
CSC 344 – Algorithms and

Complexity

Lecture #11 – Numerical

Computation, Numerical Integration

and the Fast Fourier Transform

Calculating ex

• �� =	∑
��

�!
= 1 +	

�

�!
+	

��

!
�
��� +⋯+	

��

�!
+ …

• How do we write the function?

exp1()

double exp1(int x) {

double sum = 0.0, term = 1.0;

int i;

for (i = 0; term >= sum/1.0e7; i++) {

term = power(x, i)/fact(i);

sum += term;

}

return sum;

}

• What wrong with this function?

exp3()

double exp3(int x) {

double sum = 1.0, term = 1.0;

int i;

for (i = 1; term >= sum/1.0e7; i++) {

term = term * x / (double)i;

sum += term;

}

return sum;

}

• Is this faster?

Numerical Integration

• In general, a numerical integration is the approximation

of a definite integration by a “weighted” sum of function

values at discretized points within the interval of

integration.

0

() ()

where is the weighted factor depending on the integration

 schemes used, and () is the function value evaluated at the

given point

N
b

i i
a

i

i

i

i

f x dx w f x

w

f x

x

=

≈∑∫

Rectangular Rule

x=a x=b

Approximate the integration,

, that is the area under

the curve by a series of

rectangles as shown.

The base of each of these

rectangles is ∆x=(b-a)/n and

its height can be expressed as

f(xi*) where xi* is the

midpoint of each rectangle

()
b

a
f x dx∫

x=x1* x=xn*

height=f(x1*) height=f(xn*)

1 2

1 2

() (*) (*) .. (*)

[(*) (*) .. (*)]

b

n
a

n

f x dx f x x f x x f x x

x f x f x f x

= ∆ + ∆ + ∆

= ∆ + +

∫

f(x)

x

rect()

// rect() - Uses the Rectangle's rule to find the

// definite integral of f(x). Takes the

// bounds as parameters

// Uses f(x) that appears below.

float rect(int lowBound, int hiBound){

int numDivisions = 4;

float x, increment, integral = 0.0;

// Get the increment and the midpoint of

//the first rectangle

increment = (float)(hiBound-lowBound)

/ (float) numDivisions;

x = lowBound + increment / 2.0;

// Calculate f(x) and increment x to the

// next value

for (int i = 0; i < numDivisions; i++){

integral = integral + f(x);

x += increment;

}

// Multiply the sum by delta x

integral = integral / (float) numDivisions;

return (integral);

}

Trapezoidal Rule

x=a x=b

x=x1 x=xn-1

f(x)

x

The rectangular rule can be made

more accurate by using

trapezoids to replace the

rectangles as shown. A linear

approximation of the function

locally sometimes work much

better than using the averaged

value like the rectangular rule

does.

1 1 2 1

1 1

() [() ()] [() ()] .. [() ()]
2 2 2

1 1
[() () .. () ()]
2 2

b

n
a

n

x x x
f x dx f a f x f x f x f x f b

x f a f x f x f b

−

−

∆ ∆ ∆
= + + + + + +

= ∆ + + +

∫

trapezoid()

// trapezoid() - Uses the Trapezoid rule to find

// the definite integral of f(x)

// Takes the bounds as parameters

// Uses f(x) that appears below.

float trapezoid(int lowBound, int hiBound){

int numDivisions = 4;

float x, increment, integral = 0.0;

increment = (float)(hiBound-lowBound)

/ (float) numDivisions;

x = lowBound;

// Add f(lowBound)/2 to the sum

integral = 0.5*f(x);

// Increment x to the next value,

// calculate f(x) and add it to the sum

for (int i = 1; i < numDivisions; i++) {

x += increment;

integral = integral + f(x);

}

// Add f(hiBound)/2

integral = integral + 0.5*f(hiBound);

// Multiply the sum by delta x

integral = integral /(float) numDivisions;

return (integral);

}

Simpson’s Rule

Still, the more accurate integration formula can be achieved by

approximating the local curve by a higher order function, such as

a quadratic polynomial. This leads to the Simpson’s rule and the

formula is given as:

1 2 3

2 2 2 1

() [() 4 () 2 () 4 () ..
3

..2 () 4 () ()]

b

a

m m

x
f x dx f a f x f x f x

f x f x f b
− −

∆
= + + + +

+ +

∫

It is to be noted that the total number of subdivisions has to be an

even number in order for the Simpson’s formula to work

properly.

