CSC 344 - Algorithms and Complexity

Lecture \#10 - Recurrences

Recurrence Relations

- Overview
- Connection to recursive algorithms
- Techniques for solving them
- Methods for generating a guess
- Induction proofs
- Master Theorem

Recursion and Mathematical Induction

In both, we have general and boundary conditions:
The general conditions break the problem into smaller and smaller pieces.

The initial or boundary condition(s) terminate the recursion.

Both take a Divide and Conquer approach to solving mathematical problems.

The Towers of Hanoi

What if we knew we could solve part of the problem?

Assume we can move k (in this case, 4) different rings

Can we do one better?

Solved for one more!

Ind ||

Where do recurrence relations come

 from?- Analysis of a divide and conquer algorithm
- Towers of Hanoi, Merge Sort, Binary Search
- Analysis of a combinatorial object
- This is the key analysis step I want you to master
- Use small cases to check correctness of your recurrence relation

Recurrence Relations

- Overview
- Connection to recursive algorithms
- Techniques for solving them
- Methods for generating a guess
- Induction proofs
- Master Theorem

Solving Recurrence Relations

- No general, automatic procedure for solving recurrence relations is known.
- There are methods for solving specific forms of recurrences

Some Solution Techniques

- Guess a solution and prove by induction.
- Extrapolate from small values
- Try back-substituting
- Draw a recursion tree
- Master Theorem
- Quick solutions for many simple recurrences

Extrapolate from small values

Example: $\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1 ; \mathrm{T}_{0}=0$
$\mathrm{n}=\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
$\mathrm{T}_{\mathrm{n}}=$

- Guess:

Back-substitution or Unrolling

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}} & =2 \mathrm{~T}_{\mathrm{n}-1}+1 ; \mathrm{T}_{0}=0 \\
\mathrm{~T}_{\mathrm{n}} & =2\left(2 \mathrm{~T}_{\mathrm{n}-2}+1\right)+1 \\
& =4 \mathrm{~T}_{\mathrm{n}-2}+2+1 \\
\mathrm{~T}_{\mathrm{n}} & =4\left(2 \mathrm{~T}_{\mathrm{n}-3}+1\right)+2+1 \\
& =8 \mathrm{~T}_{\mathrm{n}-3}+4+2+1 \\
\mathrm{~T}_{\mathrm{n}} & =8\left(2 \mathrm{~T}_{\mathrm{n}-4}+1\right)+4+2+1 \\
& =16 \mathrm{~T}_{\mathrm{n}-4}+8+4+2+1
\end{aligned}
$$

Guess:

Recursion Trees

$$
\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1, \mathrm{~T}_{0}=0
$$

Guess:

Extrapolate from small values

$$
\begin{aligned}
& \text { Example: } \mathrm{T}(n)=3 \mathrm{~T}(\lfloor n / 4\rfloor)+n, \mathrm{~T}(0)=0 \\
& \mathrm{n}=\begin{array}{llllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\mathrm{~T}(\mathrm{n}) & = \\
\mathrm{n} & =0 & 1 & 4 & 16 & 64 & 256 & 1024 \\
\mathrm{~T}(\mathrm{n}) & =
\end{array}
\end{aligned}
$$

Guess:

Back-substitution or unrolling

$$
\begin{aligned}
\mathrm{T}(n) & =3 \mathrm{~T}(\lfloor n / 4\rfloor)+n, \mathrm{~T}(0)=0 \\
& \leq 3(3 \mathrm{~T}(n / 16)+n / 4)+n \\
& =9 \mathrm{~T}(n / 16)+3 n / 4+n \\
& =9(3 \mathrm{~T}(n / 64)+n / 16)+3 n / 4+n \\
& =27 \mathrm{~T}(n / 64)+9 n / 16+3 n / 4+n
\end{aligned}
$$

Guess:

Recursion Trees

Guess:

Third Example

Example: $\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n} / 2}+\mathrm{n}^{2}, \mathrm{~T}_{0}=0$
-Generate a potential solution using the 3 different techniques

