
CSC 344 – Algorithms and 

Complexity

Lecture #5 – Searching

Why Search?

• Everyday life -We are always looking for something –
in the yellow pages, universities, hairdressers

•  Computers can search for us 

•  World wide web provides different searching 
mechanisms such as yahoo.com, bing.com, google.com

•  Spreadsheet – list of names – searching mechanism to 
find a name

•  Databases – use to search for a record

• Searching thousands of records takes time the large 
number of comparisons slows the system



Sequential Search

• Best case?

• Worst case?

• Average case?

Sequential Search

int linearsearch(int x[], int n, int key)

{

int i;

for (i = 0;  i < n;  i++)

if (x[i] == key)

return(i);

return(-1);

}



Improved Sequential Search

int linearsearch(int x[], int n, int key)

{

int i;

//This assumes an ordered array

for (i = 0;  i < n && x[i] <= key;  i++)

if (x[i] == key)

return(i);

return(-1);

}

Binary Search (A Decrease and Conquer 

Algorithm)

• Very efficient algorithm for searching in sorted 

array:

– K vs A[0]  .  .  .  A[m]  .  .  .  A[n-1]

• If K = A[m], stop (successful search);

otherwise, continue searching by the same 

method in:

– A[0..m-1] if K < A[m] 

– A[m+1..n-1] if K > A[m]



Binary Search (A Decrease and Conquer 

Algorithm)

l← 0;   r← n-1

while l ≤ r do

m← (l+r)/2

if  K = A[m]  return m

else if K < A[m]  r← m-1

else l← m+1

return -1

Analysis of Binary Search

• Time efficiency

• Worst-case recurrence:  

– Cw (n) = 1 + Cw( n/2  ),  Cw (1) = 1 

solution: Cw(n) = log2(n+1) 

– This is VERY fast: e.g., Cw(106) = 20

• Optimal for searching a sorted array

• Limitations: must be a sorted array (not linked 

list)



binarySearch

int binarySearch(int x[], int n, int key)

{

int low, high, mid;

low = 0;

high = n -1;

while (low <= high) {

mid = (low + high) / 2;

if (x[mid] == key)

return(mid);

if (x[mid] > key)

high = mid - 1;

else

low = mid + 1;

}

return(-1);

}



Searching Problem

Problem: Given a (multi)set S of keys  and a search key 

K, find an occurrence of K in S, if any.

• Searching must be considered in the context of:

– File size (internal vs. external)

– Dynamics of data (static vs. dynamic)

• Dictionary operations (dynamic data):

– Find (search)

– Insert

– Delete

Taxonomy of Searching Algorithms

• List searching

– Sequential search

– Binary search

– Interpolation search

• Tree searching 

– Binary search tree

– Binary balanced trees: AVL trees, red-black trees

– Multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

• Hashing

– Open hashing (separate chaining)

– Closed hashing (open addressing)



Binary Search Tree

• Arrange keys in a binary tree with the binary 

search tree  property:

K

<K >K

Example: 5, 3, 1, 10, 12, 7, 9

Dictionary Operations on Binary 

Search Trees

• Searching – straightforward

• Insertion – search for key, insert at leaf where 

search terminated

• Deletion – 3 cases:

– Deleting key at a leaf

– Deleting key at node with single child

– Deleting key at node with two children



Dictionary Operations on Binary Search 

Trees

• Efficiency depends of the tree’s height:

 log2 n  ≤h  ≤ n-1,

with height  average (random files) be about 3log2 n

• Thus all three operations have

– worst case efficiency: Θ(n) 

– average case efficiency: Θ(log n) 

• Bonus: inorder traversal produces sorted list

Balanced Search Trees 

• Attractiveness of binary search tree is marred by the 

bad (linear) worst-case efficiency.  Two ideas to 

overcome it are:

• to rebalance binary search tree when a new insertion 

makes the tree “too unbalanced”

