CSC 344 - Algorithms and Complexity

Lecture \#2 - Analyzing Algorithms and Big O Notation

Analysis of Algorithms

- Issues:
- Correctness
- Time Efficiency
- Space Efficiency
- Optimality
- Approaches:
- Theoretical Analysis
- Empirical Analysis

Analysis of Algorithms - Issues

- Issues:
- Correctness - Does it work as advertised?
- Time Efficiency - Are time requirements minimized?
- Space Efficiency - Are space requirements minimized?
- Optimality - Do we have the best balance between minimizing time and space?

Theoretical Analysis Of Time Efficiency

- Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size
- Basic operation: the operation that contributes most towards the running time of the algorithm

Input Size And Basic Operation Examples

Problem	Input size measure	Basic operation
Searching for key in a list of n items	Number of list's items, i.e. n	Key comparison
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers
Checking primality of a given integer n	n 'size = number of digits (in binary representation)	Division
Typical graph problem	\#vertices and/or edges	Visiting a vertex or traversing an edge

Empirical Analysis Of Time Efficiency

- Select a specific (typical) sample of inputs
- Use physical unit of time (e.g., milliseconds)

Or

- Count actual number of basic operation's executions
- Analyze the empirical data

Best-Case, Average-Case, Worst-Case

- For some algorithms efficiency depends on form of input:
- Worst case: $\quad \mathrm{C}_{\text {worst }}(\mathrm{n})$ - maximum over inputs of size n
- Best case: $\quad C_{\text {best }}(n)-$ minimum over inputs of size n
- Average case: $\mathrm{C}_{\text {avg }}(\mathrm{n})$ - "average" over inputs of size n

Average-Case

- Average case: $\mathrm{C}_{\text {avg }}(\mathrm{n})$ - "average" over inputs of size n
- Number of times the basic operation will be executed on typical input
- NOT the average of worst and best case
- Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Example: Sequential Search

ALGORITHM SequentialSearch (A[0..n-1], K)

//Searches for a given value in a given array by sequential search
//Input: An array $A[0 . . n-1]$ and a search key K
//Output: The index of the first element of A that matches K
// or -1 if there are no matching elements
$i \leftarrow 0$
while $i<n$ and $A[i] \neq K$ do
$i \leftarrow i+1$
if $i<n$ return i
else return -1

- Best case?
- Worst case?
- Average case?

Types Of Formulas For Basic Operation's Count

- Exact formula

$$
\text { e.g., } C(n)=n(n-1) / 2
$$

- Formula indicating order of growth with specific multiplicative constant
e.g., $\mathrm{C}(\mathrm{n}) \approx 0.5 \mathrm{n}^{2}$
- Formula indicating order of growth with unknown multiplicative constant
e.g., $\mathrm{C}(\mathrm{n}) \approx \mathrm{cn}^{2}$

Order of Growth

- Most important: Order of growth within a constant multiple as $n \rightarrow \infty$
- Example:
- How much faster will algorithm run on computer that is twice as fast?
- How much longer does it take to solve problem of double input size?

Values of Some Important Functions as $\mathrm{n} \rightarrow \infty$

n	$\log _{2} n$	n	$n \log _{2} n$	n^{2}	n^{3}	2^{n}	$n!$
10	3.3	10^{1}	3.3×10^{1}	10^{2}	10^{3}	10^{3}	3.6×10^{6}
10^{2}	6.6	10^{2}	6.6×10^{2}	10^{4}	10^{6}	1.3×10^{30}	9.3×10^{157}
10^{3}	10	10^{3}	1.0×10^{4}	10^{6}	10^{9}		
10^{4}	13	10^{4}	1.3×10^{5}	10^{8}	10^{12}		
10^{5}	17	10^{5}	1.7×10^{6}	$\frac{10^{1}}{0}$	10^{15}		
10^{6}	20	10^{6}	2.0×10^{7}	$\frac{10}{2}$	10^{18}		

Asymptotic Order Of Growth

- A way of comparing functions that ignores constant factors and small input sizes
$-\underline{\mathbf{O}(\mathbf{g}(\mathbf{n}))}$ - class of functions $f(n)$ that grow no faster than $g(n)$
$-\underline{\boldsymbol{\Theta}(\mathbf{g}(\mathbf{n}))}$ - class of functions $f(n)$ that grow at same rate as $g(n)$
$-\underline{\boldsymbol{\Omega}(\mathbf{g}(\mathbf{n}))}$ - class of functions $\mathrm{f}(\mathrm{n})$ that grow at least as fast as $g(n)$

Big O

Big Omega

Big Theta

Establishing Order Of Growth Using The Definition

- Definition: $f(n)$ is in $\mathrm{O}(g(n))$ if order of growth of $f(n) \leq$ order of growth of $g(n)$ (within constant multiple), i.e., there exist positive constant c and nonnegative integer n_{0} such that

$$
f(n) \leq c g(n) \text { for every } n \geq n_{0}
$$

- Examples:
$-10 n$ is $\mathrm{O}\left(n^{2}\right)$
$-5 n+20$ is $\mathrm{O}(n)$

