
CSC 344 – Algorithms and 

Complexity

Lecture #2 – Analyzing Algorithms 

and Big O Notation

Analysis of Algorithms

• Issues:

– Correctness

– Time Efficiency

– Space Efficiency

– Optimality

• Approaches: 

– Theoretical Analysis

– Empirical Analysis



Analysis of Algorithms - Issues

• Issues:

– Correctness – Does it work as advertised?

– Time Efficiency – Are time requirements 

minimized?

– Space Efficiency – Are space requirements 

minimized?

– Optimality – Do we have the best balance between 

minimizing time and space?

Theoretical Analysis Of Time 

Efficiency
• Time efficiency is analyzed by determining the 

number of repetitions of the basic operation as a 

function of input size

• Basic operation: the operation that contributes most 

towards the running time of the algorithm

T(n) ≈ copC(n)

Running Time
Execution Time

For Basic 

Operation

Number Of Times 

Basic Operation Is 

Executed



Input Size And Basic Operation Examples

Problem Input size measure Basic operation

Searching for key in a 

list of n items
Number of list’s items,  i.e. n Key comparison

Multiplication of two 

matrices

Matrix dimensions or total 

number of elements

Multiplication of two 

numbers

Checking primality of 

a given integer n

n’size = number of digits (in 

binary representation)
Division

Typical graph 

problem
#vertices and/or edges

Visiting a vertex or 

traversing an edge

Empirical Analysis Of Time Efficiency

• Select a specific (typical) sample of inputs

• Use physical unit of time (e.g.,  milliseconds)

or

• Count actual number of basic operation’s 

executions

• Analyze the empirical data



Best-Case, Average-Case, Worst-Case

• For some algorithms efficiency depends on 

form of input:

– Worst case:    Cworst(n) – maximum over inputs of 

size n

– Best case:        Cbest(n) – minimum over inputs of 

size n

– Average case:  Cavg(n) – “average” over inputs of 

size n

Average-Case

• Average case:  Cavg(n) – “average” over inputs 

of size n

– Number of times the basic operation will be executed on 

typical  input

– NOT the average of worst and best case

– Expected number of basic operations considered as a 

random variable under some assumption about the 

probability distribution of all possible inputs



Example: Sequential Search

• Best case?

• Worst case?

• Average case?

Types Of Formulas For Basic Operation’s 

Count

• Exact formula

e.g., C(n) = n(n-1)/2

• Formula indicating order of growth with specific 

multiplicative constant

e.g., C(n) ≈ 0.5 n2

• Formula indicating order of growth with unknown 

multiplicative constant

e.g., C(n) ≈ cn2



Order of Growth 

• Most important: Order of growth within a 

constant multiple as n→∞

• Example:

– How much faster will algorithm run on computer 

that is twice as fast?

– How much longer does it take to solve problem of 

double input size?

Values of Some Important Functions as n →∞

n log2n n nlog2n n2 n3 2n n!

10 3.3 101 3.3×101 102 103 103 3.6×106

102 6.6 102 6.6×102 104 106 1.3×1030 9.3×10157

103 10 103 1.0×104 106 109

104 13 104 1.3×105 108 1012

105 17 105 1.7×106 101

0

1015

106 20 106 2.0×107 101

2

1018



Asymptotic Order Of Growth

• A way of comparing functions that ignores 

constant factors and small input sizes

– O(g(n)) - class of functions f(n) that grow no faster 

than g(n)

– Θ(g(n)) - class of functions f(n) that grow at same 

rate as g(n)

– Ω(g(n)) - class of functions f(n) that grow at least 

as fast as g(n)

Big O



Big Omega

Big Theta



Establishing Order Of Growth Using 

The Definition

• Definition: f(n) is in O(g(n)) if order of growth of  

f(n) ≤ order  of growth of g(n) (within constant 

multiple), i.e., there exist positive constant c and non-

negative integer n0 such that

f(n) ≤ c g(n) for every n ≥ n0

• Examples:

– 10n is O(n2)

– 5n+20 is O(n)

Some Properties Of Asymptotic Order 

Of Growth

• f(n) ∈ O(f(n))

• f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n)) 

• If f (n) ∈ O(g (n)) and g(n) ∈ O(h(n)) ,

then f(n) ∈ O(h(n)) 

Note similarity with a ≤ b

• If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) ,
then f1(n) + f2(n) ∈ O(max{g1(n), g2(n)}) 



Establishing Order Of Growth Using 

Limits

lim T(n)/g(n) = 

0 order of growth of T(n) <  order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

∞ order of growth of T(n) >  order of growth of g(n)

Examples:

• 10n vs.             n2

• n(n+1)/2        vs.             n2

n→∞

L’Hôpital’s Rule And Stirling’s

Formula

• L’Hôpital’s rule:  

If limn→∞
f(n) = limn→∞

g(n) = ∞ and 

the derivatives f´, g´ exist, 

then

– Example: log n vs. n

• Stirling’s formula:  n! ≈ (2πn)1/2 (n/e)n

– Example: 2n vs. n!

f(n)

g(n)
lim
n→∞→∞→∞→∞

= 
f ´(n)

g ´(n)
lim
n→∞→∞→∞→∞



Orders Of Growth Of Some Important 

Functions

• All logarithmic functions loga n belong to the same class 

Θ(log n) no matter what the logarithm’s base a > 1 is

• All polynomials of the same degree k belong to the same class: 

akn
k + ak-1n

k-1 + … + a0 ∈ Θ(nk) 

• Exponential functions an have different orders of growth for 

different a’s

• order log n < order nα (α>0)  < order an < order n! < order nn

Basic Asymptotic Efficiency Classes

1 constant

log n logarithmic

n linear

n log n n-log-n or linearithmic

n2 quadratic

n3 cubic

2n exponential

n! factorial



Time Efficiency Of Nonrecursive

Algorithms

General Plan for Analysis
• Decide on parameter n indicating input size

• Identify algorithm’s basic operation

• Determine worst, average, and best cases for 
nput of size n

• Set up a sum for the number of times the basic 
operation is executed

• Simplify the sum using standard formulas and 
rules

Useful Summation Formulas And 

Rules

Σl≤i≤u1 = 1+1+ ⋯ +1 = u - l + 1

In particular, Σl≤i≤u1 = n - 1 + 1 = n ∈ Θ(n) 

Σ1≤i≤n i = 1+2+ ⋯ +n = n(n+1)/2 ≈ n2/2 ∈ Θ(n2) 

Σ1≤i≤n i2 = 12+22+ ⋯ +n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3) 

Σ0≤i≤n ai = 1 + a + ⋯ + an = (an+1 - 1)/(a - 1)  for any a ≠ 1

In particular, Σ0≤i≤n 2i = 20 + 21 + ⋯ + 2n = 2n+1 - 1 ∈ Θ(2n )

Σ(ai ± bi ) = Σai ± Σbi         Σcai = cΣai Σl≤i≤uai = Σl≤i≤mai + 

Σm+1≤i≤uai



Example 1 - Maximum Element

Example 2 - Element Uniqueness 

problem



Example 3 - Matrix Multiplication

Example 4: Counting Binary Digits 


