CSC 344 - Algorithms and Complexity

Lecture \#11 - Numerical
Computation, Numerical Integration and the Fast Fourier Transform

Calculating e^{x}

- $e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{i}}{i!}+\ldots$
- How do we write the function?

exp1 ()

```
double exp1(int x) {
    double sum = 0.0, term = 1.0;
    int i;
    for (i = 0; term >= sum/1.0e7; i++) {
                term = power(x, i)/fact(i);
        sum += term;
    }
    return sum;
}
```

- What wrong with this function?

exp3()

```
double exp3(int x) {
    double sum = 1.0, term = 1.0;
    int i;
    for (i = 1; term >= sum/1.0e7; i++) {
        term = term * x / (double)i;
        sum += term;
    }
    return sum;
}
```

- Is this faster?

Numerical Integration

- In general, a numerical integration is the approximation of a definite integration by a "weighted" sum of function values at discretized points within the interval of integration.
$\int_{a}^{b} f(x) d x \approx \sum_{i=0}^{N} w_{i} f\left(x_{i}\right)$
where w_{i} is the weighted factor depending on the integration schemes used, and $f\left(x_{i}\right)$ is the function value evaluated at the given point x_{i}

$$
\begin{aligned}
& f(x) \\
& \text { Rectangular Rule } \\
& \text { height }=f\left(x_{1}{ }^{*}\right) \\
& \int_{a}^{b} f(x) d x=f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+. . f\left(x_{n}^{*}\right) \Delta x \\
& =\Delta x\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+. . f\left(x_{n}^{*}\right)\right]
\end{aligned}
$$

rect ()

```
// rect() - Uses the Rectangle's rule to find the
// definite integral of f(x). Takes the
// bounds as parameters
// Uses f(x) that appears below.
float rect(int lowBound, int hiBound){
    int numDivisions = 4;
    float x, increment, integral = 0.0;
    // Get the increment and the midpoint of
    //the first rectangle
    increment = (float) (hiBound-lowBound)
    / (float) numDivisions;
    x = lowBound + increment / 2.0;
```

 // Calculate \(f(x)\) and increment \(x\) to the
 // next value
 for (int \(i=0 ; i<n u m D i v i s i o n s ; i++)\{\)
 integral \(=\) integral \(+f(x)\);
 x += increment;
 \}
 // Multiply the sum by delta x
 integral = integral / (float) numDivisions;
 return (integral);
 \}

$$
f(x) \uparrow \begin{aligned}
& \text { Trapezoidal Rule } \\
& \int_{a}^{b} f(x) d x=\frac{\Delta x}{2}\left[f(a)+f\left(x_{1}\right)\right]+\frac{\Delta x}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+. .+\frac{\Delta x}{2}\left[f\left(x_{n-1}\right)+f(b)\right] \\
& \text { more accurate by using } \\
& \text { trapezoids to replace the } \\
& \text { rectangles as shown. A linear } \\
& \text { approximation of the function } \\
& \text { locally sometimes work much } \\
& \text { better than using the averaged } \\
& \text { value like the rectangular rule } \\
& \text { does. }
\end{aligned}
$$

trapezoid()

```
// trapezoid() - Uses the Trapezoid rule to find
// the definite integral of f(x)
// Takes the bounds as parameters
// Uses f(x) that appears below.
float trapezoid(int lowBound, int hiBound) {
    int numDivisions = 4;
    float x, increment, integral = 0.0;
    increment = (float) (hiBound-lowBound)
    / (float) numDivisions;
    x = lowBound;
    // Add f(lowBound) /2 to the sum
    integral = 0.5*f(x);
```

```
    // Increment x to the next value,
    // calculate f(x) and add it to the sum
    for (int i = 1; i < numDivisions; i++) {
        x += increment;
        integral = integral + f(x);
        }
        // Add f(hiBound) /2
        integral = integral + 0.5*f(hiBound);
    // Multiply the sum by delta x
    integral = integral /(float) numDivisions;
    return (integral);
}
```


Simpson's Rule

Still, the more accurate integration formula can be achieved by approximating the local curve by a higher order function, such as a quadratic polynomial. This leads to the Simpson's rule and the formula is given as:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\frac{\Delta x}{3}\left[f(a)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+. .\right. \\
& \left.. .2 f\left(x_{2 m-2}\right)+4 f\left(x_{2 m-1}\right)+f(b)\right]
\end{aligned}
$$

It is to be noted that the total number of subdivisions has to be an even number in order for the Simpson's formula to work properly.

