
CSC 344 – Algorithms and

Complexity

Lecture #12 – Graphs (Extended)

What is a Graph?

• A graph consists of a set of nodes (or

vertices) and a set of arcs (or edges).

• Each arc in a graphs is specified by a pair of

nodes.

• If the pair of nodes that make up the arcs

are ordered pairs then the graph is a

directed graph or digraph.

Undirected Graph – An Example

A

B

C

D E G

HF

Set of nodes = {A, B, C, D, E, F, G, H}

Set of arcs = {(A, B), (A, D), (A, C), (C, D),

(C, F), (E, G), (A, A)}

Directed Graph – An Example

A

B

C

D E G

HF

Set of nodes = {A, B, C, D, E, F, G, H}

Set of arcs = {<A, B>, <A, D>, <A, C>, <C, D>,

<F, C>, <E, G>, <A, A>}

Digraph – An Example

A

B C

D E

G

F

Digraph – An Example

A

B C

D

A graph need not be a tree but a tree must be a graph.

Other Definitions

• A node n is incident to an arc x if n is one of the

two nodes in the ordered pair of nodes constituting

x. We also say that x is incident to n.

• The degree of a node is the number of arcs

incident to it.

• indegree of n – the number of arcs with n as the

head.

• outdegree of n – the number of arcs with n as the

tail.

Weighted Graphs

• A number may be associated with each arc

of a graph. Such a graph is called a

weighted graph or network. The number

associated with an arc is called the weight.

Operations Used With Graphs

• join (a, b) – adds an arc from node a to b.

• joinwt(a, b, x) – adds an arc from a to b

with weight x.

• remove(a, b) – removes an arc from a to b if

it exists.

• removewt(a, b, x) – removes an arc from a

to b and sets x to the weight of the now-

defunct arc.

Paths and Cycles

• A path of length k from node a to node b is

defined as a sequence of k + 1 nodes n1, n2, …,

nk+1 such that n1 = a and nk+1 = b and adjacent(ni,

nk+1) is true for all i between 1 and k.

• A path from one node to itself is called a cycle.

• A graph with a cycle is cyclic; a graph without

cycles is acyclic.

• Directed Acyclic Graphs are called dags.

Transitive Closure

• Let’s assume that the adjacency matrix (adj)

completely describes the graph (the nodes contain

no data and the graph is unweighted).

– if (adj[i][k] && adj[k][j] == true)

– // we have a 2-arc path from i to j

• What if the path requires 3 or more arcs?

Sample Graph

A

B

C

D

F

adj

A B C D E

A 0 0 1 1 0

B 0 0 1 0 0

C 0 0 0 1 1

D 0 0 0 0 1

E 0 0 0 1 0

adj2

A B C D E

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 1 1

D 0 0 0 1 0

E 0 0 0 0 1

adj3

A B C D E

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 1 1

D 0 0 0 0 1

E 0 0 0 1 0

adj4

A B C D E

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 1 1

D 0 0 0 1 0

E 0 0 0 1 1

path = adj1 | adj2 | adj3 | adj4 | adj5

A B C D E

A 0 0 1 1 1

B 0 0 1 1 1

C 0 0 0 1 1

D 0 0 0 1 1

E 0 0 0 1 1

Graph.h

#ifndef __GRAPH__

#define __GRAPH__

#endif

using namespace std;

const int MaxNodes = 50;

typedef int NodeStuffType;

struct node {

NodeStuffType data;

};

struct arc {

bool adj;

};

class Graph

{

public:

Graph(void);

void join(int node1, int node2);

void remove(int node1, int node2);

bool adjacent(int node1, int node2);

void transClose(int path[][MaxNodes]);

private:

void prod(int a[][MaxNodes],

int c[][MaxNodes]);

struct node nodes[MaxNodes];

struct arc arcs[MaxNodes][MaxNodes];

};

Graph.cpp

#include "Graph.h"

Graph::Graph(void)

{

int i, j;

for (i = 0; i < MaxNodes; i++)

for (j = 0; j < MaxNodes; j++)

arcs[i][j].adj = false;

}

void Graph::join(int node1, int node2) {

arcs[node1][node2].adj = true;

