
CSC 344 – Algorithms and 

Complexity

Lecture #11  – Numerical 

Computation, Numerical Integration 

and the Fast Fourier Transform
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• How do we write the function?



exp1()

double  exp1(int x)     {

double sum = 0.0, term  = 1.0;

int i;

for (i = 0;  term >= sum/1.0e7; i++)    {

term = power(x, i)/fact(i);

sum += term;

}

return sum;

}

• What wrong with this function?

exp3()

double  exp3(int x)     {

double sum = 1.0, term  = 1.0;

int i;

for (i = 1;  term >= sum/1.0e7; i++)    {

term = term * x / (double)i;

sum += term;

}

return sum;

}

• Is this faster?



Numerical Integration

• In general, a numerical integration is the approximation 

of a definite integration by a “weighted” sum of function 

values at discretized points within the interval of 

integration.
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where  is the weighted factor depending on the integration
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Rectangular Rule

x=a x=b

Approximate the integration, 

, that is the area under 

the curve by a series of 

rectangles as shown.

The base of each of these 

rectangles is ∆x=(b-a)/n and 

its height can be expressed as 

f(xi*) where xi* is the 

midpoint of each rectangle
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rect()

// rect() - Uses the Rectangle's rule to find the 

// definite integral of f(x).  Takes the

// bounds as parameters

// Uses f(x) that appears below.

float rect(int lowBound, int hiBound){

int numDivisions = 4;

float x, increment, integral = 0.0;

// Get the increment and the midpoint of

//the first rectangle

increment = (float)(hiBound-lowBound) 

/ (float) numDivisions;

x = lowBound + increment / 2.0;

// Calculate f(x) and increment x to the 

// next value

for (int i = 0; i < numDivisions; i++){

integral = integral + f(x);

x += increment;

}

// Multiply the sum by delta x

integral = integral / (float) numDivisions;

return (integral);

}



Trapezoidal Rule

x=a x=b

x=x1 x=xn-1

f(x)

x

The rectangular rule can be made 

more accurate by using 

trapezoids to replace the 

rectangles as shown.  A linear 

approximation of the function 

locally sometimes work much 

better than using the averaged 

value like the rectangular rule 

does.
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trapezoid()

// trapezoid() - Uses the Trapezoid rule to find

// the definite integral of f(x)

// Takes the bounds as parameters

// Uses f(x) that appears below.

float trapezoid(int lowBound, int hiBound){

int numDivisions = 4;

float x, increment, integral = 0.0;

increment = (float)(hiBound-lowBound)

/ (float) numDivisions;

x = lowBound;

// Add f(lowBound)/2 to the sum

integral = 0.5*f(x);



// Increment x to the next value,

// calculate f(x) and add it to the sum

for (int i = 1; i < numDivisions; i++) {

x += increment;

integral = integral + f(x);

}

// Add f(hiBound)/2

integral = integral + 0.5*f(hiBound);

// Multiply the sum by delta x

integral = integral /(float) numDivisions;

return (integral);

}

Simpson’s Rule

Still, the more accurate integration formula can be achieved by 

approximating the local curve by a higher order function, such as 

a quadratic polynomial.  This leads to the Simpson’s rule and the 

formula is given as:
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It is to be noted that the total number of subdivisions has to be an 

even number in order for the Simpson’s formula to work 

properly.



Simpson's Rule – A Quadratic 

Interpolation

simpson.c

#include <iostream>

using namespace std;

float f(float x);

float simpson(int lowBound, int hiBound);

// main() - Get inputted values for lower and upper

// bounds of integration, calls simpson()

// to use Simpson's rule for numerical

// integration and prints the result



int main(void){

int lowBound, hiBound;

float integral;

// Input the bounds

cout << "Enter lower bound\t?";

cin >> lowBound;

cout << "Enter upper bound\t?";

cin >> hiBound;

//Calls simpson and prints the integral

integral = simpson(lowBound, hiBound);

cout << "Integral is...." << integral;

return(0);

}

// simpson() - Uses Simpson's rule to find the 

// definite integral of f(x)

// Takes the bounds as parameters

// Uses f(x) that appears below.

float simpson(int lowBound, int hiBound) {

int numDivisions = 4;

float x, increment, integral = 0.0;

increment = (float)(hiBound - lowBound)

/ (float) numDivisions;

x = lowBound;

// Adds f(lowBound)

integral = f(x);



// Increment x to the next value, calculate

// f(x)

// Add 4f(x) for even numbered values

// Add 2f(x) for odd numbered values

for (int i = 1; i < numDivisions; i++){

x += increment;

if (i % 2 == 1)

integral = integral + 4.0*f(x);

else

integral = integral + 2.0*f(x);

}

// Add f(hiBound)

integral = integral + f(hiBound);

// Multiply the sum by delta x/3

integral = integral * increment/3.0;

return (integral);

}

// f() - The function being integrated

// numerically

float f(float x){

return(x * x * x);