– AVL trees

– red-black trees

• to allow more than one key per node of a search tree

– 2-3 trees

– 2-3-4 trees

– B-trees



Balanced Trees:  AVL trees

• Definition An AVL tree is a binary search tree in 

which, for every node, the difference between the 

heights of its left and right subtrees, called the 

balance factor, is at most 1 (with the height of an 

empty tree defined as -1)

Balanced Trees:  AVL trees

5 20

124 7

2

(a)

10

1

8

10

1

0

-1

0

0

5 20

4 7

2

(b)

10

2

8

00

1

0

-1

0

Tree (a) is an AVL tree; tree (b) is not an AVL tree



Rotations

• If a key insertion violates the balance 

requirement at some node, the subtree rooted 

at that node is transformed via one of the four 

rotations.  (The rotation is always performed 

for a subtree rooted at an “unbalanced” node 

closest to the new leaf.)

Rotations

3

2

2

1

1

0

2

0

1

0

3

0

>
R

(a)

3

2

1

-1

2

0

2

0

1

0

3

0

>
LR

(c)

Single R-rotation Double LR-rotation



General case: Single R-rotation

General case: Double LR-rotation



AVL Tree Construction - An Example

• Construct an AVL tree for the list  5, 6, 8, 3, 2, 4, 7 

5

-1

6

0

5

0

5

-2

6

-1

8

0

>
6

0

8

0

5

0

L(5)

6

1

5

1

3

0

8

0

6

2

5

2

3

1

2

0

8

0

>
R (5)

6

1

3

0

2

0

8

0

5

0

AVL Tree Construction - An Example (continued)

6

2

3

-1

2

0

5

1

4

0

8

0

>
LR (6)

5

0

3

0

2

0

4

0

6

-1

8

0

5

-1

3

0

2

0

4

0

6

-2

8

1

7

0

>
RL (6)

5

0

3

0

2

0

4

0

7

0

8

0

6

0



Analysis of AVL trees

• h  ≤ 1.4404 log2 (n + 2)  - 1.3277                                

– Average height: 1.01 log2n +  0.1 for large n (found 

empirically)

• Search and insertion are O(log n) 

Deletion is more complicated but is also O(log n)

• Disadvantages: 

– frequent rotations

– complexity

• A similar idea: red-black trees (height of subtrees is 

allowed to differ by up to a factor of 2) 

Analysis of AVL trees

• h  ≤ 1.4404 log2 (n + 2)  - 1.3277 

– Average height: 1.01 log2n +  0.1 for large n (found 

empirically)

– Search and insertion are O(log n) 

– Deletion is more complicated but is also O(log n)

• Disadvantages: 

– frequent rotations

– complexity

• A similar idea: red-black trees (height of subtrees is 

allowed to differ by up to a factor of 2) 



Multiway Search Trees

Definition A multiway search tree is a search 
tree that allows more than one key in the same 
node of the tree.

Definition A node of a search tree is called an 
n-node if it contains n-1 ordered keys (which 
divide the entire key range into n intervals 
pointed to by the node’s n links to its children):

Multiway Search Trees

• Note: Every node in a classical binary search 

tree is a 2-node

k1 <  k2 < … <  kn-1

< k1 [k1, k2 ) ≥ k
n-1



2-3 Tree 

• Definition   A 2-3 tree is a search tree that   

may have 2-nodes and 3-nodes   height-

balanced (all leaves are on the same level).

• A 2-3 tree is constructed by successive 

insertions of keys given, with a new key 

always inserted into a leaf of the tree.  If the 

leaf is a 3-node, it’s split into two with the 

middle key promoted to the parent. 

