
CSC 344 – Algorithms and

Complexity

Lecture #4 – External Sorting

Why External Sorts?

• We can’t fit the entire file in memory

• Therefore, we break up the file into fragments

small enough to store in memory, sort them

and then merge them back together.

• To keep the sort as time-efficient as possible

we need to minimize the read and write

operations.

Creating The Temporary Files or “Runs”

18 36 11 25 3 34 12 17 30 7 26 5 10 20 31

14 2 8 37 21 15 22

18 36 11 25 3

34 12 17 30 7

26 5 10 20 31

14 2 8 37 21

15 22

Temp1

Temp2

Temp3

Temp4

Temp5

Creating The Runs (continued)

18 36 11 25 3 34 12 17 30 7 26 5 10 20 31

14 2 8 37 21 15 22

18 36 11 25 3

34 12 17 30 7

26 5 10 20 31

14 2 8 37 21

15 22

Temp1

Temp2

Temp3

Temp4

Temp5

Sorting The Runs

18 36 11 25 3

34 12 17 30 7

26 5 10 20 31

14 2 8 37 21

15 22

Temp1

Temp2

Temp3

Temp4

Temp5

18 3611 253

3412 17 307

265 10 20 31

142 8 3721

15 22

Merging The Runs

18 3611 253 3412 17 307 265 10 20 31

142 8 3721 15 22

2 3 5 7 8 10 11 12 14 15 17 18 20 21 22

25 26 30 31 34 36 37

Cost of Merging

• If the source file has n records and memory

can store m records, we need n/m temporary

files.

• We need to read and write each record twice:

once during the sorting and once during the

merging.

• Because this is the most time consuming task,

the cost is 2n.

Balanced Merging

• While most disk drives can work with large

numbers of temporary files, this won't work as

well for tape storage.

• It is difficult to have multiple files on one tape

and we have a limited number of tape drives.

• We can make do with 3 or 4 tapes but we can

increase efficiency with more tape drives.

Creating The Runs

7 12 16 21 2 8 11 20 3 4 17 18 6

9 13 19 1 5 14 22 10 15

Tape 4

Tape 1

Tape 2

7 12 16 21

2 8 11 20

3 4 17 18

6 9 13 19

1 5 14 22

10 15

Merging The Runs

Tape 1

Tape 2

7 12 16 21

2 8 11 20

3 4 17 18

6 9 13 19

1 5 14 22

10 15

Tape 3

Tape 4

7 12 16 212 8 11 20 1 5 14 2210 15

3 4 17 186 9 13 19

Merging The Runs

Tape 3

Tape 4

7 12 16 212 8 11 20 1 5 14 2210 15

3 4 17 186 9 13 19

Tape 1

Tape 2 1 5 14 2210 15

7 12 16

21

2 8 11

20

4 63 9 13 17 18 19

Balanced Merging

• Since the scratch tapes receive the same

number of records, this is a balanced multiway

merge.

• If we have 2d drives, the total cost will be:

n logd (n/m)

Which Internal Sort?

• What sort do we use internally?

– A quicksort won't work well if the data is already

sorted.

– A mergesort may tie up too much memory

– A heapsort may offer the best compromise:

• Efficiency is always O(n log n)

• It's done inplace.

What Wrong with Balanced Merging?

• Balanced merging uses many tapes.

• A p-way merge will need 2p tape in the ideal

case.

• We could get away with p+1 tapes but we

would need to keep distributing the output files

onto the other p tapes.

Why Polyphase Merging?

• Let's assume that we have 3 tapes (T1, T2, T3) and
we merge in the following sequence:

1. Sort and distribute the records onto T1 and T2.

2. Merge T1 and T2 onto T3 leaving some on T2.

3. Merge T2 and T3 onto T1 leaving some on T3.

4. Merge T3 and T1 onto T2 leaving some on T1.

5. Merge T1 and T2 onto T3 leaving some on T2.

– and so on…

• We are always left us two source tapes and one
tape on which to place the merged files.

Polyphase Merge On 13 Runs

1 1 1 1 1 1 1 1 1 1 1 1 1

T1 T2 T3

[empty]

2 2 2 2 21 1 1[empty]

3 3 3 2 2[empty]

3 5 5 [empty]

5[empty] 8

13 [empty] [empty]

Efficiency of Polyphase Merging

• The balanced merge required 4 passes but

went through ALL the data, while the

polyphase merge required 5 passes but went

through only part of the data.

• The balanced merge went through 4 ×13 = 52

runs.

• The polyphase merge went through

10 + 9 + 10 + 8 + 13 = 50 runs

2 Questions About The Polyphase Merge

• What if the source file is not exactly Fn runs

long?

• What if we have more than 3 tapes?

What If We Don't have Fn Runs?

• We have the sort ad distribute step include

dummy runs of length 0.

What if we have more than 3 tapes?

• We start with the

desired result and work

backwards

T
1

T
2

T
3

T
4

Sum

1 0 0 0 1

0 1 1 1 3

1 0 2 2 5

3 2 0 4 9

7 6 4 0 17

0 13 11 7 31

13 0 24 20 57

What if we have more than 3 tapes?

• We can permute the

rows so the empty tape

is always at the end.

• If each row contains

a b c d 0

The next row contains

a+b a+c a+d 0

1 0 0 0

1 1 1 0

2 2 1 0

4 3 2 0

7 6 4 0

13 11 7 0

24 20 13 0

Polyphase Merge On 13 Runs

1 1 1 1 1 1 1 1 1 1 1 1 1

T1 T2 T3

[empty]

3 3 3 31 1 [empty]

5 5[empty]

9[empty] 5

17

T4

1 1 1 1

11 1

1 3 3

3

