CSC 344 - Algorithms and Complexity

Lecture \#12 - Graphs (Extended)

What is a Graph?

- A graph consists of a set of nodes (or vertices) and a set of arcs (or edges).
- Each arc in a graphs is specified by a pair of nodes.
- If the pair of nodes that make up the arcs are ordered pairs then the graph is a directed graph or digraph.

Undirected Graph - An Example

Set of nodes $=\{$ A, B , C , D , E, F, G, H $\}$
Set of arcs $=\{(A, B),(A, D),(A, C),(C, D)$, (C, F), (E, G), (A, A)\}

Directed Graph - An Example

(H)

Set of nodes $=\{$ A, B, C, D, E, F, G, H $\}$
Set of arcs $=\{<A, B\rangle,<A, D\rangle,<A, C\rangle,<C, D>$,

$$
<\mathrm{F}, \mathrm{C}>,<\mathrm{E}, \mathrm{G}\rangle,<\mathrm{A}, \mathrm{~A}\rangle\}
$$

Digraph - An Example

Digraph - An Example

A graph need not be a tree but a tree must be a graph.

Other Definitions

- A node n is incident to an arc x if n is one of the two nodes in the ordered pair of nodes constituting x. We also say that x is incident to n.
- The degree of a node is the number of arcs incident to it.
- indegree of n - the number of arcs with n as the head.
- outdegree of \mathbf{n} - the number of arcs with n as the tail.

Weighted Graphs

- A number may be associated with each arc of a graph. Such a graph is called a weighted graph or network. The number associated with an arc is called the weight.

Operations Used With Graphs

- join (a, b) - adds an arc from node a to b.
- joinwt (a, b, x) - adds an arc from a to b with weight x.
- remove (a, b) - removes an arc from a to b if it exists.
- removewt (a, b, x) - removes an arc from a to b and sets x to the weight of the nowdefunct arc.

Paths and Cycles

- A path of length k from node a to node b is defined as a sequence of $k+1$ nodes n_{1}, n_{2}, \ldots, n_{k+1} such that $n_{l}=a$ and $n_{k+1}=b$ and $\operatorname{adjacent}\left(n_{i}\right.$, $\left.n_{k+1}\right)$ is true for all i between 1 and k.
- A path from one node to itself is called a cycle.
- A graph with a cycle is cyclic; a graph without cycles is acyclic.
- Directed Acyclic Graphs are called dags.

Transitive Closure

- Let's assume that the adjacency matrix (adj) completely describes the graph (the nodes contain no data and the graph is unweighted).
- if (adj[i][k] \&\& adj[k][j] == true)
- // we have a 2-arc path from i to j
- What if the path requires 3 or more arcs?

Sample Graph

$a d j$

	A	B	C	D	E
A	0	0	1	1	0
B	0	0	1	0	0
C	0	0	0	1	1
D	0	0	0	0	1
E	0	0	0	1	0

adj_{2}

	A	B	C	D	E
A	0	0	0	1	1
B	0	0	0	1	1
C	0	0	0	1	1
D	0	0	0	1	0
E	0	0	0	0	1

adju						
	A	B	C	D	E	
A	0	0	0	1	1	
B	0	0	0	1	1	
C	0	0	0	1	1	
D	0	0	0	0	1	
E	0	0	0	1	0	

adj_{4}

	A	B	C	D	E
A	0	0	0	1	1
B	0	0	0	1	1
C	0	0	0	1	1
D	0	0	0	1	0
E	0	0	0	1	1

path $=$ adj $_{1} \mid$ adj $_{2} \mid$ adj $_{3}\left\|\mathrm{adj}_{4}\right\| \mathrm{adj}_{5}$					
A	0	0	1	1	1
B	0	0	1	1	1
C	0	0	0	1	1
D	0	0	0	1	1
E	0	0	0	1	1

Graph.h

```
#ifndef __GRAPH
#define
    __GRAPH_
#endif
using namespace std;
const int MaxNodes = 50;
typedef int NodeStuffType;
struct node {
        NodeStuffType data;
};
struct arc {
        bool adj;
};
```

```
class Graph
{
public:
    Graph(void);
    void join(int node1, int node2);
    void remove(int node1, int node2);
    bool adjacent(int node1, int node2);
    void transClose(int path[][MaxNodes]);
private:
        void prod(int a[][MaxNodes],
                        int c[][MaxNodes]);
        struct node nodes[MaxNodes];
        struct arc arcs[MaxNodes][MaxNodes];
};
```


