
5/4/2016

1

CSC 344 – Algorithms and

Complexity

Lecture #10 – Recurrences

Recurrence Relations

• Overview

– Connection to recursive algorithms

• Techniques for solving them

– Methods for generating a guess

– Induction proofs

– Master Theorem

5/4/2016

2

Recursion and Mathematical

Induction

In both, we have general and boundary conditions:

The general conditions break the problem into smaller

and smaller pieces.

The initial or boundary condition(s) terminate the

recursion.

Both take a Divide and Conquer approach to solving

mathematical problems.

The Towers of Hanoi

5/4/2016

3

What if we knew we could solve

part of the problem?

Assume we can move k (in this case, 4) different rings

Can we do one better?

5/4/2016

4

Solved for one more!

Where do recurrence relations come

from?

• Analysis of a divide and conquer algorithm

– Towers of Hanoi, Merge Sort, Binary Search

• Analysis of a combinatorial object

• This is the key analysis step I want you to

master

• Use small cases to check correctness of

your recurrence relation

5/4/2016

5

Recurrence Relations

• Overview

– Connection to recursive algorithms

• Techniques for solving them

– Methods for generating a guess

– Induction proofs

– Master Theorem

Solving Recurrence Relations

• No general, automatic procedure for solving
recurrence relations is known.

• There are methods for solving specific forms of
recurrences

5/4/2016

6

Some Solution Techniques

• Guess a solution and prove by induction.

– Extrapolate from small values

– Try back-substituting

– Draw a recursion tree

• Master Theorem

– Quick solutions for many simple recurrences

Extrapolate from small values

Example: Tn = 2Tn-1 + 1 ; T0 = 0

n = 0 1 2 3 4 5 6 7

Tn=

• Guess:

5/4/2016

7

Back-substitution or Unrolling

Tn = 2Tn-1 + 1 ; T0 = 0

Tn = 2(2Tn-2 + 1) + 1

= 4Tn-2 + 2 + 1

Tn = 4(2Tn-3 + 1) + 2 + 1

= 8Tn-3 + 4 + 2 + 1

Tn = 8(2Tn-4 + 1) + 4 + 2 + 1

= 16Tn-4 + 8 + 4 + 2 + 1

Guess:

Recursion Trees

Tn = 2 Tn-1 + 1 , T0 = 0

Tn

Tn-1 Tn-1

Tn-2 Tn-2 Tn-2 Tn-2

1

1 1

1 1 1 1

1

2

4

Guess:

5/4/2016

8

Extrapolate from small values

Example: T(n) = 3T(n/4) + n, T(0) = 0

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

T(n)=

n = 0 1 4 16 64 256 1024

T(n)=

Guess:

Back-substitution or unrolling

T(n) = 3T(n/4) + n, T(0) = 0

≤ 3(3T(n/16)+ n/4) + n

= 9T(n/16) + 3n/4 + n

= 9(3T(n/64) + n/16) + 3n/4 + n

= 27T(n/64) +9n/16 + 3n/4 + n

Guess:

5/4/2016

9

Recursion Trees

Tn = 3Tn/4 + n, T0 = 0

Guess:

Tn

Tn/4

Tn/16 Tn/16Tn/16

Tn/4

Tn/16 Tn/16Tn/16

Tn/4

Tn/16 Tn/16Tn/16

n

n/4

n/16 n/16n/16

n/4

n/16 n/16n/16

n/4

n/16 n/16n/16

n

3n/4

9n/16

Third Example

Example: Tn = 2 Tn/2 + n2 , T0 = 0

•Generate a potential solution using the 3 different

techniques

5/4/2016

10

Extrapolate from small values

Example: Tn = 2 Tn/2 + n2 , T0 = 0

n = 0 1 2 4 8 16 32

T(n)= 0 1 6 28 120 496 2016

n = 64 128 256

T(n)= 8128 32640 130816

Guess: ??

Extrapolate from small values

n Tn Tn (factored)

0 0 0·0

1 1 1·1

2 6 3·2

4 28 7·4

8 120 15·8

16 496 31·16

32 2016 63·32

64 8128 127·64

128 32640 255·128

Guess: (2n-1)n

5/4/2016

11

Third Example from Substitution

• T1 = 2T0 + 12 = 2(0) + 1 = 1 = 1·1

• T2 = 2(T1) + 22 = 2(1) + 4 = 6 = 3·2

• T4 = 2(6) + 42 = 12 + 16 = 28 = 7·4

• T8 = 2(T4) + 82 = 2(28) + 64 = 120 = 15·8

• T16 = 2(T8) + 162 = 2(120) + 256

= 496 = 31·16

• T32 = 2(T16) + 322 = 2(496) + 1024

= 2016 = 63·32

• T64 = 2(T32) + 642 = 2(2016) + 4096

= 8128 = 127 ·64

Example: D&C into variable sized

pieces

T(n) = T(n/3) + T(2n/3) + n

T(1) = 1

Generate a potential solution for T(n) using the

methods we have discussed.

5/4/2016

12

Recurrence Relations

• Overview

– Connection to recursive algorithms

• Techniques for solving them

– Methods for generating a guess

– Induction proofs

– Master Theorem

Induction Proof

Tn = 2Tn-1 + 1 ; T0 = 0

Prove: Tn = 2n - 1 by induction:

1. Base Case: n=0: T0 = 20 - 1 = 0

2. Inductive Hypothesis (IH): Tn = 2n – 1 for n ≥ 0

3. Inductive Step: Show Tn+1 = 2n+1 – 1 for n ≥ 0

Tn+1 = 2Tn + 1

= 2 (2n - 1) + 1 (applying IH)

= 2n+1 -1

5/4/2016

13

Merge sort analysis

Mergesort(array)

n = size(array)

if (n = = 1) return array

array1 = Mergesort(array[1 .. n/2])

array2 = Mergesort(array[n/2 + 1 .. n])

return Merge(array1, array2)

Develop a recurrence relation:

Problem: Merge Sort

• Merge sort breaking array into 3 pieces

– What is a recurrence relation?