}
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i xi* f(xi*)

1 1.125 1.42

2 1.375 2.60

3 1.625 4.29
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Trapezoidal Rule
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Transforms

• Transform:
– In mathematics, a function that results when a 

given function is multiplied by a so-called kernel 
function, and the product is integrated between 
suitable limits. (Britannica)
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Fourier Transform

• Property of transforms:

– They convert a function from one domain to 

another with no loss of information

• Fourier Transform:

converts a function from the time (or spatial) 

domain to the frequency domain



Time Domain and Frequency Domain

• Time Domain:

– Tells us how properties (air pressure in a sound function, 
for example) change over time:

• Amplitude = 100

• Frequency = number of cycles in one second = 200 Hz

Time Domain and Frequency Domain

• Frequency domain:

– Tells us how properties (amplitudes) change over 

frequencies:



Time Domain and Frequency Domain

• Example:

– Human ears do not hear wave-like oscilations, but 
constant tone

• Often it is easier to work in the frequency 
domain

Time Domain and Frequency Domain

• In 1807, Jean Baptiste Joseph Fourier showed 

that any periodic signal could be represented 

by a series of sinusoidal functions



Time Domain and Frequency Domain

Fourier Transform

• Because of the 

property:

• Fourier Transform takes us to the frequency 

domain:



Discrete Fourier Transform

• In practice, we often deal with discrete 

functions (digital signals, for example)

• Discrete version of the Fourier Transform is 

much more useful in computer science:
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• Calculating all the values of the vector F 

requires O(n²) time complexity

Effect of Sampling in Time and 

Frequency

• By sampling in time, we get a periodic 

spectrum with the sampling frequency fs. The 

approximation of a Fourier transform by a 

DFT is reasonable only if the frequency 

components of x(t) are concentrated on a 

smaller range than the Nyquist frequency fs/2



Dividing the Transform in 2
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This can be used recursively.

As We Continue To Divide…

• This works best if N=2n

• We re-order the elements in 

the array.

– Let e = 0 and o = 1

– We reverse the bits
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Now, we combine them..

• We start with our Fourier transforms of length 

one and we perform log2 N combinations

The Fast Fourier Transform

//  Replaces data by its discrete Fourier transform

//  if sign is input as 1.

//  Replaces data by its inverse discrete Fourier

//  transform is sign is input as -1.

//  data is an array of complex values with the real

//  component stored in data[2j] and the imaginary 

//  component stored in data[2j+1]

//  nn MUST be a power of 2; it is NOT checked.

void four1(double data[], int nn, isign) {

int i, istep, j, m, mmax, n;

double tempi, tempr;

double theta, wi, wpi, wpr, wr, wtemp;

n = 2 * nn;

j = i



// Do the bit reversal

for (i = 1; i <= n; i+=2) {

if (j > i) {

// Swap 2 complex values

tempr = data[j];

tempi = data[j+1];

data[j] = data[i];

data[j+1] = data[i+1];

data[i] = tempr;

data[i+1] = tempi;

}

m = n/2;

while (m >= 2 && j > m) {

j = j - m;

m = m / 2;

}

j = j + m;

}

// Here is where we combine terms

//  outer loop is performed log2 nn times

while (n > mmax) {

istep = 2 * mmax

//Initialize trig recurrence

theta = 2.0 * 3.141592653589/(isign*mmax);

wpr = 2 * pow(sin(0.5*theta), 2);

wpi = sin(theta);

wr = 1.0;

wi = 0.0;



// First of two nested loops

for (m = 1;  m <= mmax; m +=2) {

//Second of two nested loops

for (i = m; i <= n;  i +=istep) {

// We combine them here

j = i + mmax;

tempr = wr* data[j] - wi *data[j+1];

tempi = wr* data[j+1] + wi *data[j];

data[j] = data[i] _ tempr;

data[j+1] = data[i+1] - tempi;

data[i] = data[i] + tempr;

data[i+1] = data[i+1] + tempi;

}

// Trig recurrence

wtemp = wr;

wr = wr*wpr - wi*wpi + wr;

wi = wi*wpi + wtemp*wpi + wi;

}

max = istep;

}

}



Applications

• In image processing:

– Instead of time domain: spatial domain (normal 

image space)

– frequency domain: space in which each image 

value at image position F represents the amount 

that the intensity values in image I vary over a 

specific distance related to F 

Applications: Frequency Domain In 

Images

• If there is value 20 at the point 

that represents the frequency 0.1 

(or 1 period every 10 pixels). This 

means that in the corresponding 

spatial domain image I the 

intensity values vary from dark to 

light and back to dark over a 

distance of 10 pixels, and that the 

contrast between the lightest and 

darkest is 40 gray levels 



Applications: Frequency Domain In 

Images

• Spatial frequency of an image refers to the rate 

at which the pixel intensities change

• In picture on right:

– High frequences:

• Near center

– Low frequences:

• Corners

Applications: Image Filtering