Graph. cpp

```
#include "Graph.h"
Graph::Graph (void)
{
    int i, j;
    for (i = 0; i < MaxNodes; i++)
        for (j = 0; j < MaxNodes; j++)
        arcs[i][j].adj = false;
}
void Graph::join(int node1, int node2) {
    arcs[node1][node2].adj = true;
}
```

```
void Graph::remove(int node1, int node2) {
    arcs[node1][node2].adj = false;
}
bool Graph::adjacent(int node1, int node2) {
        return((arcs[node1][node2].adj == true)?
            true : false);
}
```

void Graph::transClose (int path[][MaxNodes]) \{
int i, j, k;
int newprod[MaxNodes] [MaxNodes],
adjprod[MaxNodes][MaxNodes];
for (i = 0; i < MaxNodes; i++)
for (j $=0$; \mathbf{j} < MaxNodes; j++)
adjprod[i][j] = path[i][j]
= arcs[i][j].adj;
for (i = 1; i < MaxNodes; i++) \{
// i represents the number of times adj
// has been mulitplied by itself to
// obtain adjprod. At this point path
// represents all paths of length i or
// less

```
            prod(adjprod, newprod);
            for (j = 0; j < MaxNodes; j++)
            for (k = 0; k < MaxNodes; k++)
                path[j][k]
                    = path[j][k] || newprod[j][k];
        for (j = 0; j < MaxNodes; j++)
            for (k = 0; k < MaxNodes; k++)
                adjprod[j][k] = newprod[j][k];
}
}
```

void Graph: :prod(int a[][MaxNodes],
int c[][MaxNodes]) \{
int $\quad i, j, k, ~ v a l ;$
for (i = 0; i < MaxNodes; i++)
//pass through rows
for (j = 0; j < MaxNodes; j++) \{
// pass through columns
val = false;
for (k = 0; k < MaxNodes; k++)
val
= val ||
(a[i][k] \&\& arcs[i][j].adj);
c[i][j] = val;
\} // for j..
\}

Shortcoming in transClosure()

- The matrix multiplication that is performed is $O\left(n^{3}\right)$. It is performed $n-1$ times. That makes the efficiency of the algorithm $O\left(n^{4}\right)$, which is generally unacceptable.

Warshall's Algorithm

- We need a more efficient algorithm.
- Matrix path $_{k}$ is defined such that path $_{k}[i][j]$ is true if and only if there is path from node i to j that does not pass through any node numbered higher than k.
- Can we determine path ${ }_{k+1}$ from path $_{k}$?

Warshall's Algorithm

- path ${ }_{k+1}$ will be true if and only if:

1. $\operatorname{path}_{k}[i][j]==$ true
2. $\operatorname{path}_{k}[i][k+1]==$ true
\&\& path ${ }_{k}[k+1][j]==$ true

quickTransClose()

```
void Graph::quickTransClose
                                    (int path[][MaxNodes]) {
    int i, j, k;
    for (i = 0; i < MaxNodes; i++)
        for (j = 0; j < MaxNodes; j++)
            // Path starts off as adj
            path[i][j] = arcs[i][j].adj;
    for (k = 0; k < MaxNodes; i++)
        for (i = 0; i < MaxNodes; i++)
            if (path[i][k] == 1)
                for (j = 0; j < MaxNodes; j++)
                        path[i][j] = path[i][j] || path[k][j];
}
```


Dijkstra's Algorithm

We want to find the shortest path from A to Z

Dijkstra's Algorithm

A's distance is 0 ; everyone else is initialize to ∞

Dijkstra's Algorithm

New, shorter path

> We update A's neighbor's

We update C's neighbor's since it is closer to A

Dijkstra's Algorithm
We update the

We update C's neighbor's since it is closer to A

Dijkstra's Algorithm

We update C's neighbor's since it is closer to A

Dijkstra's Algorithm

We update C's neighbor's since it is closer to A

