
CSC 344 – Algorithms and 

Complexity

Lecture #12 – Graphs (Extended)

What is a Graph?

• A graph consists of a set of nodes (or 

vertices) and a set of arcs (or edges).

• Each arc in a graphs is specified by a pair of 

nodes.

• If the pair of nodes that make up the arcs 

are ordered pairs then the graph is a 

directed graph or digraph.



Undirected Graph – An Example
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Set of nodes = {A, B, C, D, E, F, G, H}

Set of arcs = {(A, B), (A, D), (A, C), (C, D), 

(C, F), (E, G), (A, A)}

Directed Graph – An Example
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Set of nodes = {A, B, C, D, E, F, G, H}

Set of arcs = {<A, B>, <A, D>, <A, C>, <C, D>, 

<F, C>, <E, G>, <A, A>}



Digraph – An Example
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A graph need not be a tree but a tree must be a graph.



Other Definitions

• A node n is incident to an arc x if n is one of the 

two nodes in the ordered pair of nodes constituting 

x.  We also say that x is incident to n.

• The degree of a node is the number of arcs 

incident to it.

• indegree of n – the number of arcs with n as the 

head.

• outdegree of n – the number of arcs with n as the 

tail. 

Weighted Graphs

• A number may be associated with each arc 

of a graph.  Such a graph is called a 

weighted graph or network.  The number 

associated with an arc is called the weight.



Operations Used With Graphs

• join (a, b) – adds an arc from node a to b.

• joinwt(a, b, x) – adds an arc from a to b

with weight x.

• remove(a, b) – removes an arc from a to b if 

it exists.

• removewt(a, b, x) – removes an arc from a

to b and sets x to the weight of the now-

defunct arc.

Paths and Cycles

• A path of length k from node a to node b is 

defined as a sequence of k + 1 nodes n1, n2, …, 

nk+1 such that n1 = a and nk+1 = b and adjacent(ni, 

nk+1) is true for all i between 1 and k.

• A path from one node to itself is called a cycle.

• A graph with a cycle is cyclic; a graph without 

cycles is acyclic.

• Directed Acyclic Graphs are called dags.



Transitive Closure

• Let’s assume that the adjacency matrix (adj) 

completely describes the graph (the nodes contain 

no data and the graph is unweighted).

– if (adj[i][k] && adj[k][j] == true)

– // we have a 2-arc path from i to j

• What if the path requires 3 or more arcs?

Sample Graph
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adj

A B C D E

A 0 0 1 1 0

B 0 0 1 0 0

C 0 0 0 1 1

D 0 0 0 0 1

E 0 0 0 1 0

adj2

A B C D E

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 1 1

D 0 0 0 1 0

E 0 0 0 0 1



adj3

A B C D E

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 1 1

D 0 0 0 0 1

E 0 0 0 1 0

adj4

A B C D E

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 1 1

D 0 0 0 1 0

E 0 0 0 1 1



path = adj1 | adj2 | adj3 | adj4 | adj5

A B C D E

A 0 0 1 1 1

B 0 0 1 1 1

C 0 0 0 1 1

D 0 0 0 1 1

E 0 0 0 1 1

Graph.h

#ifndef __GRAPH__

#define __GRAPH__

#endif

using namespace std;

const int MaxNodes = 50;

typedef int NodeStuffType;

struct node {

NodeStuffType data;

};

struct arc {

bool adj;

};



class Graph

{

public:

Graph(void);

void join(int node1, int node2);

void remove(int node1, int node2);

bool adjacent(int node1, int node2);

void transClose(int path[][MaxNodes]);

private:

void prod(int a[][MaxNodes], 

int c[][MaxNodes]);

struct node nodes[MaxNodes];

struct arc arcs[MaxNodes][MaxNodes];

};

Graph.cpp

#include "Graph.h"

Graph::Graph(void)

{

int i, j;

for (i = 0; i < MaxNodes;  i++)

for (j = 0;  j < MaxNodes;  j++)

arcs[i][j].adj = false;

}

void Graph::join(int node1, int node2) {

arcs[node1][node2].adj = true;

}



void Graph::remove(int node1, int node2) {

arcs[node1][node2].adj = false;

}

bool Graph::adjacent(int node1, int node2) {

return((arcs[node1][node2].adj == true)?

true : false);

}

void Graph::transClose(int path[][MaxNodes]) {

int i, j, k;

int newprod[MaxNodes][MaxNodes],

adjprod[MaxNodes][MaxNodes];

for (i = 0;  i < MaxNodes; i++)

for (j = 0;  j < MaxNodes;  j++)

adjprod[i][j] = path[i][j] 

= arcs[i][j].adj;

for (i = 1;  i < MaxNodes; i++) {

// i represents the number of times adj

// has been mulitplied by itself to

// obtain adjprod.  At this point path

// represents all paths of length i or

// less



prod(adjprod, newprod);

for (j = 0;  j < MaxNodes;  j++)

for (k = 0;  k < MaxNodes;  k++)

path[j][k] 

= path[j][k] || newprod[j][k];

for (j = 0;  j < MaxNodes;  j++)

for (k = 0;  k < MaxNodes;  k++)

adjprod[j][k] = newprod[j][k];

}

}

void Graph::prod(int a[][MaxNodes],

int c[][MaxNodes]) {

int i, j, k, val;

for (i = 0;  i < MaxNodes; i++)

//pass through rows

for (j = 0;  j < MaxNodes;  j++) {

// pass through columns

val = false;

for (k = 0;  k < MaxNodes;  k++)

val 

= val || 

(a[i][k] && arcs[i][j].adj);

c[i][j] = val;

}  // for j..

}



Shortcoming in 
transClosure()

• The matrix multiplication that is performed 

is O(n3).  It is performed n-1 times. That 

makes the efficiency of the algorithm O(n4), 

which is generally unacceptable.

Warshall's Algorithm

• We need a more efficient algorithm.

• Matrix pathk is defined such that pathk[i][j] 

is true if and only if there is path from node 

i to j that does not pass through any node 

numbered higher than k.

• Can we determine pathk+1 from pathk?



Warshall's Algorithm

• pathk+1 will be true if and only if:

1. pathk[i][j] == true

2. pathk[i][k+1] == true

&& pathk[k+1][j] == true

quickTransClose()

void Graph::quickTransClose

(int path[][MaxNodes]) {

int i, j, k;

for (i = 0;  i < MaxNodes; i++)

for (j = 0;  j < MaxNodes;  j++)

// Path starts off as adj

path[i][j] = arcs[i][j].adj;

for (k = 0;  k < MaxNodes; i++)

for (i = 0;  i  < MaxNodes; i++)

if (path[i][k] == 1)

for (j = 0;  j < MaxNodes; j++)

path[i][j] = path[i][j] || path[k][j];

}



Dijkstra's Algorithm
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We want to find the shortest path from A to Z

Dijkstra's Algorithm
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Dijkstra's Algorithm
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We update A's neighbor's
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Dijkstra's Algorithm
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We update C's neighbor's

since it is closer to A
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Dijkstra's Algorithm
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We update C's neighbor's

since it is closer to A
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Dijkstra's Algorithm
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We update C's neighbor's

since it is closer to A
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Dijkstra's Algorithm
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We update C's neighbor's

since it is closer to A
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distance to Z


