CSC 344 — Algorithms and
Complexity

Lecture #2 — Analyzing Algorithms
and Big O Notation

Analysis of Algorithms

* Issues:
— Correctness
— Time Efficiency
— Space Efficiency
— Optimality
* Approaches:
— Theoretical Analysis
— Empirical Analysis

Analysis of Algorithms - Issues

* Issues:

— Correctness — Does it work as advertised?

— Time Efficiency — Are time requirements
minimized?

— Space Efficiency — Are space requirements
minimized?

— Optimality — Do we have the best balance between
minimizing time and space?

Theoretical Analysis Of Time
Efficiency

» Time efficiency is analyzed by determining the
number of repetitions of the basic operation as a
function of input size

* Basic operation: the operation that contributes most
towards the running time of the algorithm

I(n) = c,,C(n)

Running Time Number Of Times
Basic Operation Is

Executed

Execution Time
For Basic
Operation

Input Size And Basic Operation Examples

Problem

Input size measure

Basic operation

Searching for key in a
list of n items

Number of list’s items, i.e. n

Key comparison

Multiplication of two
matrices

Matrix dimensions or total
number of elements

Multiplication of two
numbers

Checking primality of
a given integer n

n’size = number of digits (in
binary representation)

Division

Typical graph
problem

#vertices and/or edges

Visiting a vertex or
traversing an edge

Empirical Analysis Of Time Efficiency

or

executions

Analyze the empirical data

Select a specific (typical) sample of inputs
Use physical unit of time (e.g., milliseconds)

Count actual number of basic operation’s

Best-Case, Average-Case, Worst-Case

* For some algorithms efficiency depends on
form of input:

— Worst case: C,,.(n) — maximum over inputs of
size n

— Best case: C,ei(n) — minimum over inputs of
size n

— Average case: C,,,(n) — “average” over inputs of
size n

Average-Case

* Average case: C,,,(n) — “average” over inputs
of size n
— Number of times the basic operation will be executed on
typical input
— NOT the average of worst and best case

— Expected number of basic operations considered as a
random variable under some assumption about the
probability distribution of all possible inputs

Example: Sequential Search

ALGORITHM SequentialSearch(A[0..n — 1], K)
//Searches for a given value in a given array by sequential search
/Mnput: An array A[0..n — 1] and a search key K
/{Output: The index of the first element of A that matches K
I or —1if there are no matching elements
i<0
while i <n and A[i] # K do
i<i+1
ifi <n return i
else return —1

e Best case?
* Worst case?
* Average case?

Types Of Formulas For Basic Operation’s
Count

* Exact formula
e.g., C(n) =n(n-1)/2
* Formula indicating order of growth with specific
multiplicative constant
e.g., C(n) = 0.5 n?
* Formula indicating order of growth with unknown
multiplicative constant
e.g., C(n) = cn?

Order of Growth

* Most important: Order of growth within a

constant multiple as n—o

* Example:

— How much faster will algorithm run on computer
that is twice as fast?

— How much longer does it take to solve problem of
double input size?

Values of Some Important Functions as n —oo

ﬂ ke nnlogn a2 [0 2 nt |

102
103
10%
10°

10°

6.6
10
13
17

20

10t
102
103
10%
10°

10°

3.3x10!
6.6x102
1.0x10*
1.3x10°
1.7x10°

2.0x107

102
104
106
108

10?
0

10?
2

103 10° 3.6x10°
10 1.3x10%° 9.3x10%7
10°
1012
1015

1018

Asymptotic Order Of Growth

* A way of comparing functions that ignores
constant factors and small input sizes

— O(g(n)) - class of functions f(n) that grow no faster
than g(n)

— ©(g(n)) - class of functions f(n) that grow at same
rate as g(n)

— €(g(mn)) - class of functions f(n) that grow at least
as fast as g(n)

Big O

f(n)

cgn)

n
No

f(n)=Q(gn))

Big Omega

f(n)

cg(n)

n
No

f(n) = Q(g(n))

Big Theta

cg(n)

fn)

cyg(n)

n
no

f(n) =0O(gn))

Establishing Order Of Growth Using
The Definition

 Definition: f(n) is in O(g(n)) if order of growth of
f(n) <order of growth of g(n) (within constant
multiple), i.e., there exist positive constant ¢ and non-
negative integer n, such that
fn) < c g(n) for every n > n,
* Examples:
— 10n is O(n?)
— 5n+20 is O(n)