Simpson's Rule - A Quadratic Interpolation

simpson. C

```
#include <iostream>
using namespace std;
float f(float x);
float simpson(int lowBound, int hiBound);
// main() - Get inputted values for lower and upper
// bounds of integration, calls simpson()
// to use Simpson's rule for numerical
// integration and prints the result
```

```
int main(void) {
    int lowBound, hiBound;
    float integral;
    // Input the bounds
    cout << "Enter lower bound\t?";
    cin >> lowBound;
    cout << "Enter upper bound\t?";
    cin >> hiBound;
    //Calls simpson and prints the integral
    integral = simpson(lowBound, hiBound);
    cout << "Integral is...." << integral;
    return(0);
}
```

```
// simpson() - Uses Simpson's rule to find the
// definite integral of f(x)
// Takes the bounds as parameters
// Uses f(x) that appears below.
float simpson(int lowBound, int hiBound) {
    int numDivisions = 4;
    float x, increment, integral = 0.0;
    increment = (float) (hiBound - lowBound)
        / (float) numDivisions;
        x = lowBound;
        // Adds f(lowBound)
        integral = f(x);
```

```
// Increment x to the next value, calculate
// f(x)
// Add 4f(x) for even numbered values
// Add 2f(x) for odd numbered values
for (int i = 1; i < numDivisions; i++) {
                x += increment;
                if (i % 2 == 1)
                integral = integral + 4.0*f(x);
            else
                integral = integral + 2.0*f(x);
}
// Add f(hiBound)
integral = integral + f(hiBound);
```

 // Multiply the sum by delta x/3
 integral \(=\) integral * increment/3.0;
 return (integral);
 \}
// f() - The function being integrated
// numerically
float $f(f l o a t \quad x)\{$
return (\mathbf{x} * \mathbf{x} * \mathbf{x});
\}

Examples

Integrate $f(x)=x^{3}$ between $x=1$ and $x=2$.
$\int_{1}^{2} \mathrm{x}^{3} \mathrm{dx}=\left.\frac{1}{4} x^{4}\right|_{1} ^{2}=\frac{1}{4}\left(2^{4}-1^{4}\right)=3.75$
Using 4 subdivisions for the numerical integration: $\Delta x=\frac{2-1}{4}=0.25$
Rectangular rule:

| i | x_{i}^{*} | $f\left(x_{i}{ }^{*}\right)$ | $\int_{1}^{2} x^{3} d x$
 $=\Delta x[f(1.125)+f(1.375)+f(1.625)+f(1.875)]$

 1$\| 1.125$ |
| :--- | :--- | :--- | :--- | 1.42,$~$| $=0.25(14.9)=3.725$ |
| :--- | :--- |

Trapezoidal Rule

i	x_{i}	$f\left(x_{i}\right)$
	1	1
1	1.25	1.95
2	1.5	3.38
3	1.75	5.36
	2	8

$$
\begin{aligned}
& \int_{1}^{2} x^{3} d x \\
& =\Delta x\left[\frac{1}{2} f(1)+f(1.25)+f(1.5)+f(1.75)+\frac{1}{2} f(2)\right] \\
& =0.25(15.19)=3.80
\end{aligned}
$$

Simpson's Rule

$\int_{1}^{2} x^{3} d x=\frac{\Delta x}{3}[f(1)+4 f(1.25)+2 f(1.5)+4 f(1.75)+f(2)]$
$=\frac{0.25}{3}(45)=3.75 \Rightarrow$ perfect estimation

Transforms

- Transform:
- In mathematics, a function that results when a given function is multiplied by a so-called kernel function, and the product is integrated between suitable limits. (Britannica)
$-G(y)=\int_{x_{1}}^{x_{2}} F(x) \underbrace{K(x, y)}_{\text {Kernel }} d x$

Fourier Transform

- Property of transforms:
- They convert a function from one domain to another with no loss of information
- Fourier Transform:

$$
F(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

converts a function from the time (or spatial) domain to the frequency domain

Time Domain and Frequency Domain

- Time Domain:
- Tells us how properties (air pressure in a sound function, for example) change over time:

- Amplitude $=100$
- Frequency = number of cycles in one second $=200 \mathrm{~Hz}$

Time Domain and Frequency Domain

- Frequency domain:
- Tells us how properties (amplitudes) change over frequencies:

Time Domain and Frequency Domain

- Example:
- Human ears do not hear wave-like oscilations, but constant tone

- Often it is easier to work in the frequency domain

Time Domain and Frequency Domain

- In 1807, Jean Baptiste Joseph Fourier showed that any periodic signal could be represented by a series of sinusoidal functions

Time Domain and Frequency Domain

Fourier Transform

- Because of the

$$
\begin{aligned}
& e^{\text {EULER's FORMULA }}=\cos \theta+i \sin \theta \\
& e^{i \cot }=\cos \omega t+i \sin \omega t \\
& \text { where } i=\sqrt{-1}
\end{aligned}
$$

- Fourier Transform takes us to the frequency domain:

$$
\begin{aligned}
& F(\omega)=\int_{i}^{\infty} f(t) e^{-i \omega t} d t \\
& \text { the Fourier } \\
& \text { tramsform: } \\
& \text { strength of } \\
& \text { frequency a } \\
& \text { contained inf(t) } \\
& \text { sicale factor for the Fourier } \\
& \text { Transform F (a) ; the } \\
& \text { origi nal signal in the time } \\
& \text { domain; the -inverse } \\
& \text { Fourier transformº. }
\end{aligned}
$$