Simpson's Rule – A Quadratic

Interpolation

simpson.c

#include <iostream>

using namespace std;

float f(float x);

float simpson(int lowBound, int hiBound);

// main() - Get inputted values for lower and upper

// bounds of integration, calls simpson()

// to use Simpson's rule for numerical

// integration and prints the result

int main(void){

int lowBound, hiBound;

float integral;

// Input the bounds

cout << "Enter lower bound\t?";

cin >> lowBound;

cout << "Enter upper bound\t?";

cin >> hiBound;

//Calls simpson and prints the integral

integral = simpson(lowBound, hiBound);

cout << "Integral is...." << integral;

return(0);

}

// simpson() - Uses Simpson's rule to find the

// definite integral of f(x)

// Takes the bounds as parameters

// Uses f(x) that appears below.

float simpson(int lowBound, int hiBound) {

int numDivisions = 4;

float x, increment, integral = 0.0;

increment = (float)(hiBound - lowBound)

/ (float) numDivisions;

x = lowBound;

// Adds f(lowBound)

integral = f(x);

// Increment x to the next value, calculate

// f(x)

// Add 4f(x) for even numbered values

// Add 2f(x) for odd numbered values

for (int i = 1; i < numDivisions; i++){

x += increment;

if (i % 2 == 1)

integral = integral + 4.0*f(x);

else

integral = integral + 2.0*f(x);

}

// Add f(hiBound)

integral = integral + f(hiBound);

// Multiply the sum by delta x/3

integral = integral * increment/3.0;

return (integral);

}

// f() - The function being integrated

// numerically

float f(float x){

return(x * x * x);

}

Examples
3

2
3 4 2 4 4

1
1

Integrate () between 1 and 2.

1 1
x dx= | (2 1) 3.75

4 4

2-1
Using 4 subdivisions for the numerical integration: x= 0.25

4

Rectangular rule:

f x x x x

x

= = =

= − =

∆ =

∫

i xi* f(xi*)

1 1.125 1.42

2 1.375 2.60

3 1.625 4.29

4 1.875 6.59

2
3

1

[(1.125) (1.375) (1.625) (1.875)]

0.25(14.9) 3.725

x dx

x f f f f= ∆ + + +

= =

∫

Trapezoidal Rule

i xi f(xi)

1 1

1 1.25 1.95

2 1.5 3.38

3 1.75 5.36

2 8

2
3

1

1 1
[(1) (1.25) (1.5) (1.75) (2)]
2 2

0.25(15.19) 3.80

x dx

x f f f f f= ∆ + + + +

= =

∫

Simpson’s Rule

2
3

1
[(1) 4 (1.25) 2 (1.5) 4 (1.75) (2)]

3

0.25
(45) 3.75 perfect estimation

3

x
x dx f f f f f

∆
= + + + +

= = ⇒

∫

Transforms

• Transform:
– In mathematics, a function that results when a

given function is multiplied by a so-called kernel
function, and the product is integrated between
suitable limits. (Britannica)

–� � = 	� � � � �, � ��
�
��

Kernel

Fourier Transform

• Property of transforms:

– They convert a function from one domain to

another with no loss of information

• Fourier Transform:

converts a function from the time (or spatial)

domain to the frequency domain

Time Domain and Frequency Domain

• Time Domain:

– Tells us how properties (air pressure in a sound function,
for example) change over time:

• Amplitude = 100

• Frequency = number of cycles in one second = 200 Hz

Time Domain and Frequency Domain

• Frequency domain:

– Tells us how properties (amplitudes) change over

frequencies:

Time Domain and Frequency Domain

• Example:

– Human ears do not hear wave-like oscilations, but
constant tone

• Often it is easier to work in the frequency
domain

Time Domain and Frequency Domain

• In 1807, Jean Baptiste Joseph Fourier showed

that any periodic signal could be represented

by a series of sinusoidal functions

Time Domain and Frequency Domain

Fourier Transform

• Because of the

property:

