CSC 344 — Algorithms and
Complexity

Lecture #11 — Numerical
Computation, Numerical Integration
and the Fast Fourier Transform

Calculating e*

i

. X _ yo X _ x, x x
e = NPT =14+ S+ Tt Ty

e How do we write the function?

expl ()

double expl(int x) {
double sum = 0.0, term = 1.0;

int i;

for (i = 0; term >= sum/1l.0e7; i++)
term = power (x, 1i)/fact(i);
sum += term;

}

return sum;

}
* What wrong with this function?

exp3 ()

double exp3(int x) {
double sum = 1.0, term = 1.0;

int i;

for (i = 1; term >= sum/1l.0e7; i++)
term = term * x / (double)i;
sum += term;

}

return sum;

}
» Is this faster?

Numerical Integration

* In general, a numerical integration is the approximation
of a definite integration by a “weighted” sum of function
values at discretized points within the interval of
integration.

[/ Fodx =Y w)
i=0

where w; is the weighted factor depending on the integration
schemes used, and f'(x;) is the function value evaluated at the

given point x,

fx) Rectangular Rule
height=f{x,;*) height=f{x,*)

N\ /

Approximate the integration,
Lbf (x)dx , that is the area under
the curve by a series of
rectangles as shown.

The base of each of these
rectangles is Ax=(b-a)/n and
its height can be expressed as

x f(x;*) where x;* is the
r=d ‘\ /x=b

midpoint of each rectangle

J.b fX)dx =f (x*)Ax + f(x,®)Ax+.. f(x, *)Ax
= Ax[f () + f ")+ f(x,9)]

rect ()

// rect() - Uses the Rectangle's rule to find the

//
//
//

definite integral of f(x). Takes the
bounds as parameters

Uses f(x) that appears below.

float rect (int lowBound, int hiBound) {

int numDivisions = 4;

float x, increment, integral = 0.0;

// Get the increment and the midpoint of
//the first rectangle
increment = (float) (hiBound-lowBound)

/ (float) numDivisions;

x = lowBound + increment / 2.0;

// Calculate f£(x) and increment x to the
// next value
for (int i = 0; i < numDivisions; i++) {
integral = integral + f(x);
X += increment;

// Multiply the sum by delta x
integral = integral / (float) numDivisions;

return (integral);

fix)

Trapezoidal Rule

The rectangular rule can be made
more accurate by using
trapezoids to replace the
rectangles as shown. A linear
approximation of the function
locally sometimes work much
better than using the averaged
value like the rectangular rule
does.

J| FCodx =SE0 @+ £ 1+ S)+ Fln ot S5 (0 + £ 0]

=Ax{%f(a)+f(x1)+--f(xn,1)+%f(b)]

trapezoid()
// trapezoid() - Uses the Trapezoid rule to find
// the definite integral of £ (x)
// Takes the bounds as parameters
// Uses f(x) that appears below.

float trapezoid(int lowBound, int hiBound) {

int numDivisions = 4;
float x, increment, integral = 0.0;
increment = (float) (hiBound-lowBound)

/ (float) numDivisions;

x = lowBound;

// Add f (lowBound)/2 to the sum
integral = 0.5*f (x);

// Increment x to the next wvalue,

// calculate f(x) and add it to the sum

for (int i = 1; i < numDivisions; i++) {
X += increment;
integral = integral + f(x);

}

// Add £ (hiBound) /2

integral = integral + 0.5*f (hiBound);

// Multiply the sum by delta x
integral = integral /(float) numDivisions;

return (integral);

Simpson’s Rule

Still, the more accurate integration formula can be achieved by
approximating the local curve by a higher order function, such as
a quadratic polynomial. This leads to the Simpson’s rule and the
formula is given as:

[£ :%[f(a) FAF) 2 () AL (X)) +.
221 (xy0) 4 (X,) + f(D)]

It is to be noted that the total number of subdivisions has to be an
even number in order for the Simpson’s formula to work

properly.