Some Properties Of Asymptotic Order
Of Growth

* fin) € O(f(n))
* fin) € O(g(n)) iff g(n) € Q(f(n))

* If f(n) € O(g (n)) and g(n) € O(h(n)) ,
then f(n) € O(h(n))
Note similarity with a<b

e If fi(n) € O(g,(n)) and f,(n) € O(g,(n)),
then fi(n) + f,(n) € O(max{g,(n), g,(n)})

Establishing Order Of Growth Using
Limits
0 order of growth of T(n) < order of growth of g(n)

: —/ ¢>0 order of growth of T(rn) = order of growth of g(n)
lim T(n)/g(n) =<

oo order of growth of T(n) > order of growth of g(n)

N
Examples:
*10n vs. n?
e n(n+1)/2 Vvs. n?

[”Hopital’s Rule And Stirling’s
Formula
» L’Hopital’s rule:
If im _, f(n) =lim,_,. g(n) = and
the derivatives f*, g~ exist,

then iim _f® - tim _f'®
n—oo g(n) n—o g ’(n)

— Example: log n vs. n

o Stirling’s formula: n!~ (2zn)!? (n/e)
— Example: 2" vs. n!

Orders Of Growth Of Some Important
Functions

* All logarithmic functions log, n belong to the same class
®(log n) no matter what the logarithm’s base a > 1 is

* All polynomials of the same degree k belong to the same class:
anf + a, 0"+ .+ ay € O

* Exponential functions a" have different orders of growth for
different a’s

* order logn <order n* (a>0) < order a* < order n! < order n"

Basic Asymptotic Efficiency Classes
1 Jeonstant _______|

logn logarithmic
n linear

nlogn n-log-n or linearithmic

n? quadratic
n’ cubic
2n exponential

n! factorial

Time Efficiency Of Nonrecursive
Algorithms

General Plan for Analysis
* Decide on parameter n indicating input size
* Identify algorithm’s basic operation

* Determine worst, average, and best cases for
nput of size n

* Set up a sum for the number of times the basic
operation is executed

* Simplify the sum using standard formulas and
rules

Useful Summation Formulas And
Rules

Yl =141+ -+l =u-1+1
In particular, X, 1=n-1+1=ne O(n)

i, i = 1424 - 4n = n(n+1)12 = n*2 € On?)
Y i, 2= 124224 - 402 = n(n+1)(2n+1)/6 = n3/3 € O(n?)

Locicn@ =1+a +-++a" =(@*'-1)/(a-1) foranya#1
In particular, X, 2" =204 2"+ .- + 27 =21 -1 € @(2")

Y(a;x b)) =Xa;£¥b; Xca; =cla; XG0 =Yg, +
Zm+1£i£uai

Example 1 - Maximum Element

ALGORITHM MaxElement(A[0..n — 1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n — 1] of real numbers
//Output: The value of the largest element in A
maxval < A[0]
fori < 1ton—1do

if A[i] > maxval

maxval < Ali]

return maxval

Example 2 - Element Uniqueness
problem

ALGORITHM UniqueElements(A[0..n — 1])

//Determines whether all the elements in a given array are distinct
/[Input: An array A[0..n — 1]
//Output: Returns “true” if all the elements in A are distinct
I and “false™ otherwise
fori <~ Oton —2do

for j «—i+1ton—1do

if A[i]= A[j] return false

return true

Example 3 - Matrix Multiplication

ALGORITHM MatrixMultiplication(A[0.n — 1, 0.n — 1], B[0.n — 1. 0.n — 1])
//Multiplies two n-by-n matrices by the definition-based algorithm
{/Input: Two n-by-n matrices A and B
//Output: Matrix C = AB
fori < 0ton—1do
forj «<0ton—1do
Cli, j]1< 0.0
fork <« 0Oton 1do
C[i, j] < Cli, j1+ A[i. k] = B[k, j]
return

Example 4: Counting Binary Digits

ALGORITHM Binary(n)
/Input: A positive decimal integer n
//Output: The number of binary digits in n’s binary representation
count <1
while n > 1 do
count < count + 1
n< |n/2|
return count