• Fourier Transform takes us to the frequency

domain:

Discrete Fourier Transform

• In practice, we often deal with discrete

functions (digital signals, for example)

• Discrete version of the Fourier Transform is

much more useful in computer science:

– � ≡	���/�

– �� =	∑ �� 	!
�"�
 �� , n = 0, 1, 2, … N-1

• Calculating all the values of the vector F

requires O(n²) time complexity

Effect of Sampling in Time and

Frequency

• By sampling in time, we get a periodic

spectrum with the sampling frequency fs. The

approximation of a Fourier transform by a

DFT is reasonable only if the frequency

components of x(t) are concentrated on a

smaller range than the Nyquist frequency fs/2

Dividing the Transform in 2

• � =	∑ ���# /�	!#
�"�
#��

• =

	∑ ��� (#)/�!# +	∑ ��� (#&�)/�!#&�

'
�
"�

#��

'
�
"�

#��

• =

∑ ��� #/(
'
�
)!# +	�

 ∑ ��� #/(
'
�
)!#&�

'
�
"�

#��

'
�
"�

#��

• =	�
(+	� 	�

)

This can be used recursively.

As We Continue To Divide…

• This works best if N=2n

• We re-order the elements in

the array.

– Let e = 0 and o = 1

– We reverse the bits

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Now, we combine them..

• We start with our Fourier transforms of length

one and we perform log2 N combinations

The Fast Fourier Transform

// Replaces data by its discrete Fourier transform

// if sign is input as 1.

// Replaces data by its inverse discrete Fourier

// transform is sign is input as -1.

// data is an array of complex values with the real

// component stored in data[2j] and the imaginary

// component stored in data[2j+1]

// nn MUST be a power of 2; it is NOT checked.

void four1(double data[], int nn, isign) {

int i, istep, j, m, mmax, n;

double tempi, tempr;

double theta, wi, wpi, wpr, wr, wtemp;

n = 2 * nn;

j = i

// Do the bit reversal

for (i = 1; i <= n; i+=2) {

if (j > i) {

// Swap 2 complex values

tempr = data[j];

tempi = data[j+1];

data[j] = data[i];

data[j+1] = data[i+1];

data[i] = tempr;

data[i+1] = tempi;

}

m = n/2;

while (m >= 2 && j > m) {

j = j - m;

m = m / 2;

}

j = j + m;

}

// Here is where we combine terms

// outer loop is performed log2 nn times

while (n > mmax) {

istep = 2 * mmax

//Initialize trig recurrence

theta = 2.0 * 3.141592653589/(isign*mmax);

wpr = 2 * pow(sin(0.5*theta), 2);

wpi = sin(theta);

wr = 1.0;

wi = 0.0;

// First of two nested loops

for (m = 1; m <= mmax; m +=2) {

//Second of two nested loops

for (i = m; i <= n; i +=istep) {

// We combine them here

j = i + mmax;

tempr = wr* data[j] - wi *data[j+1];

tempi = wr* data[j+1] + wi *data[j];

data[j] = data[i] _ tempr;

data[j+1] = data[i+1] - tempi;

data[i] = data[i] + tempr;

data[i+1] = data[i+1] + tempi;

}

// Trig recurrence

wtemp = wr;

wr = wr*wpr - wi*wpi + wr;

wi = wi*wpi + wtemp*wpi + wi;

}

max = istep;

}

}

Applications

• In image processing:

– Instead of time domain: spatial domain (normal

image space)

– frequency domain: space in which each image

value at image position F represents the amount

that the intensity values in image I vary over a

specific distance related to F

Applications: Frequency Domain In

Images

• If there is value 20 at the point

that represents the frequency 0.1

(or 1 period every 10 pixels). This

means that in the corresponding

spatial domain image I the

intensity values vary from dark to

light and back to dark over a

distance of 10 pixels, and that the

contrast between the lightest and

darkest is 40 gray levels

Applications: Frequency Domain In

Images

• Spatial frequency of an image refers to the rate

at which the pixel intensities change

• In picture on right:

– High frequences:

• Near center

– Low frequences:

• Corners

Applications: Image Filtering