2-3 Tree 

K K  ,  K1 2

(K  , K  )
1 2

2-node 3-node

<  K >  K< K > K
1 2



2-3 Tree Construction – An Example

• Construct a 2-3 tree the list  9, 5, 8, 3, 2, 4, 7 

Analysis Of 2-3 Trees

• log3 (n + 1) - 1 ≤ h ≤  log2 (n + 1)  - 1

• Search, insertion, and deletion are in Θ(log n) 

• The idea of 2-3 tree can be generalized by 

allowing more keys per node 

• 2-3-4 trees 

• B-trees



Why Hashing?

• The best average efficiency that we can do in 

any search is log (n).  Is there a better way of 

organizing data.

• If the key is integer and within a small enough 

range 1 to n (e.g., n = 100), we can set up an 

array of n data items and store the data there.

Example – Array of 100 items

const int arraySize = 100;

typedef struct {

int key;

// Other stuff goes here

} dataType;

dataType dataArray[arraySize];



Example – Array of 100 items (continued)

0

1

2

3

96

97

98

99

… …

… …

dataArray[0]

dataArray[1]

dataArray[2]

dataArray[3]

dataArray[96]

dataArray[97]

dataArray[98]

dataArray[99]

Why Hashing? (continued)

• This approach won’t work if the key field 

covers too large a range of integers or is a 

character string.

– E.g., a social security number, a name

• What do we do then?

– We use a number that is generated out of the 

primary key.  We call this the hash value and the 

function producing it the hash function.



Hash Function

• A hash function looks to convert a value from 

large number or a character string into an 

integer value that can be a valid array index.

• If a social security number is used as a key, we 

seek to cut it down to a smaller number; there 

is no reason to have a billion entries in the 

hash table.

34hash[11]

dataRec[34]



easyHash.h

const int stringLength = 20;

const int arraySize = 100;

typedef char    *keyString;

typedef struct {

keyString *key;

// Other Stuff can go here;

} dataRecord;

typedef dataRecord *hashArray;

int simpleHash(keyString value);

int simpleHash2(keyString value);

easyHash.cc

#include        "easyHash.h"

#include        <iostream>

#include        <cstring>

using namespace std;

int simpleHash(keyString value) {

// A modular hashing function without 

// hash resolution

int i, sum = 0;

for (i = 0;  value[i] != '\0'; i++)

sum += value[i];

return(sum % (arraySize+1));

}



float   frac(float x);

int simpleHash2(keyString value)       {

// Multiplicative hashing without 

//  hash resolution

// Any positive real < 1 would do

const float c = 0.301378663; 

int i, sum = 0;

for (i = 0;  value[i] != '\0';  i++)

sum += value[i];

return (int) ((arraySize + 1) * frac(c*sum));

}

float   frac(float x)   {

float fraction = x - (int) x;

return (fraction);

}

int main(void)      {

hashArray x = new dataRecord[4];

keyString value = new char[stringLength];

strcpy(value, "The quick brown fox");

cout << value << endl;

cout << simpleHash(value) << endl;

cout << simpleHash2(value) << endl;

return(1);

}



Resolving Hash Collision

• There are two ways that hash collision is 

usually resolved:

– Rehashing – deriving an alternative hash value.  It 

may take several rehashing attempts to avoid hash 

collision.

– Chaining – each hash table entry points to the 

beginning of a linked list, all of these data entries 

for which this is the hash value.

Linear vs. Quadratic Probing

• Linear probing involves going down the 

entries in the hash table one entry at a time 

until we find one that is not in use.

• Quadratic Probing involves going down the 

entries in the hash table but the increment 

changes from 1, to 4, to 9, etc.