Discrete Fourier Transform

- In practice, we often deal with discrete functions (digital signals, for example)
- Discrete version of the Fourier Transform is much more useful in computer science:
$-W \equiv e^{2 \pi i / N}$
$-F_{n}=\sum_{k=0}^{N-1} W^{n k} f_{k}, \mathrm{n}=0,1,2, \ldots \mathrm{~N}-1$
- Calculating all the values of the vector F requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time complexity

Effect of Sampling in Time and Frequency

- By sampling in time, we get a periodic spectrum with the sampling frequency f_{s}. The approximation of a Fourier transform by a DFT is reasonable only if the frequency components of $x(t)$ are concentrated on a smaller range than the Nyquist frequency $f_{s} / 2$

Dividing the Transform in 2

- $F_{k}=\sum_{j=0}^{N-1} e^{2 \pi i j k / N} f_{j}$
- $\bar{\sum}_{\sum_{j=0}^{\frac{N}{2}}-1} e^{2 \pi i k(2 j) / N} f_{2 j}+\sum_{j=0}^{\frac{N}{2}-1} e^{2 \pi i k(2 j+1) / N} f_{2 j+1}$
$\cdot \sum_{j=0}^{\overline{\bar{N}}-1} e^{2 \pi i k j /\left(\frac{N}{2}\right)} f_{2 j}+W^{k} \sum_{j=0}^{\frac{N}{2}-1} e^{2 \pi i k j /\left(\frac{N}{2}\right)} f_{2 j+1}$
- $\quad=F_{k}^{e}+W^{k} F_{k}^{o}$

This can be used recursively.

As We Continue To Divide...

- This works best if $\mathrm{N}=2^{\mathrm{n}}$
- We re-order the elements in the array.
- Let $e=0$ and $o=1$
- We reverse the bits

Now, we combine them..

- We start with our Fourier transforms of length one and we perform $\log _{2} \mathrm{~N}$ combinations

The Fast Fourier Transform

// Replaces data by its discrete Fourier transform
// if sign is input as 1.
// Replaces data by its inverse discrete Fourier
// transform is sign is input as -1.
// data is an array of complex values with the real
// component stored in data[2j] and the imaginary
// component stored in data[2j+1]
// nn MUST be a power of 2 ; it is NOT checked.
void fourl (double data[], int $n n$, isign) \{
int i, istep, $j, m, m m a x, n$;
double tempi, tempr;
double theta, wi, wpi, wpr, wr, wtemp;
$\mathrm{n}=2$ * nn ;
j $=$ i

```
// Do the bit reversal
for (i = 1; i <= n; i+=2) {
    if (j > i) {
        // Swap 2 complex values
        tempr = data[j];
        tempi = data[j+1];
        data[j] = data[i];
        data[j+1] = data[i+1];
        data[i] = tempr;
        data[i+1] = tempi;
        }
        m = n/2;
        while (m >= 2 && j > m) {
            j = j - m;
            m = m / 2;
        }
```

```
        j = j +m;
    }
    // Here is where we combine terms
// outer loop is performed log2 nn times
while (n > mmax) {
    istep = 2 * mmax
    //Initialize trig recurrence
    theta = 2.0 * 3.141592653589/(isign*mmax);
    wpr = 2 * pow(sin(0.5*theta), 2);
    wpi = sin(theta);
    wr = 1.0;
    wi = 0.0;
```

```
// First of two nested loops
for (m = 1; m <= mmax; m +=2) {
            //Second of two nested loops
            for (i = m; i <= n; i +=istep) {
            // We combine them here
            j = i + mmax;
            tempr = wr* data[j] - wi *data[j+1];
            tempi = wr* data[j+1] + wi *data[j];
            data[j] = data[i] _ tempr;
            data[j+1] = data[i+1] - tempi;
            data[i] = data[i] + tempr;
            data[i+1] = data[i+1] + tempi;
            }
```

 // Trig recurrence
 wtemp = wr;
 wr = wr*wpr - wi*wpi + wr;
 wi \(=\) wi*wpi + wtemp*wpi \(+w i ;\)
 \}
 max \(=\) istep;
 \}
 \}

Applications

- In image processing:
- Instead of time domain: spatial domain (normal image space)
- frequency domain: space in which each image value at image position F represents the amount that the intensity values in image I vary over a specific distance related to F

Applications: Frequency Domain In Images

- If there is value 20 at the point that represents the frequency 0.1 (or 1 period every 10 pixels). This means that in the corresponding spatial domain image I the intensity values vary from dark to light and back to dark over a distance of 10 pixels, and that the
 contrast between the lightest and darkest is 40 gray levels

Applications: Frequency Domain In Images

- Spatial frequency of an image refers to the rate at which the pixel intensities change
- In picture on right:
- High frequences:
- Near center
- Low frequences:
- Corners

Applications: Image Filtering

Free Hand Filter

Power Spectrum

Figure 1

