The weight of a subset T of a weighted graph is defined as:

w(T) = ∑
(u, v)∈T

w(u, v)

• Thus the MST is the spanning tree T that minimizes w(T)

Building the Minimum Spanning Tree

• Iteratively construct the set of edges A in the MST.

• Initialize A to {}

• As we add edges to A, maintain a Loop Invariant:

– A is a subset of some MST

– Maintain loop invariant and make progress by only

adding safe edges.

– An edge (u,v) is called safe for A iff A∪({u,v}) is

also a subset of some MST.

Finding A Safe Edge

• Idea: Every 2 disjoint subsets of vertices must be connected

by at least one edge.

• Which one should we choose?

Some Definitions

• A cut (S,V-S) is a partition of vertices into disjoint sets S and

V-S.

• Edge (u,v)∈E crosses cut (S, V-S) if one endpoint is in S and

the other is in V-S.

• A cut respects a set of edges A iff no edge in A crosses the cut.

• An edge is a light edge crossing a cut iff its weight is

minimum over all edges crossing the cut.

A

Kruskal’s Algorithm for computing MST

• Starts with each vertex being its own component.

• Repeatedly merges two components into one by

choosing the light edge that crosses the cut between

them.

• Scans the set of edges in monotonically increasing

order by weight (greedy).

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Kruskal’s Algorithm: Example

Finished!

Prim’s Algorithm for Computing MST

• Build one tree A

• Start from arbitrary root r

• At each step, add light edge connecting VA to V- VA

(greedy)

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Prim’s Algorithm: Example

Finished!

An Activity Selection Problem

(Conference Scheduling Problem)

• Input: A set of activities S = {a1,…, an}

• Each activity has start time and a finish time

– ai=(si, fi)

• Two activities are compatible if and only if
their interval does not overlap

• Output: a maximum-size subset of mutually
compatible activities

The Activity Selection Problem

• Here are a set of start and finish times

• What is the maximum number of activities that can be

completed?

• {a3, a9, a11} can be completed

• But so can {a1, a4, a8’ a11} which is a larger set

• But it is not unique, consider {a2, a4, a9’ a11}

Interval Representation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Early Finish Greedy

• Select the activity with the earliest finish

• Eliminate the activities that could not be

scheduled

• Repeat!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Why It Is Greedy?

• Greedy in the sense that it leaves as much

opportunity as possible for the remaining

activities to be scheduled.

• The greedy choice is the one that maximizes

the amount of unscheduled time remaining.

Knapsack Problem

• There are n different items in a store

• Item i :

– weighs wi pounds

– worth $vi

• A thief breaks in

• Can carry up to W pounds in his knapsack

• What should he take to maximize the value of

his haul?

0-1 vs. Fractional Knapsack

• 0-1 Knapsack Problem:

– The items cannot be divided

– Thief must take entire item or leave it behind

• Fractional Knapsack Problem:

– Thief can take partial items

– For instance, items are liquids or powders

– Solvable with a greedy algorithm…

Greedy Fractional Knapsack Algorithm

• Sort items in decreasing order of value per

pound

• While still room in the knapsack (limit of W

pounds) do

– Consider next item in sorted list

– Take as much as possible (all there is or as much as

will fit)

• O(n log n) running time (for the sort)

Greedy 0-1 Knapsack Algorithm?

• 3 items:

– Item 1 weighs 10 lbs, worth $60 ($6/lb)

– Item 2 weighs 20 lbs, worth $100 ($5/lb)

– Item 3 weighs 30 lbs, worth $120 ($4/lb)

• Knapsack can hold 50 lbs

• Greedy strategy:

– Take item 1

– Take item 2

– No room for item 3

0-1 Knapsack Problem

• Taking item 1 is a big mistake globally

although looks good locally

• Use dynamic programming to solve this in

pseudo-polynomial time

Huffman’s Algorithm

• Huffman’s algorithm places the characters on a

priority queue, removing the two least

frequently appearing characters (or

combination of characters), merging them and

placing this node on the priority tree.

• The node is linked to the two nodes from

which it came.

Huffman Tree

I, 15 E, 25

D, 12

A, 15

B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

G, 6

F, 4

E, 25
I, 15
A, 15
D, 12
C, 7

B, 6

H, 1

Huffman Tree

I, 15 E, 25

D, 12

A, 15

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

G, 6

HF, 5

E, 25
I, 15
A, 15
D, 12
C, 7

B, 6

Huffman Tree

I, 15 E, 25

HFB, 11 D, 12

A, 15

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

G, 6

HFB, 11

E, 25
I, 15
A, 15
D, 12

C, 7

Huffman Tree

I, 15 E, 25

HFB, 11 D, 12

A, 15

GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GC, 13

HFB, 11

E, 25
I, 15
A, 15

D, 12

Huffman Tree

I, 15 HFBD, 23 E, 25

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GC, 13

HFBD, 23
E, 25

I, 15

A, 15

Huffman Tree

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GCA, 28

HFBD, 23
E, 25

I, 15

Huffman Tree

IHFBD, 38

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

GCA, 28

IHFBD, 38

E, 25

Huffman Tree

IHFBD, 38 EGCA, 53

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

EGCA, 53

IHFBD, 38

Huffman Tree

IHFBDEGCA, 91

IHFBD, 38 EGCA, 53

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

Priority Queue

IHFBDEGCA, 91

Huffman Codes

IHFBDEGCA, 91

IHFBD, 38 EGCA, 53

I, 15 HFBD, 23 E, 25 GCA, 28

HFB, 11 D, 12
A, 15GC, 13

HF, 5 B, 6

H, 1 F, 4

G, 6 C, 7

A, 111

E, 10

H, 01000

1

1

1

0

0

1

0

0

0

