
CSC 344 – Algorithms and

Complexity

Lecture #2 – Analyzing Algorithms

and Big O Notation

Analysis of Algorithms

• Issues:

– Correctness

– Time Efficiency

– Space Efficiency

– Optimality

• Approaches:

– Theoretical Analysis

– Empirical Analysis

Analysis of Algorithms - Issues

• Issues:

– Correctness – Does it work as advertised?

– Time Efficiency – Are time requirements

minimized?

– Space Efficiency – Are space requirements

minimized?

– Optimality – Do we have the best balance between

minimizing time and space?

Theoretical Analysis Of Time

Efficiency
• Time efficiency is analyzed by determining the

number of repetitions of the basic operation as a

function of input size

• Basic operation: the operation that contributes most

towards the running time of the algorithm

T(n) ≈ copC(n)

Running Time
Execution Time

For Basic

Operation

Number Of Times

Basic Operation Is

Executed

Input Size And Basic Operation Examples

Problem Input size measure Basic operation

Searching for key in a

list of n items
Number of list’s items, i.e. n Key comparison

Multiplication of two

matrices

Matrix dimensions or total

number of elements

Multiplication of two

numbers

Checking primality of

a given integer n

n’size = number of digits (in

binary representation)
Division

Typical graph

problem
#vertices and/or edges

Visiting a vertex or

traversing an edge

Empirical Analysis Of Time Efficiency

• Select a specific (typical) sample of inputs

• Use physical unit of time (e.g., milliseconds)

or

• Count actual number of basic operation’s

executions

• Analyze the empirical data

Best-Case, Average-Case, Worst-Case

• For some algorithms efficiency depends on

form of input:

– Worst case: Cworst(n) – maximum over inputs of

size n

– Best case: Cbest(n) – minimum over inputs of

size n

– Average case: Cavg(n) – “average” over inputs of

size n

Average-Case

• Average case: Cavg(n) – “average” over inputs

of size n

– Number of times the basic operation will be executed on

typical input

– NOT the average of worst and best case

– Expected number of basic operations considered as a

random variable under some assumption about the

probability distribution of all possible inputs

Example: Sequential Search

• Best case?

• Worst case?

• Average case?

Types Of Formulas For Basic Operation’s

Count

• Exact formula

e.g., C(n) = n(n-1)/2

• Formula indicating order of growth with specific

multiplicative constant

e.g., C(n) ≈ 0.5 n2

• Formula indicating order of growth with unknown

multiplicative constant

e.g., C(n) ≈ cn2

Order of Growth

• Most important: Order of growth within a

constant multiple as n→∞

• Example:

– How much faster will algorithm run on computer

that is twice as fast?

– How much longer does it take to solve problem of

double input size?

Values of Some Important Functions as n →∞

n log2n n nlog2n n2 n3 2n n!

10 3.3 101 3.3×101 102 103 103 3.6×106

102 6.6 102 6.6×102 104 106 1.3×1030 9.3×10157

103 10 103 1.0×104 106 109

104 13 104 1.3×105 108 1012

105 17 105 1.7×106 101

0

1015

106 20 106 2.0×107 101

2

1018

Asymptotic Order Of Growth

• A way of comparing functions that ignores

constant factors and small input sizes

– O(g(n)) - class of functions f(n) that grow no faster

than g(n)

– Θ(g(n)) - class of functions f(n) that grow at same

rate as g(n)

– Ω(g(n)) - class of functions f(n) that grow at least

as fast as g(n)

Big O

Big Omega

Big Theta

Establishing Order Of Growth Using

The Definition

• Definition: f(n) is in O(g(n)) if order of growth of

f(n) ≤ order of growth of g(n) (within constant

multiple), i.e., there exist positive constant c and non-

negative integer n0 such that

f(n) ≤ c g(n) for every n ≥ n0

• Examples:

– 10n is O(n2)

– 5n+20 is O(n)

Some Properties Of Asymptotic Order

Of Growth

• f(n) ∈ O(f(n))

• f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n))

• If f (n) ∈ O(g (n)) and g(n) ∈ O(h(n)) ,

then f(n) ∈ O(h(n))

Note similarity with a ≤ b

• If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) ,
then f1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

Establishing Order Of Growth Using

Limits

lim T(n)/g(n) =

0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) > order of growth of g(n)

Examples:

• 10n vs. n2

• n(n+1)/2 vs. n2

n→∞

L’Hôpital’s Rule And Stirling’s

Formula

• L’Hôpital’s rule:

If limn→∞
f(n) = limn→∞

g(n) = ∞ and

the derivatives f´, g´ exist,

then

– Example: log n vs. n

• Stirling’s formula: n! ≈ (2πn)1/2 (n/e)n

– Example: 2n vs. n!

f(n)

g(n)
lim
n→∞→∞→∞→∞

=
f ´(n)

g ´(n)
lim
n→∞→∞→∞→∞

Orders Of Growth Of Some Important

Functions

• All logarithmic functions loga n belong to the same class

Θ(log n) no matter what the logarithm’s base a > 1 is

• All polynomials of the same degree k belong to the same class:

akn
k + ak-1n

k-1 + … + a0 ∈ Θ(nk)

• Exponential functions an have different orders of growth for

different a’s

• order log n < order nα (α>0) < order an < order n! < order nn

Basic Asymptotic Efficiency Classes

1 constant

log n logarithmic

n linear

n log n n-log-n or linearithmic

n2 quadratic

n3 cubic

2n exponential

n! factorial

Time Efficiency Of Nonrecursive

Algorithms

General Plan for Analysis
• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for
nput of size n

• Set up a sum for the number of times the basic
operation is executed

• Simplify the sum using standard formulas and
rules

Useful Summation Formulas And

Rules

Σl≤i≤u1 = 1+1+ ⋯ +1 = u - l + 1

In particular, Σl≤i≤u1 = n - 1 + 1 = n ∈ Θ(n)

Σ1≤i≤n i = 1+2+ ⋯ +n = n(n+1)/2 ≈ n2/2 ∈ Θ(n2)

Σ1≤i≤n i2 = 12+22+ ⋯ +n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3)

Σ0≤i≤n ai = 1 + a + ⋯ + an = (an+1 - 1)/(a - 1) for any a ≠ 1

In particular, Σ0≤i≤n 2i = 20 + 21 + ⋯ + 2n = 2n+1 - 1 ∈ Θ(2n)

Σ(ai ± bi) = Σai ± Σbi Σcai = cΣai Σl≤i≤uai = Σl≤i≤mai +

Σm+1≤i≤uai

Example 1 - Maximum Element

Example 2 - Element Uniqueness

problem

Example 3 - Matrix Multiplication

Example 4: Counting Binary Digits