Extrapolate from small values

$$
\begin{aligned}
& \text { Example: } \mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n} / 2}+\mathrm{n}^{2}, \mathrm{~T}_{0}=0 \\
& \mathrm{n}=\begin{array}{llrrrrr}
0 & 1 & 2 & 4 & 8 & 16 & 32 \\
\mathrm{~T}(\mathrm{n}) & =0 & 1 & 6 & 28 & 120 & 496 \\
2016 \\
\mathrm{n} & = & 64 & 128 & 256 \\
\mathrm{~T}(\mathrm{n}) & =8128 & 32640 & 130816
\end{array}
\end{aligned}
$$

Guess: ??

Extrapolate from small values

n	T_{n}	T_{n} (factored)	
0	0	$0 \cdot 0$	
1	1	$1 \cdot 1$	
2	6	$3 \cdot 2$	
4	28	$7 \cdot 4$	
8	120	$15 \cdot 8$	
16	496	$31 \cdot 16$	
32	2016	$63 \cdot 32$	
64	8128	$127 \cdot 64$	
128	32640	$255 \cdot 128$	

Guess: (2n-1)n

Third Example from Substitution

- $\mathrm{T}_{1}=2 \mathrm{~T}_{0}+1^{2}=2(0)+1=1=1 \cdot 1$
- $\mathrm{T}_{2}=2\left(\mathrm{~T}_{1}\right)+2^{2}=2(1)+4=6=3 \cdot 2$
- $\mathrm{T}_{4}=2(6)+4^{2}=12+16=28=7 \cdot 4$
- $\mathrm{T}_{8}=2\left(\mathrm{~T}_{4}\right)+8^{2}=2(28)+64=120=15 \cdot 8$
- $\mathrm{T}_{16}=2\left(\mathrm{~T}_{8}\right)+16^{2}=2(120)+256$

$$
=496=31 \cdot 16
$$

- $\mathrm{T}_{32}=2\left(\mathrm{~T}_{16}\right)+32^{2}=2(496)+1024$
$=2016=63 \cdot 32$
- $\mathrm{T}_{64}=2\left(\mathrm{~T}_{32}\right)+64^{2}=2(2016)+4096$

$$
=8128=127 \cdot 64
$$

Example: D\&C into variable sized pieces

$\mathrm{T}(n)=\mathrm{T}(n / 3)+\mathrm{T}(2 n / 3)+n$
$\mathrm{T}(1)=1$

Generate a potential solution for $\mathrm{T}(\mathrm{n})$ using the methods we have discussed.

Recurrence Relations

- Overview
- Connection to recursive algorithms
- Techniques for solving them
- Methods for generating a guess
- Induction proofs
- Master Theorem

Induction Proof

$\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1 ; \mathrm{T}_{0}=0$
Prove: $T_{n}=2^{n}-1$ by induction:

1. Base Case: $\mathrm{n}=0: \mathrm{T}_{0}=2^{0}-1=0$
2. Inductive Hypothesis (IH): $\mathrm{T}_{\mathrm{n}}=2^{\mathrm{n}}-1$ for $\mathrm{n} \geq 0$
3. Inductive Step: Show $\mathrm{T}_{\mathrm{n}+1}=2^{\mathrm{n}+1}-1$ for $\mathrm{n} \geq 0$
$\mathrm{T}_{\mathrm{n}+1}=2 \mathrm{~T}_{\mathrm{n}}+1$
$=2\left(2^{\mathrm{n}}-1\right)+1 \quad($ applying IH$)$
$=2^{\mathrm{n}+1}-1$

Merge sort analysis

Mergesort(array)
$\mathrm{n}=\operatorname{size}($ array $)$
if $(\mathrm{n}==1)$ return array
$\operatorname{array} 1=\operatorname{Mergesort}(\operatorname{array}[1 . . \mathrm{n} / 2])$
$\operatorname{array} 2=\operatorname{Mergesort}(\operatorname{array}[\mathrm{n} / 2+1 . . \mathrm{n}])$
return Merge(array1, array2)
Develop a recurrence relation:

Problem: Merge Sort

- Merge sort breaking array into 3 pieces
- What is a recurrence relation?
- What is a solution?
- How does this compare to breaking into 2 pieces?