Simpson's Rule — A Quadratic
Interpolation

A f(X)

Qe--------
= SUURURRE
Oe---------------

>
simpson.c
#include <iostream>
using namespace std;
float f(float x);
float simpson(int lowBound, int hiBound);
// main() - Get inputted values for lower and upper
// bounds of integration, calls simpson ()
// to use Simpson's rule for numerical

// integration and prints the result

int

main (void) {
int lowBound, hiBound;

float integral;

// Input the bounds
cout << "Enter lower bound\t?";

cin >> lowBound;

cout << "Enter upper bound\t?";

cin >> hiBound;

//Calls simpson and prints the integral
integral = simpson (lowBound, hiBound);
cout << "Integral is...." << integral;

return (0) ;

// simpson() - Uses Simpson's rule to find the

//
//
//
float

definite integral of f (x)
Takes the bounds as parameters
Uses f(x) that appears below.
simpson (int lowBound, int hiBound) {
int numDivisions = 4;

float x, increment, integral = 0.0;

increment = (float) (hiBound - lowBound)
/ (float) numDivisions;

x = lowBound;

// Adds £ (lowBound)
integral = f (x);

// Increment x to the next value, calculate
// £(x)
// Add 4f (x) for even numbered values
// Add 2f (x) for odd numbered values
for (int i = 1; i < numDivisions; i++) {

X += increment;

if (i $ 2 == 1)

integral = integral + 4.0*f(x);

else

integral = integral + 2.0*f(x);

// Add £ (hiBound)
integral = integral + f (hiBound);

// Multiply the sum by delta x/3
integral = integral * increment/3.0;
return (integral);

// £() - The function being integrated

numerically

float f(float x) {

return(x * x * x);

Examples

Integrate f(x) = x” between x =1 and x = 2.

j2x3dx=lx4 =Lt 19=375
1 47Ty

Using 4 subdivisions for the numerical integration: AX:ﬂ =0.25
Rectangular rule:
[xi* f(‘xi*) I2x3dx
1
1 1125 | 142 | _ A £(1.125)+ £(1.375)+ £(1.625)+ £(1.875)]
2 1375 1260 | —02514.9)=3725
3 1.625 4.29
4 1.875 16.59
Trapezoidal Rule
LS fix) sz3dx
1|1 1
1 1
111.25 |11.95 = AX[E S+ A25+ fA.5+ f(1.75) +Ef(2)]
2115 [3.38 =0.25(15.19) = 3.80
31175 |5.36
2 8

Simpson’s Rule

j12x3dx = %[f(1)+4f(1.25)+2f(1.5)+4f(1.75)+ £

0.25

= 3 (45) =3.75 = perfect estimation

Transforms

e Transform:

— In mathematics, a function that results when a
given function is multiplied by a so-called kernel
function, and the product is integrated between
suitable limits. (Britannica)

~G() = [FOOK (x,y)dx

Kernel

Fourier Transform

* Property of transforms:

— They convert a function from one domain to
another with no loss of information

e Fourier Transform:

1 oo -
F(w) = —— [()™t dt
AV 27 J—mo
converts a function from the time (or spatial)
domain to the frequency domain

Time Domain and Frequency Domain

¢ Time Domain:

— Tells us how properties (air pressure in a sound function,
for example) change over time:

100
50
0
—50 ,//
—100, > 4 5 3 10

Time {Msec)

FPressure

* Amplitude = 100
* Frequency = number of cycles in one second = 200 Hz

Time Domain and Frequency Domain

* Frequency domain:

— Tells us how properties (amplitudes) change over

frequencies:

100
B
= T
= 50
[N
= 25
=T

8.90 0.25 0.50 0.7% 1.0 1.25 1.50
Frequency {kHz]

Time Domain and Frequency Domain

* Example:

— Human ears do not hear wave-like oscilations, but
constant tone

hairs respond to high
frequencies

COCHLEA IN THE EAR

hairs respond to
low frequencies

* Often it is easier to work in the frequency
domain

Time Domain and Frequency Domain

* In 1807, Jean Baptiste Joseph Fourier showed
that any periodic signal could be represented
by a series of sinusoidal functions

Time Domain and Frequency Domain

Time Domain Waveform Frequency Domain

1.2

1.0

Fracuency Axs

Time Domain

Fourier Transform

° Because Of the _ EULER's FORMULA
e"a = cos 8+ i sin @
property: ot
e = cos wt + i1 sin wt

where i = ."—1

* Fourier Transform takes us to the frequency
domain: y"

—iwt
Flw) = f(t)e dt
- \ sinusoidally varying
“basis” function for the
expansion
the Fourier .
transform: scale factor for the Fourier
strength of Transform F{w); the
frequency w original signal in the time

contained in f{t) domain; the “inverse
Fourier transform”.

