CSC 344 – Algorithms and Complexity

Lecture #10 – Recurrences

Recurrence Relations

- Overview
 - Connection to recursive algorithms
- Techniques for solving them
 - Methods for generating a guess
 - Induction proofs
 - Master Theorem

Recursion *and* Mathematical Induction

In both, we have general and boundary conditions:

The **general** conditions break the problem into smaller and smaller pieces.

The **initial** or **boundary** condition(s) terminate the recursion.

Both take a **Divide and Conquer** approach to solving mathematical problems.

Recurrence Relations

- Overview
 - Connection to recursive algorithms
- Techniques for solving them
 - Methods for generating a guess
 - Induction proofs
 - Master Theorem

Some Solution Techniques

• Guess a solution and prove by induction.

- Extrapolate from small values
- Try back-substituting
- Draw a recursion tree
- Master Theorem
 - Quick solutions for many simple recurrences

Example: $T_n = 2T_{n-1} + 1$; $T_0 = 0$

n = 0 1 2 3 4 5 6 7 $T_n =$

• Guess:

Back-substitution or Unrolling

$$\begin{split} T_n &= 2T_{n-1} + 1 \; ; \; T_0 = 0 \\ T_n &= 2(2T_{n-2} + 1) + 1 \\ &= 4T_{n-2} + 2 + 1 \\ T_n &= 4(2T_{n-3} + 1) + 2 + 1 \\ &= 8T_{n-3} + 4 + 2 + 1 \\ T_n &= 8(2T_{n-4} + 1) + 4 + 2 + 1 \\ &= 16T_{n-4} + 8 + 4 + 2 + 1 \\ \end{split}$$

Extrapolate from small values $Example: T(n) = 3T(\lfloor n/4 \rfloor) + n, T(0) = 0$ $n = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13$ T(n) = $n = 0 \ 1 \ 4 \ 16 \ 64 \ 256 \ 1024$ T(n) =Guess:

Extrapolate from small values $Example: T_n = 2 T_{n/2} + n^2, T_0 = 0$ n = 0 1 2 4 8 16 32 T(n) = 0 1 6 28 120 496 2016 n = 64 128 256 T(n) = 8128 32640 130816Guess: ??

Extrapolate from small values			
0	0	0.0	
1	1	1.1	
2	6	3.2	
4	28	7.4	
8	120	15.8	
16	496	31.16	
32	2016	63.32	
64	8128	127.64	
128	32640	255.128	

Example: D&C into variable sized pieces

T(n) = T(n/3) + T(2n/3) + nT(1) = 1

Generate a potential solution for T(n) using the methods we have discussed.

Recurrence Relations

- Overview
 - Connection to recursive algorithms
- Techniques for solving them
 - Methods for generating a guess
 - Induction proofs
 - Master Theorem

Induction Proof

 $T_n = 2T_{n-1} + 1$; $T_0 = 0$

Prove: $T_n = 2^n - 1$ by induction: 1. Base Case: n=0: $T_0 = 2^0 - 1 = 0$ 2. Inductive Hypothesis (IH): $T_n = 2^n - 1$ for $n \ge 0$ 3. Inductive Step: Show $T_{n+1} = 2^{n+1} - 1$ for $n \ge 0$ $T_{n+1} = 2T_n + 1$ $= 2(2^n - 1) + 1$ (applying IH) $= 2^{n+1} - 1$

Merge sort analysis

Mergesort(array) n = size(array) if (n = = 1) return array array1 = Mergesort(array[1 .. n/2]) array2 = Mergesort(array[n/2 + 1 .. n]) return Merge(array1, array2)

Develop a recurrence relation:

Recurrence Relations

- Overview
 - Connection to recursive algorithms
- Techniques for solving them
 - Methods for generating a guess
 - Induction proofs
 - Master Theorem

Master Theorem

- T(n) = a T(n/b) + f(n)
 - Ignore floors and ceilings for n/b
 - constants $a \ge 1$ and b > 1
 - f(n) any function
- If $f(n) = O(n^{\log_{b} a \cdot \epsilon})$ for constant $\epsilon > 0$, $T(n) = \Theta(n^{\log_{b} a})$
- If $f(n) = \Theta(n^{\log_b a})$, $T(n) = \Theta(n^{\log_b a} \lg n)$
- If f(n) = Ω(n^{log_b} a+ε) for some constant ε >0, and if a f(n/b) ≤ c f(n) for some constant c < 1 and all sufficiently large n, T(n) = Θ(f(n)).
- Key idea: Compare $n^{\log_b a}$ with f(n)

Master Theorem

- The master theorem concerns recurrence relations of the form:
 - T(n) = aT(n/b) + f(n), where $a \ge 1, b > 1$
 - In the application to the analysis of a recursive algorithm, the constants and function take on the following significance:
 - n is the size of the problem.
 - a is the number of subproblems in the recursion.
 - n/b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the same size.)
 - f (n) is the cost of the work done outside the recursive calls, which includes the cost of dividing the problem and the cost of merging the solutions to the subproblems.

Master Theorem Case 2 - Example

- T(n) = Θ(f(n)) = Θ(n²)
 and we know that T(1) = 1, therefore
- $T(n) = 2n^2 n$