Linear vs. Quadratic Probing

Linear

Probing

Quadratic

Probing

Chaining



Separate Chaining

140 116 48



Hash Table and the Name Table

2

3

4

5

6

7

8

9

10

6

5

19

-1

-1

-1

-1

-1

-1

19

18

17

20

3

3

8

251

53

61

64

17

18

19

20

-1

-1

18

-1

Hash Table Name Table

HashTable.h

#include <cstring>

#pragma once

const int dataArraySize = 50;

const int hashTableSize = 10000;

const int stringSize = 80;

typedef struct {

int index;

char keyValue[stringSize];

} hashRecord;



typedef struct {

char keyField[stringSize];

// Other fields go here

} dataRecord;

class HashTable {

public:

HashTable(void);

int search(char *keyValue);

void insert(dataRecord data, dataRecord

dataTable[], bool &dup, bool &full);

void remove();

private:

int findHashCode(char *k);

hashRecord table[hashTableSize];

int dataArrayLength;

};



HashTable.cpp

#include "HashTable.h"

// HashTable() - Setting all the indices to -1 and

// the strings to blank

HashTable::HashTable(void)

{

int i;

for (i = 0;  i < hashTableSize;  i++) {

table[i].index = -1;

table[i].keyValue[0] = '\0';

}

dataArrayLength = 0;

}

// hash() - calculating the hash function

int HashTable::findHashCode(char *k)      {

unsigned i;

int sum = 0;

for (i = 0;  i < strlen(k); i++)

sum += k[i];

return (sum % (hashTableSize + 1));

}



// hashSearch() - Inserting into a Hash Table

// resolving Hash Collision using

// Linear Probing

int HashTable::search(char *k) {

int ix, oldIx;

bool found = false;

ix = findHashCode(k);

oldIx = ix;

do      {

if (strcmp(table[ix].keyValue, k)== 0)

found = true;

else

ix = (ix +1 ) % hashTableSize;

} while (!found 

&& table[ix].keyValue[0] != '\0'

&& ix != oldIx);

if (found)

return (ix);

else

return(ix);

}



//hashInsert() - Inserting into a hash table and

// resolving hash collision using

// linear probing

void    HashTable::insert(dataRecord data,

dataRecord dataTable[],

bool &dup,  bool &full) {

int ix, oldIx;

int idx;

dataTable[idx = dataArrayLength++] = data;

// Presuming that it is neither full n

// or a duplicate

full = false;

dup = false;

// Set up the starting place

// for the search of the hash table

ix = findHashCode(data.keyField);

oldIx = ix;

do      {

if (strcmp(table[ix].keyValue,

data.keyField) == 0)

dup = true;

else if(table[ix].keyValue[0] != '\0')

ix = (ix + 1) % hashTableSize;

} while (!dup 

&& table[ix].keyValue[0] != '\0'

&& ix == oldIx);



if (!dup)

if (table[ix].keyValue[0] == '\0') {

strcpy(table[ix].keyValue,

data.keyField);

table[ix].index = idx;

}

else

full = true;

}

TestHash.cpp

#include        "HashTable.h"

#include        <cstring>

#include        <iostream>

using namespace std;

const int numberBooks = 39;



char       *bibleBooks[numberBooks]  

= {"Genesis", "Exodus", "Leviticus",

"Numbers", "Deuteronomy", "Joshua",

"Judges", "First Samuel", "Second Samuel",

"First Kings", "Second Kings", "Isaiah",

"Jeremiah", "Ezekiel", "Hosea", "Joel",

"Amos", "Obadiah", "Jonah", "Micah",

"Nahum", "Habakkuk", "Zephaniah",

"Haggai", "Zechariah", "Malachi", "Psalm",

"Proverbs", "Job", "Song of Songs", "Ruth",

"Lamentations", "Ecclesiastes", "Esther",

"Daniel", "Ezra", "Nehemiah",

"First Chronicles", "Second Chronicles"

};

int main(void)      {

int i, index;

bool full, dup;

dataRecord data;

dataRecord dataArray[dataArraySize];

HashTable ht;

for (i = 0;  i < numberBooks;  i++)     {

strcpy(data.keyField, bibleBooks[i]);

ht.insert(data, dataArray, dup, full);

index = ht.search(bibleBooks[i]);

cout << "The index for " << bibleBooks[i]

<< " is " << index << endl;

}

return(0);

}