– What is a solution?

– How does this compare to breaking into 2

pieces?

5/4/2016

14

Merge Sort Induction Proof

Prove that T(n) = 2T(n/2) + n , T(1) = 1 is O(n lg n).

Prove that T(n) ≤ c n lg n , for all n greater than some value.

Base cases: why not T(1)?

T(2) = 4 ≤ c 2 lg 2

T(3) = 5 ≤ c 3 lg 3

c ≥ 2 suffices

Inductive Hypothesis: T(n/2) ≤ c (n/2) lg (n/2) for n ≥ ?

Inductive Step: Show that T(n) ≤ c n lg n for n ≥ ?

Induction Step

Given : T(n/2) ≤ c (n/2) lg (n/2)

T(n) = 2T(n/2) + n

≤ 2(c(n/2) log (n/2)) + n (applying IH)

≤ 2(c(n/2) log (n/2)) + n (dropping floors makes it bigger!)

= c n lg(n/2) + n

= c n (lg(n) - lg(2)) + n

= c n lg(n) - c n + n (lg 2 = 1)

= c n lg(n) - (c - 1) n

< c n lg(n) (c > 1)

5/4/2016

15

Recurrence Relations

• Overview

– Connection to recursive algorithms

• Techniques for solving them

– Methods for generating a guess

– Induction proofs

– Master Theorem

Master Theorem

• T(n) = a T(n/b) + f(n)

– Ignore floors and ceilings for n/b

– constants a ≥ 1 and b > 1

– f(n) any function

• If f(n) = O(nlog_b a-ε) for constant ε>0, T(n) = Θ(nlog_b a)

• If f(n) = Θ(nlog_b a), T(n) = Θ(nlog_b a lg n)

• If f(n) = Ω(nlog_b a+ε) for some constant ε >0, and if a f(n/b)
≤ c f(n) for some constant c < 1 and all sufficiently large n,
T(n) = Θ(f(n)).

• Key idea: Compare nlog_b a with f(n)

5/4/2016

16

Master Theorem

• The master theorem concerns recurrence relations

of the form:

– T(n) = aT(n/b) + f(n) , where a ≥ 1, b > 1

– In the application to the analysis of a recursive

algorithm, the constants and function take on the

following significance:

• n is the size of the problem.

• a is the number of subproblems in the recursion.

• n/b is the size of each subproblem. (Here it is assumed that all

subproblems are essentially the same size.)

• f (n) is the cost of the work done outside the recursive calls,

which includes the cost of dividing the problem and the cost of

merging the solutions to the subproblems.

Applying Master Theorem

• Case 1 – Generic form

If f(n) ∈ O(nc), where c < logb n

T(n) ∈ Θ(nlog
b
a)

5/4/2016

17

Master Theorem Case 1 - Example

• T(n) = 8T(n/2) + 1000n2

a = 8, b = 2, f(n) = 1000n2

• so

T(n) ∈ Θ(nc), where c = 2

• Do we satisfy the condition of case 1?

logba = log28 = 3 > c? We do!!

• T(n) ∈ Θ(nlog
b
a) = Θ(n3)

• We find that T(n) = 1001n3 – 1000n2, if T(1) = 1

Applying Master Theorem

• Case 2 - Generic Form

• If for k ≥ 0:

f(n) ∈ Θ(nclogkn) where c = logba

then

T(n) ∈ Θ(nc logk+1 n)

• T(n) ∈ Θ(nlog
b
a logk+1n) = Θ(n1log1n) = Θ(n log n)

5/4/2016

18

Master Theorem Case 2 - Example

• T(n) = 2T(n/2) + 10n

• We find that

a = 2, b = 2, c = 1, f(n) = 10n

so

f(n) = Θ(nc logk n), where c = 1, k = 0

• Do we satisfy the Case 2 condition?

logba = log22 = 1, and therefore c = logba Yes!!

• T(n) = Θ(nlog
b
a logk+1 n)

= Θ(n1 log1 n) = Θ(n log n)

Master Theorem Case 2 - Example

• T(n) is in Θ(n log n)

and we know that T(1) = 1, therefore

• T(n) = n + 10n log2 n

5/4/2016

19

Applying Master Theorem

• Case 3 - Generic Form

• If f(n) ∈ Ω(nc) where c > logba

and if

af(n/b) ≤ k f(n)

where k < 1 and n is sufficiently large

(called the regularity condition)

then

T(n) ∈ Θ(f(n))

Master Theorem Case 3 - Example

• T(n) = 2T(n/2) + n2

• We find that

a = 2, b = 2, f(n) = n2

so

f(n) = Ω(nc), where c = 2

• Do we satisfy the Case 3 condition?

logba = log22 = 1, and therefore c > logba Yes!!

• The regularity condition is met:

2(n2/4)) ≤ k n2

5/4/2016

20

Master Theorem Case 2 - Example

• T(n) = Θ(f(n)) = Θ(n2)

and we know that T(1) = 1, therefore

• T(n) = 2n2 - n

Inadmissible Equations

• T(n) = 2nT(n/2) + nn

– a is not constant

• T(n) = 2T(n/2) + n/log n

– f(n)/nlog
b
a must be a polynomial

• T(n) = 0.5T(n/2) + n

– a cannot be less than one

• T(n) = 64T(n/8) - n2 log n

– f(n) must be positive

• T(n) = T(n/2) + n (2-cos n)

– It’s case 3 but there is a regularity violation