Merge Sort Induction Proof

Prove that $\mathrm{T}(n)=2 \mathrm{~T}(\lfloor n / 2\rfloor)+n, \mathrm{~T}(1)=1$ is $\mathrm{O}(n \lg n)$.
Prove that $\mathrm{T}(n) \leq \mathrm{c} n \lg n$, for all n greater than some value.
Base cases: why not T(1)?

$$
\begin{aligned}
\mathrm{T}(2)=4 \leq \mathrm{c} 2 \lg 2 \\
\mathrm{~T}(3)=5 \leq \mathrm{c} 3 \lg 3 \\
\mathrm{c} \geq 2 \text { suffices }
\end{aligned}
$$

Inductive Hypothesis: $\mathrm{T}(\lfloor n / 2\rfloor) \leq \mathrm{c}(\lfloor n / 2\rfloor) \lg (\lfloor n / 2\rfloor)$ for $\mathrm{n} \geq$?
Inductive Step: Show that $\mathrm{T}(n) \leq \mathrm{c} n \lg n$ for $\mathrm{n} \geq$?

Induction Step

Given : $\mathrm{T}(\lfloor n / 2\rfloor) \leq \mathrm{c}(\lfloor n / 2\rfloor) \lg (\lfloor n / 2\rfloor)$

$$
\begin{aligned}
& \mathrm{T}(n)=2 \mathrm{~T}(\lfloor n / 2\rfloor)+n \\
& \leq 2(\mathrm{c}(\lfloor n / 2\rfloor) \log (\lfloor n / 2\rfloor))+n \quad \text { (applying IH) } \\
& \leq 2(\mathrm{c}(n / 2) \log (n / 2))+n \quad \text { (dropping floors makes it bigger!) } \\
&=\mathrm{c} n \lg (n / 2)+n \\
&=\mathrm{c} n(\lg (n)-\lg (2))+n \\
&=\mathrm{c} n \lg (n)-\mathrm{c} n+n \\
&=\mathrm{c} n \lg (n)-(\mathrm{c}-1) n \\
&<\mathrm{c} n \lg (n) \quad(\lg 2=1) \\
&
\end{aligned}
$$

Recurrence Relations

- Overview
- Connection to recursive algorithms
- Techniques for solving them
- Methods for generating a guess
- Induction proofs
- Master Theorem

Master Theorem

- $T(n)=a T(n / b)+f(n)$
- Ignore floors and ceilings for n / b
- constants $\mathrm{a} \geq 1$ and $\mathrm{b}>1$
- $f(n)$ any function
- If $f(n)=O\left(n^{\text {log_b } a-\varepsilon}\right)$ for constant $\varepsilon>0, T(n)=\Theta\left(n^{\log _{-} b a}\right)$
- If $f(n)=\Theta\left(n^{\log _b} \operatorname{a}\right), T(n)=\Theta\left(n^{\log _b a} \lg n\right)$
- If $\mathrm{f}(\mathrm{n})=\Omega\left(\mathrm{n}^{\text {log_b }} \mathrm{a}+\varepsilon\right)$ for some constant $\varepsilon>0$, and if $a f(n / b)$ $\leq c f(n)$ for some constant $\mathrm{c}<1$ and all sufficiently large n , $\mathrm{T}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))$.
- Key idea: Compare $n^{\text {log_b }}$ a with $f(n)$

Master Theorem

- The master theorem concerns recurrence relations of the form:
$-\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})$, where $\mathrm{a} \geq 1, \mathrm{~b}>1$
- In the application to the analysis of a recursive algorithm, the constants and function take on the following significance:
- n is the size of the problem.
- a is the number of subproblems in the recursion.
- n / b is the size of each subproblem. (Here it is assumed that all subproblems are essentially the same size.)
- $\mathrm{f}(\mathrm{n})$ is the cost of the work done outside the recursive calls, which includes the cost of dividing the problem and the cost of merging the solutions to the subproblems.