Some Properties Of Asymptotic Order Of Growth

- $f(n) \in \mathrm{O}(f(n))$
- $f(n) \in \mathrm{O}(g(n))$ iff $g(n) \in \Omega(f(n))$
- If $f(n) \in \mathrm{O}(g(n))$ and $g(n) \in \mathrm{O}(h(n))$, then $f(n) \in \mathrm{O}(h(n))$
Note similarity with $\mathrm{a} \leq \mathrm{b}$
- If $f_{1}(n) \in \mathrm{O}\left(g_{1}(n)\right)$ and $f_{2}(n) \in \mathrm{O}\left(g_{2}(n)\right)$, then $f_{1}(n)+f_{2}(n) \in \mathrm{O}\left(\max \left\{g_{1}(\mathrm{n}), g_{2}(n)\right\}\right)$

Establishing Order Of Growth Using Limits

Examples:
-10n vs. n^{2}
$\cdot n(n+1) / 2 \quad$ vs. $\quad n^{2}$

L'Hôpital's Rule And Stirling's Formula

- L'Hôpital's rule:

If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and the derivatives f^{\prime}, g^{\prime} exist, then $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}$

- Example: $\log n$ vs. n
- Stirling's formula: $\mathrm{n}!\approx(2 \pi \mathrm{n})^{1 / 2}(\mathrm{n} / \mathrm{e})^{\mathrm{n}}$
- Example: $\quad 2^{n}$ vs. $n!$

Orders Of Growth Of Some Important Functions

- All logarithmic functions $\log _{a} n$ belong to the same class $\Theta(\log n)$ no matter what the logarithm's base $a>1$ is
- All polynomials of the same degree k belong to the same class: $a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{0} \in \Theta\left(n^{k}\right)$
- Exponential functions a^{n} have different orders of growth for different a 's
- order $\log n<$ order $n^{\alpha}(\alpha>0)<$ order $a^{n}<$ order $n!<$ order n^{n}

Basic Asymptotic Efficiency Classes

$\mathbf{1}$	constant
$\log n$	logarithmic
n	linear
$n \log n$	n-log-n or linearithmic
n^{2}	quadratic
n^{3}	cubic
2^{n}	exponential
$n!$	factorial

Time Efficiency Of Nonrecursive Algorithms General Plan for Analysis

- Decide on parameter n indicating input size
- Identify algorithm's basic operation
- Determine worst, average, and best cases for nput of size n
- Set up a sum for the number of times the basic operation is executed
- Simplify the sum using standard formulas and rules

Useful Summation Formulas And Rules

$\Sigma_{l \leq i \leq u} 1=1+1+\cdots+1=u-l+1$
In particular, $\Sigma_{1 \leq i \leq u} 1=n-1+1=n \in \Theta(n)$
$\Sigma_{1 \leq i \leq n} i=1+2+\cdots+n=n(n+1) / 2 \approx n^{2} / 2 \in \Theta\left(n^{2}\right)$
$\Sigma_{1 \leq i \leq n} i^{2}=1^{2}+2^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6 \approx n^{3} / 3 \in \Theta\left(n^{3}\right)$
$\Sigma_{0 \leq i \leq n} a^{i}=1+a+\cdots+a^{n}=\left(a^{n+1}-1\right) /(a-1)$ for any $a \neq 1$
In particular, $\Sigma_{0 \leq i \leq n} 2^{i}=2^{0}+2^{1}+\cdots+2^{n}=2^{n+1}-1 \in \Theta\left(2^{n}\right)$
$\Sigma\left(a_{i} \pm b_{i}\right)=\Sigma a_{i} \pm \Sigma b_{i} \quad \Sigma c a_{i}=c \Sigma a_{i} \quad \Sigma_{l \leq i \leq u} a_{i}=\Sigma_{l \leq i \leq m} a_{i}+$ $\Sigma_{m+1 \leq i \leq u} a_{i}$

Example 1 - Maximum Element

ALGORITHM MaxElement(A[0..n-1])
//Determines the value of the largest element in a given array
//Input: An array $A[0 . . n-1]$ of real numbers
//Output: The value of the largest element in A
maxval $\leftarrow A[0]$
for $i \leftarrow 1$ to $n-1$ do
if $A[i]>$ maxval maxval $\leftarrow A[i]$
return maxval

Example 2 - Element Uniqueness problem

ALGORITHM UniqueElements(A[0..n-1])

//Determines whether all the elements in a given array are distinct //Input: An array $A[0 . . n-1]$
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
for $i \leftarrow 0$ to $n-2$ do
for $j \leftarrow i+1$ to $n-1$ do
if $A[i]=A[j]$ return false
return true

Example 3 - Matrix Multiplication

ALGORITHM MatrixMultiplication(A[0..n-1, $0 . . n-1], B[0 . . n-1,0 . . n-1])$
//Multiplies two n-by- n matrices by the definition-based algorithm
//Input: Two n-by- n matrices A and B
//Output: Matrix $C=A B$
for $i \leftarrow 0$ to $n-1$ do for $j \leftarrow 0$ to $n-1$ do $C[i, j] \leftarrow 0.0$
for $k \leftarrow 0$ to $n-1$ do $C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]$
return C

Example 4: Counting Binary Digits

```
ALGORITHM Binary(n)
    //Input: A positive decimal integer \(n\)
    //Output: The number of binary digits in \(n\) 's binary representation
    count \(\leftarrow 1\)
    while \(n>1\) do
        count \(\leftarrow\) count +1
        \(n \leftarrow\lfloor n / 2\rfloor\)
    return count
```