Discrete Fourier Transform

 In practice, we often deal with discrete
functions (digital signals, for example)

* Discrete version of the Fourier Transform is
much more useful in computer science:
—W = eZTL’i/N
—FE, = YN gW™ f,,n1=0,1,2,...N-1
 Calculating all the values of the vector F
requires O(n?) time complexity

Effect of Sampling in Time and
Frequency

* By sampling in time, we get a periodic
spectrum with the sampling frequency f.. The
approximation of a Fourier transform by a
DFT is reasonable only if the frequency
components of x(t) are concentrated on a
smaller range than the Nyquist frequency f,/2

Dividing the Transform in 2

. [— VN-1_2mijk/N
F = X5 e? kN f

v N

—1 , , —1 , .

2 2mik(2j)/N 2 2mik(2j+1)/N
Lige CHINE i+ X2, e HETDINE .

E—l ik /(N) E—l ik /(N)
2 2mikj /(= k 2 2Tikj /(=
j=0 e 2 f2j + W j=0 e 2 f2j+1

= F{+ WEF
This can be used recursively.

As We Continue To Divide...

 This works best if N=2" o0 o0
. 001 001

* We re-order the elements in /
010 010

the array.

011 011
—Lete=0ando =1 . .
— We reverse the bits o1 o1
110 \ 110
11 11

Now, we combine them..

* We start with our Fourier transforms of length
one and we perform log, N combinations

The Fast Fourier Transform

// Replaces data by its discrete Fourier transform
// if sign is input as 1.

// Replaces data by its inverse discrete Fourier

// transform is sign is input as -1.

// data is an array of complex values with the real
// component stored in data[2j] and the imaginary
// component stored in data[2j+1]

// nn MUST be a power of 2; it is NOT checked.

void fourl (double data[], int nn, isign) {

int i, istep, j, m, mmax, n;

double tempi, tempr;
double theta, wi, wpi, wpr, wr, wtemp;
n =2 * nn;

j=i

// Do the bit reversal
for (i = 1; i <= n; i+=2) {
if (3 > i) {

// Swap 2 complex values
tempr = datalj];
tempi = data[j+1];
datal[j] datal[i];
data[j+1] = data[i+1];
data[i] = tempr;
data[i+l] = tempi;

m = n/2;

while (m >= 2 && j > m) {
j=3-m
m=m/ 2;

j o+ m;

.
1

// Here is where we combine terms
// outer loop is performed log2 nn times
while (n > mmax) {

istep = 2 * mmax

//Initialize trig recurrence

theta = 2.0 * 3.141592653589/ (isign*mmax) ;

wpr = 2 * pow(sin(0.5*theta), 2);
wpi = sin(theta);

wr = 1.0;

wi = 0.0;

// First of two nested loops
for (m = 1; m <= mmax; m +=2) {
//Second of two nested loops
for (i =m; i <= n; i +=istep) {
// We combine them here
j = i + mmax;
tempr = wr* data[j] - wi *data[j+1];
tempi = wr* data[j+1l] + wi *datal[j];
data[]j] = data[i] _ tempr;
data[j+1] = data[i+l] - tempi;
data[i] = data[i] + tempr;
data[i+l] = data[i+l] + tempi;

// Trig recurrence

wtemp = wr;

Wr = wr*wpr — wi*wpi + wr;

wi = wi*wpi + wtemp*wpi + wi;
}

max = istep;

Applications

* In image processing:
— Instead of time domain: spatial domain (normal
1mage space)
— frequency domain: space in which each image
value at image position F represents the amount

that the intensity values in image I vary over a
specific distance related to F

Applications: Frequency Domain In
Images

» If there is value 20 at the point
that represents the frequency 0.1

(or 1 period every 10 pixels). This

ol Lol

means that in the corresponding
spatial domain image I the
intensity values vary from dark to

light and back to dark over a

distance of 10 pixels, and that the o 1
contrast between the lightest and

darkest is 40 gray levels

Applications: Frequency Domain In
Images

 Spatial frequency of an image refers to the rate
at which the pixel intensities change

* In picture on right:
— High frequences:
* Near center

— Low frequences:
* Corners

Applications: Image Filtering

Free Hand Filter

Specimen Image Power Spectrum Reconstructed Image

Figure 1