Applying Master Theorem

- Case 1 - Generic form

$$
\begin{aligned}
& \text { If } f(n) \in \mathrm{O}\left(n^{c}\right), \text { where } c<\log _{b} n \\
& \quad T(n) \in \Theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Master Theorem Case 1 - Example

- $T(n)=8 T(n / 2)+1000 n^{2}$

$$
a=8, b=2, f(n)=1000 n^{2}
$$

- SO

$$
T(n) \in \Theta\left(n^{c}\right), \text { where } c=2
$$

- Do we satisfy the condition of case 1 ?

$$
\log _{b} a=\log _{2} 8=3>c ? \text { We do }!!
$$

- $T(n) \in \Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{3}\right)$
- We find that $T(n)=1001 n^{3}-1000 n^{2}$, if $T(1)=1$

Applying Master Theorem

- Case 2 - Generic Form
- If for $k \geq 0$:

$$
f(n) \in \Theta\left(n^{c} \log ^{k} n\right) \text { where } c=\log _{b} a
$$

then

$$
T(n) \in \Theta\left(n^{c} \log ^{k+1} n\right)
$$

- $T(n) \in \Theta\left(n^{\log _{b} a}{ }^{a} \log ^{k+1} n\right)=\Theta\left(n^{1} \log ^{1} n\right)=\Theta(n \log n)$

Master Theorem Case 2 - Example

- $T(n)=2 T(n / 2)+10 n$
- We find that

$$
a=2, b=2, c=1, f(n)=10 n
$$

SO

$$
f(n)=\Theta\left(n^{c} \log ^{k} n\right), \text { where } c=1, k=0
$$

- Do we satisfy the Case 2 condition? $\log _{b} a=\log _{2} 2=1$, and therefore $c=\log _{b} a$ Yes!!
- $T(n)=\Theta\left(n^{\log ,}{ }^{a} \log ^{k+1} n\right)$

$$
=\Theta\left(n^{1} \log ^{1} n\right)=\Theta(n \log n)
$$

Master Theorem Case 2 - Example

- $T(n)$ is in $\Theta(n \log n)$ and we know that $T(1)=1$, therefore
- $T(n)=n+10 n \log _{2} n$

Applying Master Theorem

- Case 3 - Generic Form
- If $f(n) \in \Omega\left(n^{c}\right)$ where $c>\log _{b} a$ and if

$$
a f(n / b) \leq k f(n)
$$

where $k<1$ and n is sufficiently large
(called the regularity condition)
then

$$
T(n) \in \Theta(f(n))
$$

Master Theorem Case 3 - Example

- $T(n)=2 T(n / 2)+n^{2}$
- We find that

$$
a=2, b=2, f(n)=n^{2}
$$

so

$$
f(\mathrm{n})=\Omega\left(n^{c}\right), \text { where } c=2
$$

- Do we satisfy the Case 3 condition? $\log _{b} a=\log _{2} 2=1$, and therefore $c>\log _{b} a$ Yes!!
- The regularity condition is met:
$\left.2\left(n^{2} / 4\right)\right) \leq k n^{2}$

Master Theorem Case 2 - Example

- $T(n)=\Theta(f(n))=\Theta\left(n^{2}\right)$ and we know that $T(1)=1$, therefore
- $T(n)=2 n^{2}-n$

Inadmissible Equations

- $T(n)=2^{n} T(n / 2)+n^{n}$
$-a$ is not constant
- $T(n)=2 T(n / 2)+n / \log n$
- $\mathrm{f}(\mathrm{n}) / n^{\log _{0} a}$ must be a polynomial
- $T(n)=0.5 T(n / 2)+n$
- a cannot be less than one
- $T(n)=64 T(n / 8)-n^{2} \log n$
- $f(n)$ must be positive
- $T(n)=T(n / 2)+n(2-\cos n)$
- It's case 3 but there is a regularity violation