}

void Graph::remove(int node1, int node2) {

arcs[node1][node2].adj = false;

}

bool Graph::adjacent(int node1, int node2) {

return((arcs[node1][node2].adj == true)?

true : false);

}

void Graph::transClose(int path[][MaxNodes]) {

int i, j, k;

int newprod[MaxNodes][MaxNodes],

adjprod[MaxNodes][MaxNodes];

for (i = 0; i < MaxNodes; i++)

for (j = 0; j < MaxNodes; j++)

adjprod[i][j] = path[i][j]

= arcs[i][j].adj;

for (i = 1; i < MaxNodes; i++) {

// i represents the number of times adj

// has been mulitplied by itself to

// obtain adjprod. At this point path

// represents all paths of length i or

// less

prod(adjprod, newprod);

for (j = 0; j < MaxNodes; j++)

for (k = 0; k < MaxNodes; k++)

path[j][k]

= path[j][k] || newprod[j][k];

for (j = 0; j < MaxNodes; j++)

for (k = 0; k < MaxNodes; k++)

adjprod[j][k] = newprod[j][k];

}

}

void Graph::prod(int a[][MaxNodes],

int c[][MaxNodes]) {

int i, j, k, val;

for (i = 0; i < MaxNodes; i++)

//pass through rows

for (j = 0; j < MaxNodes; j++) {

// pass through columns

val = false;

for (k = 0; k < MaxNodes; k++)

val

= val ||

(a[i][k] && arcs[i][j].adj);

c[i][j] = val;

} // for j..

}

Shortcoming in
transClosure()

• The matrix multiplication that is performed

is O(n3). It is performed n-1 times. That

makes the efficiency of the algorithm O(n4),

which is generally unacceptable.

Warshall's Algorithm

• We need a more efficient algorithm.

• Matrix pathk is defined such that pathk[i][j]

is true if and only if there is path from node

i to j that does not pass through any node

numbered higher than k.

• Can we determine pathk+1 from pathk?

Warshall's Algorithm

• pathk+1 will be true if and only if:

1. pathk[i][j] == true

2. pathk[i][k+1] == true

&& pathk[k+1][j] == true

quickTransClose()

void Graph::quickTransClose

(int path[][MaxNodes]) {

int i, j, k;

for (i = 0; i < MaxNodes; i++)

for (j = 0; j < MaxNodes; j++)

// Path starts off as adj

path[i][j] = arcs[i][j].adj;

for (k = 0; k < MaxNodes; i++)

for (i = 0; i < MaxNodes; i++)

if (path[i][k] == 1)

for (j = 0; j < MaxNodes; j++)

path[i][j] = path[i][j] || path[k][j];

}

Dijkstra's Algorithm

B

A

C

D

Z

E

4

2

1

5

8

10

2

6

3

We want to find the shortest path from A to Z

Dijkstra's Algorithm

B

A

C

D

Z

E

4

2

1

5

8

10

2

6

3

A's distance is 0; everyone else is initialize to ∞

∞

0

∞

∞ ∞

∞

Dijkstra's Algorithm

B

A

C

D

Z

E

4

2

1

5

8

10

2

6

3

We update A's neighbor's

4

0

∞

2 ∞

∞

New, shorter path

Dijkstra's Algorithm

B

A

C

D

Z

E

4

2

1

5

8

10

2

6

3

We update C's neighbor's

since it is closer to A

3

0

10

2 12

∞

We update the

distance to B
We update the

distance to D

We update the

distance to E

Dijkstra's Algorithm

B

A

C

D

Z

E

4

2

1

5

8

10

2

6

3

We update C's neighbor's

since it is closer to A

3

0

8

2 12

∞

We update the

distance to D

Dijkstra's Algorithm

B

A

C

D

Z

E

4

2

1

5

8

10

2

6

3

We update C's neighbor's

since it is closer to A

3

0

8

2 10

14

We update the

distance to Z

We update the

distance to E

Dijkstra's Algorithm

B

A

C

D

Z

E

4

2

1

5

8

10

2

6

3

We update C's neighbor's

since it is closer to A

3

0

8

2 10

132

We update the

distance to Z

